
Lambda-Definable Functions

Computation Theory , L 11 139/171

β-Conversion M =β N

Informally: M =β N holds if N can be obtained from
M by performing zero or more steps of α-equivalence,
β-reduction, or β-expansion (= inverse of a reduction).

E.g. u ((λx y. v x)y) =β (λx. u x)(λx. v y)

because (λx. u x)(λx. v y)→ u(λx. v y)

and so we have

u ((λx y. v x)y) =α u ((λx y′. v x)y)
→ u(λy′. v y) reduction
=α u(λx. v y)
← (λx. u x)(λx. v y) expansion

Computation Theory , L 11 140/171

β-Conversion M =β N

is the binary relation inductively generated by the rules:

M =α M′

M =β M′
M→ M′

M =β M′
M =β M′

M′ =β M

M =β M′ M′ =β M′′

M =β M′′
M =β M′

λx.M =β λx.M′

M =β M′ N =β N ′

M N =β M′ N ′

Computation Theory , L 11 141/171

Church-Rosser Theorem
Theorem. � is confluent, that is, if M1 � M � M2,
then there exists M′ such that M1 � M′ � M2.

[Proof omitted.]

Computation Theory , L 11 142/171

Church-Rosser Theorem
Theorem. � is confluent, that is, if M1 � M � M2,
then there exists M′ such that M1 � M′ � M2.

Corollary. Two show that two terms are β-convertible, it
suffices to show that they both reduce to the same term.
More precisely: M1 =β M2 iff ∃M (M1 � M � M2).

Computation Theory , L 11 142/171

Church-Rosser Theorem
Theorem. � is confluent, that is, if M1 � M � M2,
then there exists M′ such that M1 � M′ � M2.

Corollary. M1 =β M2 iff ∃M (M1 � M � M2).

Proof. =β satisfies the rules generating �; so M � M′ implies

M =β M′. Thus if M1 � M � M2, then M1 =β M =β M2 and
so M1 =β M2.

Conversely, the relation {(M1, M2) | ∃M (M1 � M � M2)}
satisfies the rules generating =β: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem: M1 M M2 M′ M3

Computation Theory , L 11 142/171

Church-Rosser Theorem
Theorem. � is confluent, that is, if M1 � M � M2,
then there exists M′ such that M1 � M′ � M2.

Corollary. M1 =β M2 iff ∃M (M1 � M � M2).

Proof. =β satisfies the rules generating �; so M � M′ implies

M =β M′. Thus if M1 � M � M2, then M1 =β M =β M2 and
so M1 =β M2.

Conversely, the relation {(M1, M2) | ∃M (M1 � M � M2)}
satisfies the rules generating =β: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem: M1 M M2

C-R

M′ M3

M′2

Computation Theory , L 11 142/171

Church-Rosser Theorem
Theorem. � is confluent, that is, if M1 � M � M2,
then there exists M′ such that M1 � M′ � M2.

Corollary. M1 =β M2 iff ∃M (M1 � M � M2).

Proof. =β satisfies the rules generating �; so M � M′ implies

M =β M′. Thus if M1 � M � M2, then M1 =β M =β M2 and
so M1 =β M2.

Conversely, the relation {(M1, M2) | ∃M (M1 � M � M2)}
satisfies the rules generating =β: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem. Hence M1 =β M2 implies ∃M (M1 � M′ � M2).

Computation Theory , L 11 142/171

β-Normal Forms

Definition. A λ-term N is in β-normal form (nf) if it
contains no β-redexes (no sub-terms of the form
(λx.M)M′). M has β-nf N if M =β N with N a β-nf.

Computation Theory , L 11 143/171

β-Normal Forms

Definition. A λ-term N is in β-normal form (nf) if it
contains no β-redexes (no sub-terms of the form
(λx.M)M′). M has β-nf N if M =β N with N a β-nf.

Note that if N is a β-nf and N � N′, then it must be that
N =α N′ (why?).

Hence if N1 =β N2 with N1 and N2 both β-nfs, then N1 =α N2.

(For if N1 =β N2, then N1 � M � N2 for some M; hence by

Church-Rosser, N1 � M′ � N2 for some M′, so

N1 =α M′ =α N2.)

So the β-nf of M is unique up to α-equivalence if
it exists.

Computation Theory , L 11 143/171

Non-termination

Some λ terms have no β-nf.

E.g. Ω , (λx.x x)(λx.x x) satisfies

I Ω→ (x x)[(λx.x x)/x] = Ω,

I Ω� M implies Ω =α M.

So there is no β-nf N such that Ω =β N.

Computation Theory , L 11 144/171

Non-termination

Some λ terms have no β-nf.

E.g. Ω , (λx.x x)(λx.x x) satisfies

I Ω→ (x x)[(λx.x x)/x] = Ω,

I Ω� M implies Ω =α M.

So there is no β-nf N such that Ω =β N.

A term can possess both a β-nf and infinite chains
of reduction from it.

E.g. (λx.y)Ω→ y, but also (λx.y)Ω→ (λx.y)Ω→ · · · .

