Complexity Theory

Complexity Theory
Lecture 10

Anuj Dawar

University of Cambridge Computer Laboratory
Easter Term 2010

http://www.cl.cam.ac.uk/teaching/0910/Complexity/

Anuj Dawar

May 17, 2010

1

Complexity Theory

3

Private Key

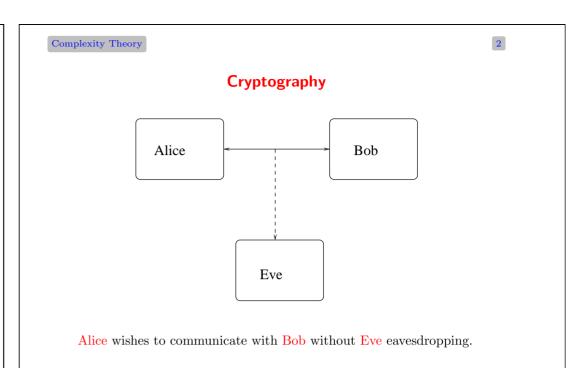
In a private key system, there are two secret keys

e – the encryption key

d – the decryption key

and two functions D and E such that:

for any x,


$$D(E(x,e),d) = x$$

For instance, taking d = e and both D and E as exclusive or, we have the one time pad:

$$(x \oplus e) \oplus e = x$$

Anuj Dawar

May 17, 2010

Complexity Theory

Anuj Dawar

One Time Pad

The one time pad is provably secure, in that the only way Eve can decode a message is by knowing the key.

If the original message x and the encrypted message y are known, then so is the key:

$$e = x \oplus y$$

Anuj Dawar

May 17, 2010

May 17, 2010

4

Complexity Theory

Public Key

In public key cryptography, the encryption key e is public, and the decryption key d is private.

We still have,

for any x,

$$D(E(x,e),d) = x$$

If E is polynomial time computable (and it must be if communication is not to be painfully slow), then the function that takes y = E(x, e) to x (without knowing d), must be in FNP.

Thus, public key cryptography is not *provably secure* in the way that the one time pad is. It relies on the existence of functions in $\mathsf{FNP} - \mathsf{FP}$.

Anuj Dawar

May 17, 2010

7

5

Complexity Theory

UP

Though one cannot hope to prove that the RSA function is one-way without separating P and NP, we might hope to make it as secure as a proof of NP-completeness.

Definition

A nondeterministic machine is *unambiguous* if, for any input x, there is at most one accepting computation of the machine.

UP is the class of languages accepted by unambiguous machines in polynomial time.

Complexity Theory

One Way Functions

A function f is called a *one way function* if it satisfies the following conditions:

- 1. f is one-to-one.
- 2. for each x, $|x|^{1/k} \le |f(x)| \le |x|^k$ for some k.
- 3. $f \in \mathsf{FP}$.
- 4. $f^{-1} \notin \mathsf{FP}$.

We cannot hope to prove the existence of one-way functions without at the same time proving $P \neq NP$.

It is strongly believed that the RSA function:

$$f(x, e, p, q) = (x^e \mod pq, pq, e)$$

is a one-way function.

Anuj Dawar

Anuj Dawar

May 17, 2010

Complexity Theory

UP

Equivalently, UP is the class of languages of the form

$${x \mid \exists y R(x,y)}$$

Where R is polynomial time computable, polynomially balanced, and for each x, there is at most one y such that R(x, y).

Anuj Dawar

May 17, 2010

May 17, 2010

Complexity Theory

UP One-way Functions

We have

$$P \subset UP \subset NP$$

It seems unlikely that there are any NP-complete problems in UP.

One-way functions exist *if*, and only *if*, $P \neq UP$.

Anuj Dawar

May 17, 2010

11

9

Complexity Theory

Classes

$$L = \mathsf{SPACE}(\log n)$$

$$NL = NSPACE(\log n)$$

$$\mathsf{PSPACE} = \bigcup_{k=1}^{\infty} \mathsf{SPACE}(n^k)$$

The class of languages decidable in polynomial space.

$$\mathsf{NPSPACE} = \bigcup_{k=1}^{\infty} \mathsf{NSPACE}(n^k)$$

Also, define

co-NL – the languages whose complements are in NL.

co-NPSPACE – the languages whose complements are in NPSPACE.

