Primitive recursion

Theorem. Given $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$, there is a unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying

$$\begin{cases} h(\vec{x},0) & \equiv f(\vec{x}) \\ h(\vec{x},x+1) & \equiv g(\vec{x},x,h(\vec{x},x)) \end{cases}$$

for all $\vec{x} \in \mathbb{N}^n$ and $x \in \mathbb{N}$.

We write $\rho^n(f,g)$ for h and call it the partial function defined by primitive recursion from f and g.

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying

$$\begin{cases} h(\vec{a},0) &= f(\vec{a}) \\ h(\vec{a},a+1) &= g(\vec{a},a,h(\vec{a},a)) \end{cases}$$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying

$$h(\vec{a}, a) = if \ a = 0 \ then \ f(\vec{a})$$

else $g(\vec{a}, a - 1, h(\vec{a}, a - 1))$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$ where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ is given by

$$\Phi_{f,g}(h)(\vec{a},a) \stackrel{\triangle}{=} if \ a = 0 \ then \ f(\vec{a})$$

$$else \ g(\vec{a},a-1,h(\vec{a},a-1))$$

```
If f \in \mathbb{N}^n \to \mathbb{N} is represented by a \lambda-term F and g \in \mathbb{N}^{n+2} \to \mathbb{N} is represented by a \lambda-term G, we want to show \lambda-definability of the unique h \in \mathbb{N}^{n+1} \to \mathbb{N} satisfying h = \Phi_{f,g}(h) where \Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N}) is given by...
```

Strategy:

- show that $\Phi_{f,g}$ is λ -definable;
- show that we can solve fixed point equations X = MX up to β -conversion in the λ -calculus.

Representing booleans

```
True \triangleq \lambda x y. x

False \triangleq \lambda x y. y

If \triangleq \lambda f x y. f x y
```

satisfy

- ▶ If True $MN =_{\beta} \text{True } MN =_{\beta} M$
- ▶ If False $MN =_{\beta}$ False $MN =_{\beta} N$

Representing test-for-zero

$$\mathsf{Eq_0} \triangleq \lambda x. \, x(\lambda y. \, \mathsf{False}) \, \mathsf{True}$$

satisfies

• Eq₀ $\underline{0} =_{\beta} \underline{0} (\lambda y. \text{False})$ True $=_{\beta}$ True

$$\begin{array}{ll} \mathbf{Fq_0} \, \underline{n+1} &=_{\beta} & \underline{n+1} \, (\lambda y. \, \mathsf{False}) \, \mathsf{True} \\ &=_{\beta} & (\lambda y. \, \mathsf{False})^{n+1} \, \mathsf{True} \\ &=_{\beta} & (\lambda y. \, \mathsf{False}) \, ((\lambda y. \, \mathsf{False})^n \, \mathsf{True}) \\ &=_{\beta} & \mathsf{False} \end{array}$$

Representing ordered pairs

```
Pair \triangleq \lambda x y f. f x y

Fst \triangleq \lambda f. f True

Snd \triangleq \lambda f. f False
```

satisfy

```
Fst(Pair MN) =_{\beta} Fst(\lambda f. fMN) =_{\beta} (\lambda f. fMN) True =_{\beta} True MN =_{\beta} M
```

► Snd(Pair MN) $=_{\beta} \cdots =_{\beta} N$

Representing predecessor

Want λ -term **Pred** satisfying

$$\begin{array}{ccc} \operatorname{\mathsf{Pred}} \underline{n+1} & =_{\beta} & \underline{n} \\ \operatorname{\mathsf{Pred}} \underline{0} & =_{\beta} & \underline{0} \end{array}$$

Have to show how to reduce the "n+1-iterator" $\underline{n+1}$ to the "n-iterator" n.

Idea: given f, iterating the function $g_f:(x,y)\mapsto (f(x),x)$ n+1 times starting from (x,x) gives the pair $(f^{n+1}(x),f^n(x))$. So we can get $f^n(x)$ from $f^{n+1}(x)$ parametrically in f and x, by building g_f from f, iterating n+1 times from (x,x) and then taking the second component.

Hence...

