Lambda-Definable Functions

β -Conversion $M =_{\beta} N$

Informally: $M \equiv_{\beta} N$ holds if N can be obtained from M by performing zero or more steps of α -equivalence, β -reduction, or β -expansion (= inverse of a reduction).

E.g. $u((\lambda x y. v x)y) =_{\beta} (\lambda x. u x)(\lambda x. v y)$ because $(\lambda x. u x)(\lambda x. v y) \rightarrow u(\lambda x. v y)$ and so we have $u((\lambda x y. v x)y) =_{\alpha} u((\lambda x y'. v x)y)$ $\rightarrow u(\lambda y'. v y)$ reduction $=_{\alpha} u(\lambda x. v y)$

 $\leftarrow (\lambda x. u x)(\lambda x. v y) \quad \text{expansion}$

β -Conversion $M =_{\beta} N$

is the binary relation inductively generated by the rules:

$rac{M=_lpha M'}{M=_eta M'}$	${M o M' \over M =_eta M'}$	$rac{M=_eta M'}{M'=_eta M}$
$\frac{M =_{\beta} M'}{M =_{\beta} H}$	$\frac{M'=_{eta}M''}{M''}$	$\frac{M =_{\beta} M'}{\lambda x.M =_{\beta} \lambda x.M'}$
$rac{M=_eta M' N=_eta N'}{MN=_eta M'N'}$		

Theorem. \rightarrow is confluent, that is, if $M_1 \ll M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \ll M_2$.

[Proof omitted.]

Theorem. \rightarrow is confluent, that is, if $M_1 \ll M \Rightarrow M_2$, then there exists M' such that $M_1 \Rightarrow M' \ll M_2$.

Corollary. Two show that two terms are β -convertible, it suffices to show that they both reduce to the same term. More precisely: $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \twoheadrightarrow M \twoheadleftarrow M_2)$.

Theorem. \twoheadrightarrow is confluent, that is, if $M_1 \ll M \twoheadrightarrow M_2$, then there exists M' such that $M_1 \twoheadrightarrow M' \ll M_2$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \twoheadrightarrow M \twoheadleftarrow M_2)$.

Proof. $=_{\beta}$ satisfies the rules generating \twoheadrightarrow ; so $M \twoheadrightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \twoheadrightarrow M \twoheadleftarrow M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely, the relation $\{(M_1, M_2) \mid \exists M (M_1 \rightarrow M \leftarrow M_2)\}$ satisfies the rules generating $=_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem: $M_1 \longrightarrow M \leftarrow M_2 \longrightarrow M' \leftarrow M_3$

Theorem. \twoheadrightarrow is confluent, that is, if $M_1 \ll M \twoheadrightarrow M_2$, then there exists M' such that $M_1 \twoheadrightarrow M' \ll M_2$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \twoheadrightarrow M \twoheadleftarrow M_2)$.

Proof. $=_{\beta}$ satisfies the rules generating \twoheadrightarrow ; so $M \twoheadrightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \twoheadrightarrow M \twoheadleftarrow M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely, the relation $\{(M_1, M_2) \mid \exists M (M_1 \twoheadrightarrow M \leftarrow M_2)\}$ satisfies the rules generating \equiv_{β} : the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem: $M_1 \longrightarrow M \leftarrow M_2 \longrightarrow M' \leftarrow M_3$

Theorem. \twoheadrightarrow is confluent, that is, if $M_1 \ll M \twoheadrightarrow M_2$, then there exists M' such that $M_1 \twoheadrightarrow M' \ll M_2$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \twoheadrightarrow M \twoheadleftarrow M_2)$.

Proof. $=_{\beta}$ satisfies the rules generating \twoheadrightarrow ; so $M \twoheadrightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \twoheadrightarrow M \twoheadleftarrow M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely, the relation $\{(M_1, M_2) \mid \exists M (M_1 \rightarrow M \leftarrow M_2)\}$ satisfies the rules generating $=_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem. Hence $M_1 =_{\beta} M_2$ implies $\exists M (M_1 \rightarrow M' \leftarrow M_2)$.

β -Normal Forms

Definition. A λ -term N is in β -normal form (nf) if it contains no β -redexes (no sub-terms of the form $(\lambda x.M)M'$). M has β -nf N if $M =_{\beta} N$ with N a β -nf.

