Complexity Theory

Lecture 4

Anuj Dawar

University of Cambridge Computer Laboratory Easter Term 2010
http://www.cl.cam.ac.uk/teaching/0910/Complexity/

Composites

Consider the decision problem (or language) Composite defined by

$$
\{x \mid x \text { is not prime }\}
$$

This is the complement of the language Prime.

Is Composite $\in \mathrm{P}$?

Clearly, the answer is yes if, and only if, Prime $\in P$

Satisfiability

For Boolean expressions ϕ that contain variables, we can ask
Is there an assignment of truth values to the variables
which would make the formula evaluate to true?
The set of Boolean expressions for which this is true is the language SAT of satisfiable expressions.

This can be decided by a deterministic Turing machine in time $O\left(n^{2} 2^{n}\right)$.

An expression of length n can contain at most n variables.
For each of the 2^{n} possible truth assignments to these variables, we check whether it results in a Boolean expression that evaluates to true.

Is $\mathrm{SAT} \in \mathrm{P}$?

Hamiltonian Graphs

Given a graph $G=(V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle

The language HAM is the set of encodings of Hamiltonian graphs.

Is $\mathrm{HAM} \in \mathrm{P}$?

Examples

The first of these graphs is not Hamiltonian, but the second one is.

Polynomial Verification

The problems Composite, SAT and HAM have something in common.

In each case, there is a search space of possible solutions.
the factors of x; a truth assignment to the variables of ϕ; a list of the vertices of G

The number of possible solutions is exponential in the length of the input.

Given a potential solution, it is easy to check whether or not it is a solution.

Nondeterministic Complexity Classes

We have already defined $\operatorname{TIME}(f(n))$ and $\operatorname{SPACE}(f(n))$.
$\operatorname{NTIME}(f(n))$ is defined as the class of those languages L which are accepted by a nondeterministic Turing machine M, such that for every $x \in L$, there is an accepting computation of M on x of length at most $f(n)$.

$$
\mathrm{NP}=\bigcup_{k=1}^{\infty} \operatorname{NTIME}\left(n^{k}\right)
$$

Nondeterminism

(acc, ...)

For a language in $\operatorname{NTIME}(f(n))$, the height of the tree is bounded by $f(n)$ when the input is of length n.

NP

In the other direction, suppose M is a nondeterministic machine that accepts a language L in time n^{k}.

We define the deterministic algorithm V which on input (x, c) simulates M on input x.

At the $i^{\text {th }}$ nondeterministic choice point, V looks at the $i^{\text {th }}$ character in c to decide which branch to follow.

If M accepts then V accepts, otherwise it rejects.
V is a polynomial verifier for L.

NP

A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V, which runs in time $p(n)$.

The following describes a nondeterministic algorithm that accepts L

1. input x of length n
2. nondeterministically guess c of length $\leq p(n)$
3. run V on (x, c)

Generate and Test

We can think of nondeterministic algorithms in the generate-and test paradigm:

Where the generate component is nondeterministic and the verify component is deterministic.

Reductions

Given two languages $L_{1} \subseteq \Sigma_{1}^{\star}$, and $L_{2} \subseteq \Sigma_{2}^{\star}$,

A reduction of L_{1} to L_{2} is a computable function

$$
f: \Sigma_{1}^{\star} \rightarrow \Sigma_{2}^{\star}
$$

such that for every string $x \in \Sigma_{1}^{\star}$,

$$
f(x) \in L_{2} \text { if, and only if, } x \in L_{1}
$$

