Complexity Theory	1 Com	blexity Theory	2
Complexity Theory		Inclusions	
Lecture 11		We have the following inclusions:	
		$L\subseteqNL\subseteqP\subseteqNP\subseteqPSPACE\subseteqNPSPACE\subseteqEXI$	Р
Anuj Dawar		where $EXP = \bigcup_{k=1}^{\infty} TIME(2^{n^k})$	
		Moreover,	
University of Cambridge Computer Laborato		$L \subseteq NL \cap co-NL$	
Easter Term 2010		$P\subseteqNP\capco\text{-}NP$	
http://www.cl.cam.ac.uk/teaching/0910/Comple	exity/	$PSPACE \subseteq NPSPACE \cap co\text{-}NPSPACE$	
Anuj Dawar	May 17, 2010 Anuj	Dawar	May 17, 2010
Anuj Dawar Complexity Theory		Dawar Dexity Theory	May 17, 2010
			May 17, 2010 4
Complexity Theory	3 Com	plexity Theory	$\mathbf{f} = (V, E)$
Complexity Theory Establishing Inclusions To establish the known inclusions between the main con	3 Com	Reachability Recall the Reachability problem: given a <i>directed</i> graph G and two nodes $a, b \in V$, determine whether there is a path	$\mathbf{f} = (V, E)$
Complexity Theory Establishing Inclusions To establish the known inclusions between the main con- classes, we prove the following.	3 Com	Reachability Recall the Reachability problem: given a <i>directed</i> graph G and two nodes $a, b \in V$, determine whether there is a path to b in G .	$\mathbf{f} = (V, E)$
Complexity Theory Establishing Inclusions To establish the known inclusions between the main con- classes, we prove the following. • SPACE $(f(n)) \subseteq$ NSPACE $(f(n))$;	3 Com	Reachability Recall the Reachability problem: given a <i>directed</i> graph G and two nodes $a, b \in V$, determine whether there is a path to b in G . A simple search algorithm solves it:	f = (V, E) h from a
Complexity Theory Establishing Inclusions To establish the known inclusions between the main con- classes, we prove the following. • SPACE $(f(n)) \subseteq$ NSPACE $(f(n))$; • TIME $(f(n)) \subseteq$ NTIME $(f(n))$;	3 Com	Reachability Recall the Reachability problem: given a <i>directed</i> graph G and two nodes $a, b \in V$, determine whether there is a path to b in G .	f = (V, E) h from a
Complexity Theory Establishing Inclusions To establish the known inclusions between the main con- classes, we prove the following. • SPACE $(f(n)) \subseteq$ NSPACE $(f(n))$; • TIME $(f(n)) \subseteq$ NTIME $(f(n))$; • NTIME $(f(n)) \subseteq$ SPACE $(f(n))$;	3 Com	Reachability Recall the Reachability problem: given a <i>directed</i> graph G and two nodes $a, b \in V$, determine whether there is a path to b in G . A simple search algorithm solves it: 1. mark node a , leaving other nodes unmarked, and init	f = (V, E) h from a cialise set from S and

5

NL Reachability

We can construct an algorithm to show that the Reachability problem is in NL:

- 1. write the index of node a in the work space;
- 2. if i is the index currently written on the work space:
 - (a) if i = b then accept, else guess an index j (log n bits) and write it on the work space.
 - (b) if (i, j) is not an edge, reject, else replace i by j and return to (2).

May 17, 2010

7

Complexity Theory

Configuration Graph

Define the *configuration graph* of M, x to be the graph whose nodes are the possible configurations, and there is an edge from i to j if, and only if, $i \to_M j$.

Then, M accepts x if, and only if, some accepting configuration is reachable from the starting configuration $(s, \triangleright, x, \triangleright, \varepsilon)$ in the configuration graph of M, x.

We can use the $O(n^2)$ algorithm for Reachability to show that: $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{TIME}(k^{\log n + f(n)})$

for some constant k.

Let M be a nondeterministic machine working in space bounds f(n).

For any input x of length n, there is a constant c (depending on the number of states and alphabet of M) such that the total number of possible configurations of M within space bounds f(n) is bounded by $n \cdot c^{f(n)}$.