β -Normal Forms

Definition. A λ -term N is in β -normal form (nf) if it contains no β -redexes (no sub-terms of the form $(\lambda x.M)M'$). M has β -nf N if $M =_{\beta} N$ with N a β -nf.

Note that if N is a β -nf and $N \rightarrow N'$, then it must be that $N =_{\alpha} N'$ (why?).

Hence if $N_1 =_{\beta} N_2$ with N_1 and N_2 both β -nfs, then $N_1 =_{\alpha} N_2$. (For if $N_1 =_{\beta} N_2$, then $N_1 \leftarrow M \twoheadrightarrow N_2$ for some M; hence by Church-Rosser, $N_1 \twoheadrightarrow M' \leftarrow N_2$ for some M', so $N_1 =_{\alpha} M' =_{\alpha} N_2$.)

So the β -nf of M is unique up to α -equivalence if it exists.

Non-termination

Some λ terms have no β -nf.

- E.g. $\Omega \triangleq (\lambda x.x x)(\lambda x.x x)$ satisfies
 - $\Omega \to (x x)[(\lambda x.x x)/x] = \Omega$,
 - $\Omega \twoheadrightarrow M$ implies $\Omega =_{\alpha} M$.

So there is no β -nf N such that $\Omega =_{\beta} N$.

Non-termination

Some λ terms have no β -nf.

- E.g. $\Omega \triangleq (\lambda x.x x)(\lambda x.x x)$ satisfies
 - $\Omega \to (x x)[(\lambda x.x x)/x] = \Omega$,
 - $\Omega \twoheadrightarrow M$ implies $\Omega =_{\alpha} M$.

So there is no β -nf N such that $\Omega =_{\beta} N$.

A term can possess both a β -nf and infinite chains of reduction from it.

E.g. $(\lambda x.y)\Omega \rightarrow y$, but also $(\lambda x.y)\Omega \rightarrow (\lambda x.y)\Omega \rightarrow \cdots$.

Non-termination

Normal-order reduction is a deterministic strategy for reducing λ -terms: reduce the "left-most, outer-most" redex first.

- left-most: reduce M before N in MN, and then
- outer-most: reduce (λx.M)N rather than either of M or N.
- (cf. call-by-name evaluation).
- **Fact:** normal-order reduction of M always reaches the β -nf of M if it possesses one.

Encoding data in λ -calculus

Computation in λ -calculus is given by β -reduction. To relate this to register/Turing-machine computation, or to partial recursive functions, we first have to see how to encode numbers, pairs, lists, ... as λ -terms.

We will use the original encoding of numbers due to Church...

Church's numerals

so we can write \underline{n} as $\lambda f x \cdot f^n x$ and we have \underline{n}

$$\underline{u} M N =_{\beta} M^n N$$
.

λ -Definable functions

Definition. $f \in \mathbb{N}^n \to \mathbb{N}$ is λ -definable if there is a closed λ -term F that represents it: for all $(x_1, \ldots, x_n) \in \mathbb{N}^n$ and $y \in \mathbb{N}$ \Rightarrow if $f(x_1, \ldots, x_n) = y$, then $F \underline{x_1} \cdots \underline{x_n} =_{\beta} \underline{y}$ \Rightarrow if $f(x_1, \ldots, x_n) \uparrow$, then $F \underline{x_1} \cdots \underline{x_n}$ has no β -nf.

For example, addition is λ -definable because it is represented by $P \triangleq \lambda x_1 x_2 \cdot \lambda f x \cdot x_1 f(x_2 f x)$:

$$P \underline{m} \underline{n} =_{\beta} \lambda f x. \underline{m} f(\underline{n} f x)$$
$$=_{\beta} \lambda f x. \underline{m} f(f^{n} x)$$
$$=_{\beta} \lambda f x. f^{m}(f^{n} x)$$
$$= \lambda f x. f^{m+n} x$$
$$= m + n$$

Computable = λ -definable

Theorem. A partial function is computable if and only if it is λ -definable.

We already know that

Register Machine computable

- = Turing computable
- = partial recursive.