Representing predecessor

Want λ -term **Pred** satisfying

$$\begin{array}{ccc} \operatorname{Pred} \underline{n+1} & =_{\beta} & \underline{n} \\ \operatorname{Pred} \underline{0} & =_{\beta} & \underline{0} \end{array}$$

$$\mathsf{Pred} \triangleq \lambda y \, f \, x. \, \mathsf{Snd}(y \, (G \, f)(\mathsf{Pair} \, x \, x))$$
 where
 $G \triangleq \lambda f \, p. \, \mathsf{Pair}(f(\mathsf{Fst} \, p))(\mathsf{Fst} \, p)$

has the required β -reduction properties. [Exercise]

Curry's fixed point combinator Y

$$\mathbf{Y} \triangleq \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

satisfies
$$\mathbf{Y}M \to (\lambda x. M(xx))(\lambda x. M(xx)) \to M((\lambda x. M(xx))(\lambda x. M(xx)))$$

hence
$$\mathbf{Y} M \rightarrow M((\lambda x. M(xx))(\lambda x. M(xx))) \leftarrow M(\mathbf{Y} M)$$
.

So for all λ -terms M we have

$$\mathbf{Y}M =_{\beta} M(\mathbf{Y}M)$$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying

$$\begin{cases} h(\vec{a},0) &= f(\vec{a}) \\ h(\vec{a},a+1) &= g(\vec{a},a,h(\vec{a},a)) \end{cases}$$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$ where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ is given by

$$\Phi_{f,g}(h)(\vec{a},a) \stackrel{\triangle}{=} if \ a = 0 \ then \ f(\vec{a})$$

$$else \ g(\vec{a},a-1,h(\vec{a},a-1))$$

We now know that h can be represented by

$$Y(\lambda z \vec{x} x. \operatorname{lf}(\operatorname{Eq}_0 x)(F \vec{x})(G \vec{x}(\operatorname{Pred} x)(z \vec{x}(\operatorname{Pred} x)))).$$

Recall that the class **PRIM** of primitive recursive functions is the smallest collection of (total) functions containing the basic functions and closed under the operations of composition and primitive recursion.

Combining the results about λ -definability so far, we have: **every** $f \in \mathbf{PRIM}$ **is** λ -**definable**.

So for λ -definability of all recursive functions, we just have to consider how to represent minimization. Recall. . .

Minimization

```
Given a partial function f \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}, define \mu^n f \in \mathbb{N}^n \rightarrow \mathbb{N} by \mu^n f(\vec{x}) \triangleq \text{least } x \text{ such that } f(\vec{x}, x) = 0 and for each i = 0, \dots, x-1, f(\vec{x}, i) is defined and > 0 (undefined if there is no such x)
```

Can express $\mu^n f$ in terms of a fixed point equation: $\mu^n f(\vec{x}) \equiv g(\vec{x},0)$ where g satisfies $g = \Psi_f(g)$ with $\Psi_f \in (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \rightarrow (\mathbb{N}^{n+1} \rightarrow \mathbb{N})$ defined by $\Psi_f(g)(\vec{x},x) \equiv if \ f(\vec{x},x) = 0 \ then \ x \ else \ g(\vec{x},x+1)$

Representing minimization

Suppose $f \in \mathbb{N}^{n+1} \to \mathbb{N}$ (totally defined function) satisfies $\forall \vec{a} \; \exists a \; (f(\vec{a}, a) = 0)$, so that $\mu^n f \in \mathbb{N}^n \to \mathbb{N}$ is totally defined.

Thus for all $\vec{a} \in \mathbb{N}^n$, $\mu^n f(\vec{a}) = g(\vec{a}, 0)$ with $g = \Psi_f(g)$ and $\Psi_f(g)(\vec{a}, a)$ given by if $(f(\vec{a}, a) = 0)$ then a else $g(\vec{a}, a + 1)$.

So if f is represented by a λ -term F, then $\mu^n f$ is represented by

$$\lambda \vec{x}$$
.Y $(\lambda z \vec{x} x$. If $(Eq_0(F \vec{x} x)) x (z \vec{x} (Succ x)) \vec{x} 0$

Recursive implies λ -definable

Fact: every partial recursive $f \in \mathbb{N}^n \to \mathbb{N}$ can be expressed in a standard form as $f = g \circ (\mu^n h)$ for some $g, h \in \mathbf{PRIM}$. (Follows from the proof that computable = partial-recursive.)

Hence every (total) recursive function is λ -definable.

More generally, every partial recursive function is λ -definable, but matching up \uparrow with $\not\supseteq \beta$ —nf makes the representations more complicated than for total functions: see [Hindley, J.R. & Seldin, J.P. (CUP, 2008), chapter 4.]

Computable = λ -definable

Theorem. A partial function is computable if and only if it is λ -definable.

We already know that computable = partial recursive \Rightarrow λ -definable. So it just remains to see that λ -definable functions are RM computable. To show this one can

- \triangleright code λ -terms as numbers (ensuring that operations for constructing and deconstructing terms are given by RM computable functions on codes)
- write a RM interpreter for (normal order) β -reduction.

The details are straightforward, if tedious.