Complexity Theory

Lecture 5

Anuj Dawar
University of Cambridge Computer Laboratory Easter Term 2010
http://www.cl.cam.ac.uk/teaching/0910/Complexity/

Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L_{1} is polynomial time reducible to L_{2}.

$$
L_{1} \leq_{P} L_{2}
$$

If f is also computable in $\operatorname{SPACE}(\log n)$, we write

$$
L_{1} \leq_{L} L_{2}
$$

Reductions

Given two languages $L_{1} \subseteq \Sigma_{1}^{\star}$, and $L_{2} \subseteq \Sigma_{2}^{\star}$,

A reduction of L_{1} to L_{2} is a computable function

$$
f: \Sigma_{1}^{\star} \rightarrow \Sigma_{2}^{\star}
$$

such that for every string $x \in \Sigma_{1}^{\star}$,

$$
f(x) \in L_{2} \text { if, and only if, } x \in L_{1}
$$

Reductions 2

If $L_{1}<_{p} L_{2}$ we understand that L_{1} is no more difficult to solve than L_{2}, at least as far as polynomial time computation is concerned.

That is to say

$$
\text { If } L_{1} \leq_{P} L_{2} \text { and } L_{2} \in \mathrm{P} \text {, then } L_{1} \in \mathrm{P}
$$

We can get an algorithm to decide L_{1} by first computing f, and then using the polynomial time algorithm for L_{2}.

Completeness

The usefulness of reductions is that they allow us to establish the relative complexity of problems, even when we cannot prove absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are maximally difficult.

A language L is said to be NP-hard if for every language $A \in \mathrm{NP}$, $A \leq{ }_{P} L$.

A language L is NP-complete if it is in NP and it is NP-hard.

Boolean Formula

We need to give, for each $x \in \Sigma^{\star}$, a Boolean expression $f(x)$ which is satisfiable if, and only if, there is an accepting computation of M on input x.
$f(x)$ has the following variables:

$$
\begin{array}{ll}
S_{i, q} & \text { for each } i \leq n^{k} \text { and } q \in K \\
T_{i, j, \sigma} & \text { for each } i, j \leq n^{k} \text { and } \sigma \in \Sigma \\
H_{i, j} & \text { for each } i, j \leq n^{k}
\end{array}
$$

SAT is NP-complete

Cook showed that the language SAT of satisfiable Boolean expressions is NP-complete.

To establish this, we need to show that for every language L in NP, there is a polynomial time reduction from L to SAT.

Since L is in NP, there is a nondeterministic Turing machine

$$
M=(K, \Sigma, s, \delta)
$$

and a bound n^{k} such that a string x is in L if, and only if, it is accepted by M within n^{k} steps.

Intuitively, these variables are intended to mean:

- $S_{i, q}$ - the state of the machine at time i is q.
- $T_{i, j, \sigma}$ - at time i, the symbol at position j of the tape is σ.
- $H_{i, j}$ - at time i, the tape head is pointing at tape cell j.

We now have to see how to write the formula $f(x)$, so that it enforces these meanings.

Initial state is s and the head is initially at the beginning of the tape.

$$
S_{1, s} \wedge H_{1,1}
$$

The head is never in two places at once

$$
\bigwedge_{i} \bigwedge_{j}\left(H_{i, j} \rightarrow \bigwedge_{j^{\prime} \neq j}\left(\neg H_{i, j^{\prime}}\right)\right)
$$

The machine is never in two states at once

$$
\bigwedge_{q} \bigwedge_{i}\left(S_{i, q} \rightarrow \bigwedge_{q^{\prime} \neq q}\left(\neg S_{i, q^{\prime}}\right)\right)
$$

Each tape cell contains only one symbol

$$
\bigwedge_{i} \bigwedge_{j} \bigwedge_{\sigma}\left(T_{i, j, \sigma} \rightarrow \bigwedge_{\sigma^{\prime} \neq \sigma}\left(\neg T_{i, j, \sigma^{\prime}}\right)\right)
$$

CNF

A Boolean expression is in conjunctive normal form if it is the conjunction of a set of clauses, each of which is the disjunction of a set of literals, each of these being either a variable or the negation of a variable.

For any Boolean expression ϕ, there is an equivalent expression ψ in conjunctive normal form.
ψ can be exponentially longer than ϕ.

However, CNF-SAT, the collection of satisfiable CNF expressions, is NP-complete.

3SAT

A Boolean expression is in 3CNF if it is in conjunctive normal form and each clause contains at most 3 literals.

3SAT is defined as the language consisting of those expressions in 3CNF that are satisfiable.

3SAT is NP-complete, as there is a polynomial time reduction from CNF-SAT to 3SAT.