Using this, we break the theorem into two parts:

- every partial recursive function is λ -definable
- λ -definable functions are RM computable

λ -Definable functions

Definition. $f \in \mathbb{N}^n \to \mathbb{N}$ is λ -definable if there is a closed λ -term F that represents it: for all $(x_1, \ldots, x_n) \in \mathbb{N}^n$ and $y \in \mathbb{N}$ \Rightarrow if $f(x_1, \ldots, x_n) = y$, then $F \underline{x_1} \cdots \underline{x_n} =_{\beta} \underline{y}$ \Rightarrow if $f(x_1, \ldots, x_n) \uparrow$, then $F \underline{x_1} \cdots \underline{x_n}$ has no β -nf.

This condition can make it quite tricky to find a λ -term representing a non-total function.

For now, we concentrate on total functions. First, let us see why the elements of **PRIM** (primitive recursive functions) are λ -definable.

Basic functions

• Projection functions, $\operatorname{proj}_i^n \in \mathbb{N}^n \to \mathbb{N}$:

$$ext{proj}_i^n(x_1,\ldots,x_n) riangleq x_i$$

• Constant functions with value 0, $ext{zero}^n \in \mathbb{N}^n o \mathbb{N}$: $ext{zero}^n(x_1, \dots, x_n) \triangleq 0$

• Successor function, succ $\in \mathbb{N} \rightarrow \mathbb{N}$: succ $(x) \triangleq x + 1$

Basic functions are representable

- $\operatorname{proj}_i^n \in \mathbb{N}^n \to \mathbb{N}$ is represented by $\lambda x_1 \dots x_n . x_i$
- ▶ $\operatorname{zero}^n \in \mathbb{N}^n \rightarrow \mathbb{N}$ is represented by $\lambda x_1 \dots x_n \underline{0}$
- succ $\in \mathbb{N} \rightarrow \mathbb{N}$ is represented by

Succ $\triangleq \lambda x_1 f x.f(x_1 f x)$

since

Succ
$$\underline{n} =_{\beta} \lambda f x. f(\underline{n} f x)$$

= $_{\beta} \lambda f x. f(f^{n} x)$
= $\lambda f x. f^{n+1} x$
= $n+1$

Representing composition

If total function $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by F and total functions $g_1, \ldots, g_n \in \mathbb{N}^m \to \mathbb{N}$ are represented by G_1, \ldots, G_n , then their composition $f \circ (g_1, \ldots, g_n) \in \mathbb{N}^m \to \mathbb{N}$ is represented simply by

$$\lambda x_1 \ldots x_m. F(G_1 x_1 \ldots x_m) \ldots (G_n x_1 \ldots x_m)$$

because

$$F(G_1 \underline{a_1} \dots \underline{a_m}) \dots (G_n \underline{a_1} \dots \underline{a_m})$$

= $_{\beta} Fg_1(a_1, \dots, a_m) \dots g_n(a_1, \dots, a_m)$
= $_{\beta} \frac{f(g_1(a_1, \dots, a_m), \dots, g_n(a_1, \dots, a_m))}{f \circ (g_1, \dots, g_n)(a_1, \dots, a_m)}$

Representing composition

If total function $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by F and total functions $g_1, \ldots, g_n \in \mathbb{N}^m \to \mathbb{N}$ are represented by G_1, \ldots, G_n , then their composition $f \circ (g_1, \ldots, g_n) \in \mathbb{N}^m \to \mathbb{N}$ is represented simply by

 $\lambda x_1 \ldots x_m$. $F(G_1 x_1 \ldots x_m) \ldots (G_n x_1 \ldots x_m)$

This does not necessarily work for partial functions. E.g. totally undefined function $u \in \mathbb{N} \to \mathbb{N}$ is represented by $U \triangleq \lambda x_1 \cdot \Omega$ (why?) and zero¹ $\in \mathbb{N} \to \mathbb{N}$ is represented by $Z \triangleq \lambda x_1 \cdot \underline{0}$; but zero¹ $\circ u$ is not represented by $\lambda x_1 \cdot Z(U x_1)$, because (zero¹ $\circ u$)(n) \uparrow whereas ($\lambda x_1 \cdot Z(U x_1)$) $\underline{n} =_{\beta} Z \Omega =_{\beta} \underline{0}$. (What is zero¹ $\circ u$ represented by?)

Computation Theory , L 11