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Inclusions

We have the following inclusions:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP

where EXP =
⋃

∞

k=1 TIME(2nk

)

Moreover,

L ⊆ NL ∩ co-NL

P ⊆ NP ∩ co-NP

PSPACE ⊆ NPSPACE ∩ co-NPSPACE
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Establishing Inclusions

To establish the known inclusions between the main complexity

classes, we prove the following.

• SPACE(f(n)) ⊆ NSPACE(f(n));

• TIME(f(n)) ⊆ NTIME(f(n));

• NTIME(f(n)) ⊆ SPACE(f(n));

• NSPACE(f(n)) ⊆ TIME(klog n+f(n));

The first two are straightforward from definitions.

The third is an easy simulation.

The last requires some more work.
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Reachability

Recall the Reachability problem: given a directed graph G = (V, E)

and two nodes a, b ∈ V , determine whether there is a path from a

to b in G.

A simple search algorithm solves it:

1. mark node a, leaving other nodes unmarked, and initialise set

S to {a};

2. while S is not empty, choose node i in S: remove i from S and

for all j such that there is an edge (i, j) and j is unmarked,

mark j and add j to S;

3. if b is marked, accept else reject.
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NL Reachability

We can construct an algorithm to show that the Reachability

problem is in NL:

1. write the index of node a in the work space;

2. if i is the index currently written on the work space:

(a) if i = b then accept, else

guess an index j (log n bits) and write it on the work space.

(b) if (i, j) is not an edge, reject, else replace i by j and return

to (2).
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We can use the O(n2) algorithm for Reachability to show that:

NSPACE(f(n)) ⊆ TIME(klog n+f(n))

for some constant k.

Let M be a nondeterministic machine working in space bounds

f(n).

For any input x of length n, there is a constant c (depending on the

number of states and alphabet of M) such that the total number of

possible configurations of M within space bounds f(n) is bounded

by n · cf(n).

Here, cf(n) represents the number of different possible

contents of the work space, and n different head positions

on the input.
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Configuration Graph

Define the configuration graph of M, x to be the graph whose nodes

are the possible configurations, and there is an edge from i to j if,

and only if, i →M j.

Then, M accepts x if, and only if, some accepting configuration is

reachable from the starting configuration (s, ⊲, x, ⊲, ε) in the

configuration graph of M, x.
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Using the O(n2) algorithm for Reachability, we get that M can be

simulated by a deterministic machine operating in time

c′(ncf(n))2 ∼ c′c2(log n+f(n)) ∼ k(log n+f(n))

In particular, this establishes that NL ⊆ P and NPSPACE ⊆ EXP.
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Savitch’s Theorem

Further simulation results for nondeterministic space are obtained

by other algorithms for Reachability.

We can show that Reachability can be solved by a deterministic

algorithm in O((log n)2) space.

Consider the following recursive algorithm for determining whether

there is a path from a to b of length at most n (for n a power of 2):
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O((log n)2) space Reachability algorithm:

Path(a, b, i)

if i = 1 and a 6= b and (a, b) is not an edge reject

else if (a, b) is an edge or a = b accept

else, for each node x, check:

1. is there a path a − x of length i/2; and

2. is there a path x − b of length i/2?

if such an x is found, then accept, else reject.

The maximum depth of recursion is log n, and the number of bits

of information kept at each stage is 3 log n.
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Savitch’s Theorem - 2

The space efficient algorithm for reachability used on the

configuration graph of a nondeterministic machine shows:

NSPACE(f(n)) ⊆ SPACE(f(n)2)

for f(n) ≥ log n.

This yields

PSPACE = NPSPACE = co-NPSPACE.
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Complementation

A still more clever algorithm for Reachability has been used to show

that nondeterministic space classes are closed under

complementation:

If f(n) ≥ log n, then

NSPACE(f(n)) = co-NSPACE(f(n))

In particular

NL = co-NL.
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Complexity Classes

We have established the following inclusions among complexity

classes:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP

Showing that a problem is NP-complete or PSPACE-complete, we

often say that we have proved it intractable.

While this is not strictly correct, a proof of completeness for these

classes does tell us that the problem is structurally difficult.

Similarly, we say that PSPACE-complete problems are harder than

NP-complete ones, even if the running time is not higher.
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Logarithmic Space Reductions

We write

A ≤L B

if there is a reduction f of A to B that is computable by a

deterministic Turing machine using O(log n) workspace (with a

read-only input tape and write-only output tape).

Note: We can compose ≤L reductions. So,

if A ≤L B and B ≤L C then A ≤L C
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NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of

NP-completeness, we can see that SAT and the various other

NP-complete problems are actually complete under ≤L reductions.

Thus, if SAT ≤L A for some problem in L then not only P = NP

but also L = NP.
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P-complete Problems

It makes little sense to talk of complete problems for the class P

with respect to polynomial time reducibility ≤P .

There are problems that are complete for P with respect to

logarithmic space reductions ≤L.

One example is CVP—the circuit value problem.

• If CVP ∈ L then L = P.

• If CVP ∈ NL then NL = P.
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