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Complexity Classes

A complexity class is a collection of languages determined by three

things:

• A model of computation (such as a deterministic Turing

machine, or a nondeterministic TM, or a parallel Random

Access Machine).

• A resource (such as time, space or number of processors).

• A set of bounds. This is a set of functions that are used to

bound the amount of resource we can use.
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Polynomial Bounds

By making the bounds broad enough, we can make our definitions

fairly independent of the model of computation.

The collection of languages recognised in polynomial time is

the same whether we consider Turing machines, register

machines, or any other deterministic model of computation.

The collection of languages recognised in linear time, on

the other hand, is different on a one-tape and a two-tape

Turing machine.

We can say that being recognisable in polynomial time is a

property of the language, while being recognisable in linear time is

sensitive to the model of computation.
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Polynomial Time

P =

∞⋃

k=1

TIME(nk)

The class of languages decidable in polynomial time.

The complexity class P plays an important role in our theory.

• It is robust, as explained.

• It serves as our formal definition of what is feasibly computable

One could argue whether an algorithm running in time θ(n100) is

feasible, but it will eventually run faster than one that takes time

θ(2n).

Making the distinction between polynomial and exponential results

in a useful and elegant theory.
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Example: Reachability

The Reachability decision problem is, given a directed graph

G = (V,E) and two nodes a, b ∈ V , to determine whether there is a

path from a to b in G.

A simple search algorithm as follows solves it:

1. mark node a, leaving other nodes unmarked, and initialise set

S to {a};

2. while S is not empty, choose node i in S: remove i from S and

for all j such that there is an edge (i, j) and j is unmarked,

mark j and add j to S;

3. if b is marked, accept else reject.
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Analysis

This algorithm requires O(n2) time and O(n) space.

The description of the algorithm would have to be refined for an

implementation on a Turing machine, but it is easy enough to show

that:

Reachability ∈ P

To formally define Reachability as a language, we would have to also

choose a way of representing the input (V,E, a, b) as a string.
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Example: Euclid’s Algorithm

Consider the decision problem (or language) RelPrime defined by:

{(x, y) | gcd(x, y) = 1}

The standard algorithm for solving it is due to Euclid:

1. Input (x, y).

2. Repeat until y = 0: x← x mod y; Swap x and y

3. If x = 1 then accept else reject.
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Analysis

The number of repetitions at step 2 of the algorithm is at most

O(log x).

why?

This implies that RelPrime is in P.

If the algorithm took θ(x) steps to terminate, it would not be a

polynomial time algorithm, as x is not polynomial in the length of

the input.
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Primality

Consider the decision problem (or language) Prime defined by:

{x | x is prime}

The obvious algorithm:

For all y with 1 < y ≤ √x check whether y|x.

requires Ω(
√
x) steps and is therefore not polynomial in the length

of the input.

Is Prime ∈ P?
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Boolean Expressions

Boolean expressions are built up from an infinite set of variables

X = {x1, x2, . . .}

and the two constants true and false by the rules:

• a constant or variable by itself is an expression;

• if φ is a Boolean expression, then so is (¬φ);

• if φ and ψ are both Boolean expressions, then so are (φ ∧ ψ)

and (φ ∨ ψ).

Anuj Dawar April 28, 2010

Complexity Theory 11

Evaluation

If an expression contains no variables, then it can be evaluated to

either true or false.

Otherwise, it can be evaluated, given a truth assignment to its

variables.

Examples:

(true ∨ false) ∧ (¬false)
(x1 ∨ false) ∧ ((¬x1) ∨ x2)

(x1 ∨ false) ∧ (¬x1)

(x1 ∨ (¬x1)) ∧ true
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Boolean Evaluation

There is a deterministic Turing machine, which given a Boolean

expression without variables of length n will determine, in time

O(n2) whether the expression evaluates to true.

The algorithm works by scanning the input, rewriting formulas

according to the following rules:
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Rules

• (true ∨ φ)⇒ true

• (φ ∨ true)⇒ true

• (false ∨ φ)⇒ φ

• (false ∧ φ)⇒ false

• (φ ∧ false)⇒ false

• (true ∧ φ)⇒ φ

• (¬true)⇒ false

• (¬false)⇒ true
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Analysis

Each scan of the input (O(n) steps) must find at least one

subexpression matching one of the rule patterns.

Applying a rule always eliminates at least one symbol from the

formula.

Thus, there are at most O(n) scans required.

The algorithm works in O(n2) steps.
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Satisfiability

For Boolean expressions φ that contain variables, we can ask

Is there an assignment of truth values to the variables

which would make the formula evaluate to true?

The set of Boolean expressions for which this is true is the language

SAT of satisfiable expressions.

This can be decided by a deterministic Turing machine in time

O(n22n).

An expression of length n can contain at most n variables.

For each of the 2n possible truth assignments to these variables, we

check whether it results in a Boolean expression that evaluates to

true.

Is SAT ∈ P?
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Circuits

A circuit is a directed graph G = (V,E), with V = {1, . . . , n}
together with a labeling: l : V → {true, false,∧,∨,¬}, satisfying:

• If there is an edge (i, j), then i < j;

• Every node in V has indegree at most 2.

• A node v has

indegree 0 iff l(v) ∈ {true, false};
indegree 1 iff l(v) = ¬;

indegree 2 iff l(v) ∈ {∨,∧}

The value of the expression is given by the value at node n.
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CVP

A circuit is a more compact way of representing a Boolean

expression.

Identical subexpressions need not be repeated.

CVP - the circuit value problem is, given a circuit, determine the

value of the result node n.

CVP is solvable in polynomial time, by the algorithm which

examines the nodes in increasing order, assigning a value true or

false to each node.
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Composites

Consider the decision problem (or language) Composite defined by:

{x | x is not prime}

This is the complement of the language Prime.

Is Composite ∈ P?

Clearly, the answer is yes if, and only if, Prime ∈ P.
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