Computable functions

Recall:

Definition. $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is (register machine)
computable if there is a register machine M with at least $n+1$ registers $\mathrm{R}_{0}, \mathrm{R}_{1}, \ldots, \mathrm{R}_{n}$ (and maybe more) such that for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n}$ and all $y \in \mathbb{N}$, the computation of M starting with $\mathrm{R}_{0}=0$, $\mathrm{R}_{1}=x_{1}, \ldots, \mathrm{R}_{n}=x_{n}$ and all other registers set to 0 , halts with $\mathrm{R}_{0}=y$
if and only if $f\left(x_{1}, \ldots, x_{n}\right)=y$.

We've seen that a Turing machine's computation can be implemented by a register machine.
The converse holds: the computation of a register machine can be implemented by a Turing machine.

To make sense of this, we first have to fix a tape representation of RM configurations and hence of numbers and lists of numbers...

Tape encoding of lists of numbers

Definition. A tape over $\Sigma=\{\triangleright, \sqcup, 0,1\}$ codes a list of numbers if precisely two cells contain 0 and the only cells containing 1 occur between these.

Such tapes look like:
which corresponds to the list $\left[n_{1}, n_{2}, \ldots, n_{k}\right]$.

Tape encoding of lists of numbers

Definition. A tape over $\Sigma=\{\triangleright, \sqcup, 0,1\}$ codes a list of numbers if precisely two cells contain 0 and the only cells containing 1 occur between these.

Such tapes look like:

$$
\triangleright_{\sqcup} \cdots \cdot \underbrace{1 \cdots 1}_{n_{1}} \sqcup \underbrace{1 \cdots 1}_{n_{2}} \sqcup \cdots \cdot \underbrace{1 \cdots 1}_{n_{k}} \underbrace{1 \cdots}_{\underbrace{\sqcup^{\prime} \mathrm{s}}_{\mathrm{all}}}
$$

which corresponds to the list $\left[n_{1}, n_{2}, \ldots, n_{k}\right]$.

codes the list

Tape encoding of lists of numbers

Definition. A tape over $\Sigma=\{\triangleright, \sqcup, 0,1\}$ codes a list of numbers if precisely two cells contain 0 and the only cells containing 1 occur between these.

Such tapes look like:
which corresponds to the list $\left[n_{1}, n_{2}, \ldots, n_{k}\right]$.

codes the list $[0,0,0,2,1,0]$

Turing computable function

Definition. $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is Turing computable if and only if there is a Turing machine M with the following property:

Starting M from its initial state with tape head on the left endmarker of a tape coding $\left[0, x_{1}, \ldots, x_{n}\right], M$ halts if and only if $f\left(x_{1}, \ldots, x_{n}\right) \downarrow$, and in that case the final tape codes a list (of length ≥ 1) whose first element is y where $f\left(x_{1}, \ldots, x_{n}\right)=y$.

Theorem. A partial function is Turing computable if and only if it is register machine computable.

Proof (sketch). We've seen how to implement any TM by a RM. Hence
f TM computable implies f RM computable.
For the converse, one has to implement the computation of a RM in terms of a TM operating on a tape coding RM configurations. To do this, one has to show how to carry out the action of each type of RM instruction on the tape. It should be reasonably clear that this is possible in principle, even if the details (omitted) are tedious.

Notions of computability

- Church (1936): λ-calculus [see later]
- Turing (1936): Turing machines.

Turing showed that the two very different approaches determine the same class of computable functions. Hence:
Church-Turing Thesis. Every algorithm [in intuitive sense of Lect. 1] can be realized as a Turing machine.

Notions of computability

Church-Turing Thesis. Every algorithm [in intuitive sense of Lect. 1] can be realized as a Turing machine.

Further evidence for the thesis:

- Gödel and Kleene (1936): partial recursive functions
- Post (1943) and Markov (1951): canonical systems for generating the theorems of a formal system
- Lambek (1961) and Minsky (1961): register machines
- Variations on all of the above (e.g. multiple tapes, non-determinism, parallel execution...)

All have turned out to determine the same collection of computable functions.

Notions of computability

Church-Turing Thesis. Every algorithm [in intuitive sense of Lect. 1] can be realized as a Turing machine.

In rest of the course we'll look at

- Gödel and Kleene (1936): partial recursive functions (\rightsquigarrow branch of mathematics called recursion theory)
- Church (1936): λ-calculus (\rightsquigarrow branch of CS called functional programming)

Aim

A more abstract, machine-independent description of the collection of computable partial functions than provided by register/Turing machines:
they form the smallest collection of partial functions containing some basic functions and closed under some fundamental operations for forming new functions from old-composition, primitive recursion and minimization.

The characterization is due to Kleene (1936), building on work of Gödel and Herbrand.

