Turing Machines

Algorithms, informally

No precise definition of "algorithm" at the time Hilbert posed the Entscheidungsproblem, just examples.

Common features of the examples:

- finite description of the procedure in terms of elementary operations
- deterministic (next stepuniquely determined if there is one)
- procedure may not terminate on some input data, but we can recognize when it does terminate and what the result/is.
e.g. multiply two decimal digits by looking up their product in a table

Register Machine computation abstracts away from any particular, concrete representation of numbers (e.g. as bit strings) and the associated elementary operations of increment/decrement/zero-test.
Turing's original model of computation (now called a Turing machine) is more concrete: even numbers have to be represented in terms of a fixed finite alphabet of symbols and increment/decrement/zero-test programmed in terms of more elementary symbol-manipulating operations.

Register Machine computation abstracts away from any particular, concrete representation of numbers (e.g. as bit strings) and the associated elementary operations of increment/decrement/zero-test.
Turing's original model of computation (now called a Turing machine) is more concrete: even numbers have to be represented in terms of a fixed finite alphabet of symbols and increment/decrement/zero-test programmed in terms of more elementary symbol-manipulating operations.

Turing machines, informally

Turing machines, informally

Turing machines, informally

- Machine starts with tape head pointing to the special left endmarker D.

Turing machines, informally

- Machine starts with tape head pointing to the special left endmarker D.
- Machine computes in discrete steps, each of which depends only on current state (q) and symbol being scanned by tape head (0).

Turing machines, informally

- Machine starts with tape head pointing to the special left endmarker D.
- Machine computes in discrete steps, each of which depends only on current state (\boldsymbol{q}) and symbol being scanned by tape head (0).
- Action at each step is to overwrite the current tape cell with a symbol, move left or right one cell, or stay stationary, and change state.

Turing Machines

are specified by:

- Q, finite set of machine states
- Σ, finite set of tape symbols (disjoint from Q) containing distinguished symbols \triangleright (left endmarker) and \sqcup (blank)
- $s \in Q$, an initial state
- $\delta \in(Q \times \Sigma) \rightarrow(Q \cup\{$ acc, rej $\}) \times \Sigma \times\{L, R, S\}$, a transition function-specifies for each state and symbol a next state (or accept acc or reject rej), a symbol to overwrite the current symbol, and a direction for the tape head to move ($L=$ left, $R=$ right, $S=$ stationary).

Turing Machines

are specified by:

- Q, finite set of machine states
- Σ, finite set of tape symbols (disjoint from Q) containing distinguished symbols \triangleright (left endmarker) and \sqcup (blank)
- $s \in Q$, an initial state
- $\delta \in(Q \times \Sigma) \rightarrow(Q \cup\{$ acc, rej$\}) \times \Sigma \times\{L, R, S\}$, a transition function, satisfying:
for all $q \in Q$, there exists $q^{\prime} \in Q \cup\{$ acc, rej $\}$ with $\delta(q, \triangleright)=\left(q^{\prime}, \triangleright, R\right)$
(i.e. left endmarker is never overwritten and machine always moves to the right when scanning it)

Example Turing Machine

$M=(Q, \Sigma, s, \delta)$ where
states $Q=\left\{s, q, q^{\prime}\right\}(s$ initial)
symbols $\Sigma=\{\triangleright, \sqcup, \mathbf{0}, \mathbf{1}\}$
transition function
$\delta \in(Q \times \Sigma) \rightarrow(Q \cup\{\operatorname{acc}, \mathrm{rej}\}) \times \Sigma \times\{L, R, S\}:$

δ	\triangleright	\sqcup	0	$\mathbf{1}$
s	(s, \triangleright, R)	(q,\llcorner, R)	$(\mathrm{rej}, \mathbf{0}, s)$	$(\mathrm{rej}, \mathbf{1}, s)$
q	$(\mathrm{rej}, \triangleright, R)$	$\left(q^{\prime}, 0, L\right)$	$(q, \mathbf{1}, \boldsymbol{R})$	(q, \mathbf{q}, R)
q^{\prime}	$(\mathrm{rej}, \triangleright, R)$	$(\mathrm{acc}, \sqcup, S)$	$(\mathrm{rej}, \mathbf{0}, S)$	$\left(q^{\prime}, \mathbf{1}, L\right)$

Turing machine computation

Turing machine configuration: (q, w, u) where

- $q \in Q \cup\{\mathrm{acc}, \mathrm{rej}\}=$ current state
- $w=$ non-empty string $(w=v a)$ of tape symbols under and to the left of tape head, whose last element (a) is contents of cell under tape head
- $u=$ (possibly empty) string of tape symbols to the right of tape head (up to some point beyond which all symbols are ப)
(So $w u \in \Sigma^{*}$ represents the current tape contents.)