Computation Theory , L 11 144/171

Non-termination

Normal-order reduction is a deterministic strategy for
reducing λ-terms: reduce the “left-most, outer-most”
redex first.

I left-most: reduce M before N in M N, and then

I outer-most: reduce (λx.M)N rather than either of
M or N.

(cf. call-by-name evaluation).

Fact: normal-order reduction of M always reaches the
β-nf of M if it possesses one.

Computation Theory , L 11 145/171

Encoding data in λ-calculus

Computation in λ-calculus is given by β-reduction. To
relate this to register/Turing-machine computation, or to
partial recursive functions, we first have to see how to
encode numbers, pairs, lists, . . . as λ-terms.

We will use the original encoding of numbers due to
Church. . .

Computation Theory , L 11 146/171

Church’s numerals
0 , λ f x.x

1 , λ f x. f x

2 , λ f x. f (f x)
...

n , λ f x. f (· · · (f
︸ ︷︷ ︸

n times

x) · · ·)

Notation:

M0N , N

M1N , M N

Mn+1N , M(MnN)

so we can write n as λ f x. f nx and we have n M N =β Mn N .

Computation Theory , L 11 147/170

λ-Definable functions
Definition. f ∈ N

n
⇀N is λ-definable if there is a

closed λ-term F that represents it: for all
(x1, . . . , xn) ∈ N

n and y ∈ N

I if f (x1, . . . , xn) = y, then F x1 · · · xn =β y

I if f (x1, . . . , xn)↑, then F x1 · · · xn has no β-nf.

For example, addition is λ-definable because it is represented by
P , λx1 x2.λ f x. x1 f (x2 f x):

P m n =β λ f x. m f (n f x)

=β λ f x. m f (f nx)

=β λ f x. f m(f nx)

= λ f x. f m+nx

= m + n
Computation Theory , L 11 148/171

Computable = λ-definable

Theorem. A partial function is computable if and only if
it is λ-definable.

We already know that

Register Machine computable
= Turing computable
= partial recursive.

Using this, we break the theorem into two parts:

I every partial recursive function is λ-definable

I λ-definable functions are RM computable

Computation Theory , L 11 149/171

λ-Definable functions
Definition. f ∈ N

n
⇀N is λ-definable if there is a

closed λ-term F that represents it: for all
(x1, . . . , xn) ∈ N

n and y ∈ N

I if f (x1, . . . , xn) = y, then F x1 · · · xn =β y

I if f (x1, . . . , xn)↑, then F x1 · · · xn has no β-nf.

This condition can make it quite tricky to find a λ-term
representing a non-total function.

For now, we concentrate on total functions. First, let us
see why the elements of PRIM (primitive recursive
functions) are λ-definable.

Computation Theory , L 11 150/171

Basic functions
I Projection functions, projn

i ∈ N
n
�N:

projn
i (x1, . . . , xn) , xi

I Constant functions with value 0, zeron ∈ N
n
�N:

zeron(x1, . . . , xn) , 0

I Successor function, succ ∈ N�N:

succ(x) , x + 1

Computation Theory , L 11 151/171

Basic functions are representable

I projn
i ∈ N

n
�N is represented by λx1 . . . xn.xi

I zeron ∈ N
n
�N is represented by λx1 . . . xn.0

I succ ∈ N�N is represented by

Succ , λx1 f x. f (x1 f x)

since

Succ n =β λ f x. f (n f x)

=β λ f x. f (f n x)

= λ f x. f n+1 x

= n + 1

Computation Theory , L 11 152/171

Representing composition

If total function f ∈ N
n
�N is represented by F and

total functions g1, . . . , gn ∈ N
m
�N are represented by

G1, . . . , Gn, then their composition
f ◦ (g1, . . . , gn) ∈ N

m
�N is represented simply by

λx1 . . . xm. F (G1 x1 . . . xm) . . . (Gn x1 . . . xm)

because F (G1 a1 . . . am) . . . (Gn a1 . . . am)
=β F g1(a1, . . . , am) . . . gn(a1, . . . , am)
=β f (g1(a1, . . . , am), . . . , gn(a1, . . . , am))
= f ◦ (g1, . . . , gn)(a1, . . . , am)

.

Computation Theory , L 11 153/171

Representing composition

If total function f ∈ N
n
�N is represented by F and

total functions g1, . . . , gn ∈ N
m
�N are represented by

G1, . . . , Gn, then their composition
f ◦ (g1, . . . , gn) ∈ N

m
�N is represented simply by

λx1 . . . xm. F (G1 x1 . . . xm) . . . (Gn x1 . . . xm)

This does not necessarily work for partial functions. E.g. totally

undefined function u ∈ N⇀N is represented by U , λx1.Ω

(why?) and zero1 ∈ N�N is represented by Z , λx1.0; but

zero1 ◦ u is not represented by λx1. Z(U x1), because

(zero1 ◦ u)(n)↑ whereas (λx1. Z(U x1)) n =β Z Ω =β 0.

(What is zero1 ◦ u represented by?)

Computation Theory , L 11 154/170