Complexity Theory

Space Complexity

We've already seen the definition SPACE(f(n)): the languages accepted by a machine which uses O(f(n)) tape cells on inputs of length n. Counting only work space

 $\mathsf{NSPACE}(f(n))$ is the class of languages accepted by a nondeterministic Turing machine using at most f(n) work space.

As we are only counting work space, it makes sense to consider bounding functions f that are less than linear.

Anuj Dawar

May 17, 2010

Complexity Theory

12

Inclusions

We have the following inclusions:

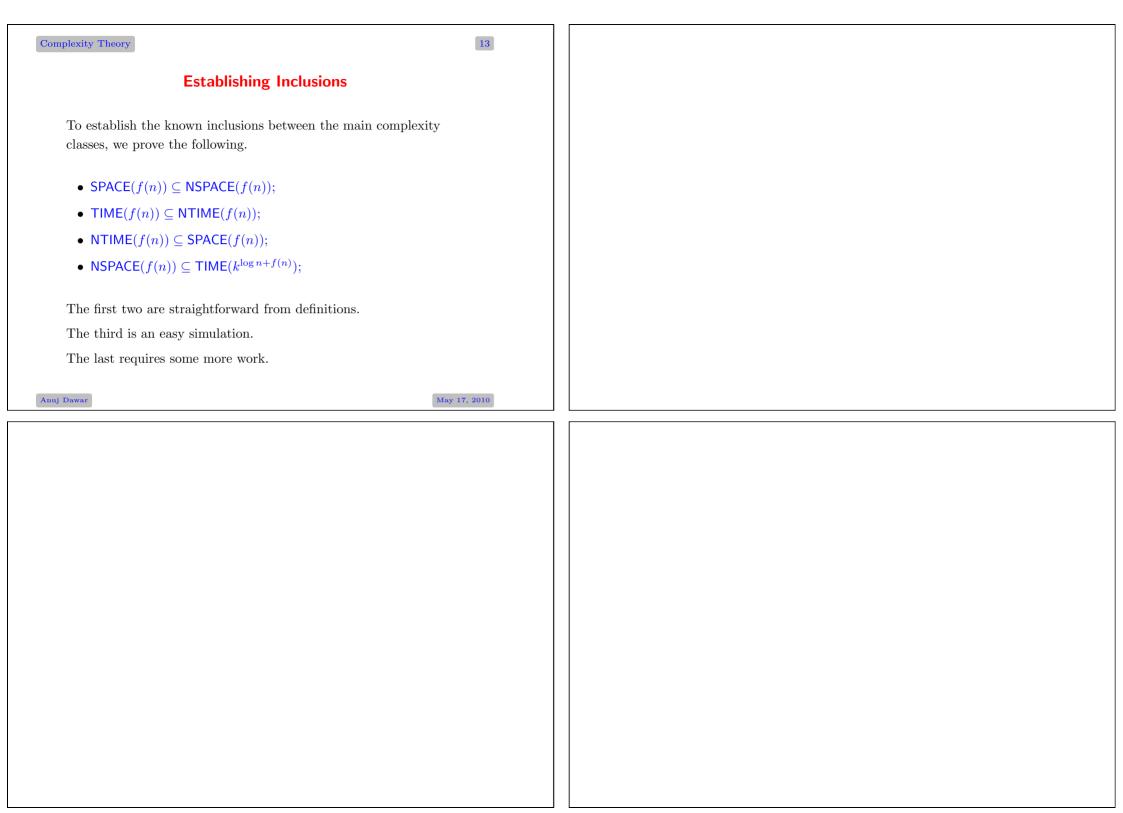
$$\mathsf{L}\subseteq\mathsf{NL}\subseteq\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{PSPACE}\subseteq\mathsf{NPSPACE}\subseteq\mathsf{EXP}$$

where
$$\mathsf{EXP} = \bigcup_{k=1}^{\infty} \mathsf{TIME}(2^{n^k})$$

Moreover,

Anuj Dawar

 $\mathsf{L}\subseteq\mathsf{NL}\cap\mathsf{co}\text{-}\mathsf{NL}$


 $\mathsf{P}\subseteq\mathsf{NP}\cap\mathsf{co}\text{-}\mathsf{NP}$

 $\mathsf{PSPACE} \subseteq \mathsf{NPSPACE} \cap \mathsf{co-NPSPACE}$

Anuj Dawar

May 17, 2010

May 17, 2010