Turing machine computation

Turing machine configuration: (q, w, u) where

- $q \in Q \cup\{\mathrm{acc}, \mathrm{rej}\}=$ current state
- $w=$ non-empty string $(w=v a)$ of tape symbols under and to the left of tape head, whose last element (a) is contents of cell under tape head
- $u=$ (possibly empty) string of tape symbols to the right of tape head (up to some point beyond which all symbols are ப)

Initial configurations: (s, \triangleright, u)

Turing machine computation

Given a TM $M=(Q, \Sigma, s, \delta)$, we write

$$
(q, w, u) \rightarrow_{M}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)
$$

to mean $q \neq \mathrm{acc}, \mathrm{rej}, w=v a$ (for some v, a) and
either $\delta(q, a)=\left(q^{\prime}, a^{\prime}, L\right), w^{\prime}=v$, and $u^{\prime}=a^{\prime} u$

$$
\begin{aligned}
& \text { or } \delta(q, a)=\left(q^{\prime}, a^{\prime}, S\right), w^{\prime}=v a^{\prime} \text { and } u^{\prime}=u \\
& \text { or } \delta(q, a)=\left(q^{\prime}, a^{\prime}, R\right), u=a^{\prime \prime} u^{\prime \prime} \text { is non-empty, } \\
& w^{\prime}=v a^{\prime} a^{\prime \prime} \text { and } u^{\prime}=u^{\prime \prime} \\
& \text { or } \delta(q, a)=\left(q^{\prime}, a^{\prime}, R\right), u=\varepsilon \text { is empty, } w^{\prime}=v a^{\prime} \sqcup \\
& \text { and } u^{\prime}=\varepsilon \text {. }
\end{aligned}
$$

Turing machine computation

A computation of a TM M is a (finite or infinite) sequence of configurations $c_{0}, c_{1}, c_{2}, \ldots$
where

- $c_{0}=(s, \triangleright, u)$ is an initial configuration
- $c_{i} \rightarrow_{M} c_{i+1}$ holds for each $i=0,1, \ldots$

The computation

- does not halt if the sequence is infinite
- halts if the sequence is finite and its last element is of the form (acc, w, u) or (rej, w, u).

Example Turing Machine

$M=(Q, \Sigma, s, \delta)$ where
states $Q=\left\{s, q, q^{\prime}\right\}$ (s initial)
symbols $\boldsymbol{\Sigma}=\{\triangleright, \sqcup \mathbf{0}, \mathbf{1}\}$
transition function
$\delta \in(Q \times \Sigma) \rightarrow(Q \cup\{$ acc, rej$\}) \times \Sigma \times\{L, R, S\}:$

δ	\triangleright	\sqcup	0	$\mathbf{1}$
s	(s, \triangleright, R)	(q, \sqcup, R)	$(\mathrm{rej}, \mathbf{0}, s)$	$(\mathrm{rej}, \mathbf{1}, \boldsymbol{s})$
q	$(\mathrm{rej}, \triangleright, R)$	$\left(q^{\prime}, \mathbf{0}, L\right)$	$(q, \mathbf{1}, R)$	$(q, \mathbf{1}, \boldsymbol{R})$
q^{\prime}	$(\mathrm{rej}, \triangleright, R)$	$(\mathrm{acc},\llcorner, S)$	$(\mathrm{rej}, \mathbf{0}, S)$	$\left(q^{\prime}, \mathbf{1}, L\right)$

Claim: the computation of M starting from configuration ($s, \triangleright, \sqcup \mathbf{1}^{n} \mathbf{0}$) halts in configuration (acc, $\triangleright \sqcup, \mathbf{1}^{n+1} \mathbf{0}$).

Example Turing Machine

$M=(Q, \Sigma, s, \delta)$ where
states $Q=\left\{s, q, q^{\prime}\right\}$ (s initial)
symbols $\boldsymbol{\Sigma}=\{\triangleright, \sqcup \mathbf{0}, \mathbf{1}\}$
transition function
$\delta \in(Q \times \Sigma) \rightarrow(Q \cup\{$ acc, rej $\}) \times \Sigma \times\{L, R, S\}:$

δ	\triangleright	ப	0	1
s	(s, \triangleright, R)	$(q, \sqcup \mathbf{R})$	(rej, 0,s)	(rej, 1, s)
q	(rej, \triangleright, R)	$\left(q^{\prime}, 0, L\right)$	$(q, 1, R)$	$(q, 1, R)$
a string of $n 1 \mathrm{~s}$		$(\mathrm{acc},\llcorner, \mathrm{S})$	(rej, $0, S$)	$\left(q^{\prime}, 1, L\right)$

Claim: the computation of M starting from configuration ($s, \triangleright, \sqcup 1^{n} \mathbf{0}$) halts in configuration (acc, $\triangleright \sqcup, \mathbf{1}^{n+1} \mathbf{0}$).