Here, $c^{f(n)}$ represents the number of different possible contents of the work space, and n different head positions on the input.

Anuj Dawar

May 17, 2010

8

Complexity Theory

Using the $O(n^2)$ algorithm for Reachability, we get that M can be simulated by a deterministic machine operating in time

 $c'(nc^{f(n)})^2 \sim c'c^{2(\log n + f(n))} \sim k^{(\log n + f(n))}$

In particular, this establishes that $NL \subseteq P$ and $NPSPACE \subseteq EXP$.

Anuj Dawar

9

Savitch's Theorem

Further simulation results for nondeterministic space are obtained by other algorithms for Reachability.

We can show that Reachability can be solved by a *deterministic* algorithm in $O((\log n)^2)$ space.

Consider the following recursive algorithm for determining whether there is a path from a to b of length at most n (for n a power of 2): $O((\log n)^2)$ space Reachability algorithm:

Path(a, b, i)

if i = 1 and $a \neq b$ and (a, b) is not an edge reject else if (a, b) is an edge or a = b accept else, for each node x, check:

1. is there a path a - x of length i/2; and

2. is there a path x - b of length i/2?

if such an x is found, then accept, else reject.

The maximum depth of recursion is $\log n$, and the number of bits of information kept at each stage is $3 \log n$.

```
Anuj Dawar
                                                                     May 17, 2010
                                                                                                 Anuj Dawar
                                                                                                                                                                      May 17, 2010
                                                                            11
                                                                                                                                                                             12
Complexity Theory
                                                                                                 Complexity Theory
                         Savitch's Theorem - 2
                                                                                                                             Complementation
    The space efficient algorithm for reachability used on the
                                                                                                      A still more clever algorithm for Reachability has been used to show
    configuration graph of a nondeterministic machine shows:
                                                                                                      that nondeterministic space classes are closed under
                                                                                                      complementation:
                      \mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f(n)^2)
                                                                                                      If f(n) \ge \log n, then
                                                                                                                       NSPACE(f(n)) = co-NSPACE(f(n))
    for f(n) \ge \log n.
    This yields
                                                                                                      In particular
                                                                                                                                  NL = co-NL
                    PSPACE = NPSPACE = co-NPSPACE.
```

Anuj Dawar

May 17, 2010

10

13

Logarithmic Space Reductions

We write

$A \leq_L B$

if there is a reduction f of A to B that is computable by a deterministic Turing machine using $O(\log n)$ workspace (with a *read-only* input tape and *write-only* output tape).

Note: We can compose \leq_L reductions. So,

if $A \leq_L B$ and $B \leq_L C$ then $A \leq_L C$

Complexity Theory

Anuj Dawar

P-complete Problems

It makes little sense to talk of complete problems for the class P with respect to polynomial time reducibility \leq_P .

There are problems that are complete for P with respect to *logarithmic space* reductions \leq_L .

One example is CVP—the circuit value problem.

- If $\mathsf{CVP} \in \mathsf{L}$ then $\mathsf{L} = \mathsf{P}$.
- If $CVP \in NL$ then NL = P.

Complexity Classes

We have established the following inclusions among complexity classes:

$\mathsf{L}\subseteq\mathsf{N}\mathsf{L}\subseteq\mathsf{P}\subseteq\mathsf{N}\mathsf{P}\subseteq\mathsf{P}\mathsf{S}\mathsf{P}\mathsf{A}\mathsf{C}\mathsf{E}\subseteq\mathsf{E}\mathsf{X}\mathsf{P}$

Showing that a problem is NP-complete or PSPACE-complete, we often say that we have proved it intractable.

While this is not strictly correct, a proof of completeness for these classes does tell us that the problem is structurally difficult.

Similarly, we say that PSPACE-complete problems are harder than NP-complete ones, even if the running time is not higher.

Anuj Dawar

Complexity Theory

NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of NP-completeness, we can see that SAT and the various other NP-complete problems are actually complete under \leq_L reductions.

Thus, if $SAT \leq_L A$ for some problem in L then not only P = NP but also L = NP.

May 17, 2010

15

May 17, 2010

16