Basic functions

- Projection functions, $\operatorname{proj}_{i}^{n} \in \mathbb{N}^{n} \rightarrow \mathbb{N}$:

$$
\operatorname{proj}_{i}^{n}\left(x_{1}, \ldots, x_{n}\right) \triangleq x_{i}
$$

- Constant functions with value $\mathbf{0}$, zero ${ }^{n} \in \mathbb{N}^{n} \rightarrow \mathbb{N}$:

$$
\operatorname{zero}^{n}\left(x_{1}, \ldots, x_{n}\right) \triangleq \mathbf{0}
$$

- Successor function, succ $\in \mathbb{N} \rightarrow \mathbb{N}$:

$$
\operatorname{succ}(x) \triangleq x+1
$$

Basic functions

are all RM computable:

- Projection $\operatorname{proj}_{i}^{n}$ is computed by

$$
\text { START } \rightarrow \mathrm{R}_{0}::=\mathrm{R}_{i} \rightarrow \text { HALT }
$$

- Constant zero ${ }^{n}$ is computed by

$$
\text { START } \longrightarrow \text { HALT }
$$

- Successor succ is computed by

$$
\mathrm{START} \rightarrow \mathrm{R}_{1}^{+} \rightarrow \mathrm{R}_{0}::=\mathrm{R}_{\mathbf{1}} \rightarrow \text { HALT }
$$

Aim

A more abstract, machine-independent description of the collection of computable partial functions than provided by register/Turing machines:
they form the smallest collection of partial functions containing some basic functions and closed under some fundamental operations for forming new functions from old-composition, primitive recursion and minimization.

The characterization is due to Kleene (1936), building on work of Gödel and Herbrand.

Composition

Composition of $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ with $g_{1}, \ldots, g_{n} \in \mathbb{N}^{m} \rightharpoonup \mathbb{N}$ is the partial function $f \circ\left[g_{1}, \ldots, g_{n}\right] \in \mathbb{N}^{m} \rightarrow \mathbb{N}$ satisfying

$$
\begin{aligned}
& f \circ\left[g_{1}, \ldots, g_{n}\right]\left(x_{1}, \ldots, x_{m}\right) \equiv \\
& \quad f\left(g_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{m}\right)\right)
\end{aligned}
$$

where \equiv is "Kleene equivalence" of possibly-undefined expressions: LHS \equiv RHS means "either both LHS and RHS are undefined, or they are both defined and are equal."

Composition

Composition of $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ with $g_{1}, \ldots, g_{n} \in \mathbb{N}^{m} \rightharpoonup \mathbb{N}$ is the partial function $f \circ\left[g_{1}, \ldots, g_{n}\right] \in \mathbb{N}^{m} \rightarrow \mathbb{N}$ satisfying

$$
\begin{aligned}
& f \circ\left[g_{1}, \ldots, g_{n}\right]\left(x_{1}, \ldots, x_{m}\right) \equiv \\
& f\left(g_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{m}\right)\right)
\end{aligned}
$$

So $f \circ\left[g_{1}, \ldots, g_{n}\right]\left(x_{1}, \ldots, x_{m}\right)=z$ iff there exist y_{1}, \ldots, y_{n} with $g_{i}\left(x_{1}, \ldots, x_{m}\right)=y_{i}($ for $i=1 . . n)$ and $f\left(y_{1}, \ldots, y_{n}\right)=z$.

Composition

Composition of $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ with $g_{1}, \ldots, g_{n} \in \mathbb{N}^{m} \rightharpoonup \mathbb{N}$ is the partial function $f \circ\left[g_{1}, \ldots, g_{n}\right] \in \mathbb{N}^{m} \rightarrow \mathbb{N}$ satisfying

$$
\begin{aligned}
& f \circ\left[g_{1}, \ldots, g_{n}\right]\left(x_{1}, \ldots, x_{m}\right) \equiv \\
& f\left(g_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{m}\right)\right)
\end{aligned}
$$

So $f \circ\left[g_{1}, \ldots, g_{n}\right]\left(x_{1}, \ldots, x_{m}\right)=z$ iff there exist y_{1}, \ldots, y_{n} with $g_{i}\left(x_{1}, \ldots, x_{m}\right)=y_{i}$ (for $\left.i=1 . . n\right)$ and $f\left(y_{1}, \ldots, y_{n}\right)=z$.
N.B. in case $n=1$, we write $f \circ g_{1}$ for $f \circ\left[g_{1}\right]$.

Composition

$f \circ\left[g_{1}, \ldots, g_{n}\right]$ is computable if f and $g_{1, \ldots,} g_{n}$ are.

Proof. Given RM programs $\left\{\begin{array}{l}F \\ G_{i}\end{array}\right.$ computing $\left\{\begin{array}{l}f\left(y_{1}, \ldots, y_{n}\right) \\ g_{i}\left(x_{1}, \ldots, x_{m}\right)\end{array}\right.$ in R_{0} starting with $\left\{\begin{array}{l}\mathrm{R}_{1}, \ldots, \mathrm{R}_{n} \\ \mathrm{R}_{1}, \ldots, \mathrm{R}_{m}\end{array}\right.$ set to $\left\{\begin{array}{l}y_{1}, \ldots, y_{n} \\ x_{1}, \ldots, x_{m}\end{array}\right.$, then the next slide specifies a RM program computing $f \circ\left[g_{1}, \ldots, g_{n}\right]\left(x_{1}, \ldots, x_{m}\right)$ in R_{0} starting with $\mathrm{R}_{1}, \ldots, \mathrm{R}_{m}$ set to x_{1}, \ldots, x_{m}.
(Hygiene [caused by the lack of local names for registers in the RM model of computation]: we assume the programs F, G_{1}, \ldots, G_{n} only mention registers up to $\mathrm{R}_{N}($ where $N \geq \max \{n, m\})$ and that $\mathrm{X}_{1}, \ldots, \mathrm{X}_{m}, \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{n}$ are some registers R_{i} with $i>N$.)

START