The computation of M starting from configuration ($s, \triangleright, \sqcup^{n} 0$):

$$
\begin{aligned}
& \left(s, \triangleright, \sqcup 1^{n} 0\right) \rightarrow_{M}\left(s, \triangleright_{\sqcup}, 1^{n} 0\right) \\
& \rightarrow_{M}\left(q, \triangleright_{\sqcup} 1,1^{n-1} 0\right) \\
& \text { ! } \\
& \rightarrow_{M}\left(q, \triangleright_{\llcorner } 1^{n}, 0\right) \\
& \rightarrow_{M}\left(q, \triangleright_{\llcorner } 1^{n} 0, \varepsilon\right) \\
& \rightarrow_{M}\left(q, \triangleright_{\sqcup} 1^{n+1}, \varepsilon\right) \\
& \rightarrow_{M}\left(q^{\prime}, \triangleright_{\llcorner } 1^{n+1}, 0\right) \\
& \rightarrow_{M}\left(q^{\prime}, \triangleright_{\sqcup}, 1^{n+1} 0\right) \\
& \rightarrow_{M} \quad\left(\mathrm{acc}, \triangleright_{\sqcup}, 1^{n+1} 0\right) \\
& \text { movingright } \\
& \text { tape head } \\
& \text { movingleft }
\end{aligned}
$$

Theorem. The computation of a Turing machine M can be implemented by a register machine.

Proof (sketch).

Step 1: fix a numerical encoding of M 's states, tape symbols, tape contents and configurations.
Step 2: implement M's transition function (finite table) using RM instructions on codes.
Step 3: implement a RM program to repeatedly carry out \rightarrow_{M}.

Step 1

- Identify states and tape symbols with particular numbers:

$$
\begin{array}{rl|l}
\mathrm{acc} & =0 \\
\mathrm{rej} & =1 & \sqcup=0 \\
Q & =\{2,3, \ldots, n\} & \triangleright=1 \\
\Sigma=\{0,1, \ldots, m\}
\end{array}
$$

- Code configurations $c=(q, w, u)$ by:

$$
\ulcorner c\urcorner=\left\ulcorner\left[q,\left\ulcorner\left[a_{n}, \ldots, a_{1}\right]\right\urcorner,\left\ulcorner\left[b_{1}, \ldots, b_{m}\right]\right\urcorner\right]\right\urcorner
$$

where $w=a_{1} \cdots a_{n}(n>0)$ and $u=b_{1} \cdots b_{m}$ $(m \geq 0)$ say.

Step 1

reversal of w makes it easier to use our RM programs for list manipulation

- Code configurations $c \neq(q, w, u)$ by:

$$
\ulcorner c\urcorner=\left\ulcorner\left[q,\left\ulcorner\left[a_{n}, \ldots, a_{1}\right]\right\urcorner,\left\ulcorner\left[b_{1}, \ldots, b_{m}\right]\right\urcorner\right]\right\urcorner
$$

where $w=a_{1} \cdots a_{n}(n>0)$ and $u=b_{1} \cdots b_{m}$
$(m \geq 0)$ say.

Step 2

Using registers

$$
\mathrm{Q}=\text { current state }
$$

$\mathrm{A}=$ current tape symbol
$\mathrm{D}=$ current direction of tape head

$$
\text { (with } L=0, R=1 \text { and } S=2 \text {, say) }
$$

one can turn the finite table of (argument, result)-pairs specifying δ into a RM program $\rightarrow(\mathrm{Q}, \mathrm{A}, \mathrm{D})::=\delta(\mathrm{Q}, \mathrm{A}) \rightarrow$ so that starting the program with $\mathrm{Q}=q, \mathrm{~A}=a, \mathrm{D}=d$ (and all other registers zeroed), it halts with $Q=q^{\prime}$, $\mathrm{A}=a^{\prime}, \mathrm{D}=d^{\prime}$, where $\left(q^{\prime}, a^{\prime}, d^{\prime}\right)=\delta(q, a)$.

Step 3

The next slide specifies a RM to carry out M's computation. It uses registers

C = code of current configuration
$\mathrm{W}=$ code of tape symbols at and left of tape head (reading right-to-left)
$\mathrm{U}=$ code of tape symbols right of tape head (reading left-to-right)

Starting with C containing the code of an initial configuration (and all other registers zeroed), the RM program halts if and only if \boldsymbol{M} halts; and in that case C holds the code of the final configuration.

