Lambda-Definable Functions

β-Conversion $\boldsymbol{M}={ }_{\beta} N$

Informally: $M={ }_{\beta} N$ holds if N can be obtained from M by performing zero or more steps of α-equivalence, β-reduction, or β-expansion (= inverse of a reduction).

$$
\text { E.g. } u((\lambda x y \cdot v x) y)={ }_{\beta}(\lambda x \cdot u x)(\lambda x \cdot v y)
$$

$$
\text { because }(\lambda x . u x)(\lambda x . v y) \rightarrow u(\lambda x . v y)
$$

and so we have

$$
\left.\begin{array}{rlrl}
u((\lambda x y . v x) y) & =_{\alpha} u\left(\left(\lambda x y^{\prime} \cdot v x\right) y\right) & & \text { reduction } \\
& \rightarrow_{\alpha} u\left(\lambda y^{\prime} \cdot v y\right) & \\
& =u(\lambda x \cdot v y) & & \leftarrow(\lambda x . u x)(\lambda x . v y)
\end{array}\right) \text { expansion }
$$

β-Conversion $\boldsymbol{M}={ }_{\beta} N$

is the binary relation inductively generated by the rules:

$$
\begin{gathered}
\frac{M={ }_{\alpha} M^{\prime}}{M={ }_{\beta} M^{\prime}} \quad \frac{M \rightarrow M^{\prime}}{M={ }_{\beta} M^{\prime}}
\end{gathered} \begin{gathered}
\frac{M={ }_{\beta} M^{\prime}}{M^{\prime}={ }_{\beta} M} \\
\frac{M={ }_{\beta} M^{\prime}}{M={ }_{\beta} M^{\prime \prime}={ }_{\beta} M^{\prime \prime}} \quad \frac{M={ }_{\beta} M^{\prime}}{\lambda x \cdot M={ }_{\beta} \lambda x \cdot M^{\prime}} \\
\frac{M={ }_{\beta} M^{\prime} \quad N={ }_{\beta} N^{\prime}}{M N={ }_{\beta} M^{\prime} N^{\prime}}
\end{gathered}
$$

Church-Rosser Theorem

Theorem. \rightarrow is confluent, that is, if $M_{1} \longleftrightarrow M \rightarrow M_{2}$, then there exists M^{\prime} such that $M_{1} \rightarrow M^{\prime} \longleftrightarrow M_{2}$.

[Proof omitted.]

Church-Rosser Theorem

Theorem. \rightarrow is confluent, that is, if $M_{1} \leftarrow M \rightarrow M_{2}$, then there exists M^{\prime} such that $M_{1} \rightarrow M^{\prime} \longleftarrow M_{2}$.

Corollary. Two show that two terms are β-convertible, it suffices to show that they both reduce to the same term. More precisely: $M_{1}={ }_{\beta} M_{2}$ iff $\exists M\left(M_{1} \rightarrow M \longleftarrow M_{2}\right)$.

Church-Rosser Theorem

Theorem. \rightarrow is confluent, that is, if $M_{1} \longleftrightarrow M \rightarrow M_{2}$, then there exists M^{\prime} such that $M_{1} \rightarrow M^{\prime} \longleftrightarrow M_{2}$.

Corollary. $\quad M_{1}={ }_{\beta} M_{2}$ iff $\exists M\left(M_{1} \rightarrow M \longleftarrow M_{2}\right)$.
Proof. $={ }_{\beta}$ satisfies the rules generating \rightarrow; so $\boldsymbol{M} \rightarrow \boldsymbol{M}^{\prime}$ implies $M={ }_{\beta} M^{\prime}$. Thus if $M_{1} \rightarrow M \longleftarrow M_{2}$, then $M_{1}={ }_{\beta} M={ }_{\beta} M_{2}$ and so $M_{1}={ }_{\beta} M_{2}$.
Conversely, the relation $\left\{\left(M_{1}, M_{2}\right) \mid \exists M\left(M_{1} \rightarrow M \leftarrow M_{2}\right)\right\}$ satisfies the rules generating $=_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem: $M_{1} \longrightarrow M \ll M_{2} \longrightarrow M^{\prime} \ll M_{3}$

Church-Rosser Theorem

Theorem. \rightarrow is confluent, that is, if $M_{1} \longleftrightarrow M \rightarrow M_{2}$, then there exists M^{\prime} such that $M_{1} \rightarrow M^{\prime} \longleftrightarrow M_{2}$.

Corollary. $\quad M_{1}={ }_{\beta} M_{2}$ iff $\exists M\left(M_{1} \rightarrow M \longleftarrow M_{2}\right)$.
Proof. $={ }_{\beta}$ satisfies the rules generating \rightarrow; so $\boldsymbol{M} \rightarrow \boldsymbol{M}^{\prime}$ implies $M={ }_{\beta} M^{\prime}$. Thus if $M_{1} \rightarrow M \longleftarrow M_{2}$, then $M_{1}={ }_{\beta} M={ }_{\beta} M_{2}$ and so $M_{1}={ }_{\beta} M_{2}$.
Conversely, the relation $\left\{\left(M_{1}, M_{2}\right) \mid \exists M\left(M_{1} \rightarrow M \nVdash M_{2}\right)\right\}$ satisfies the rules generating $=\beta$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem: $M_{1} \longrightarrow M \ll M_{2} \longrightarrow M^{\prime} \ll M_{3}$

Church-Rosser Theorem

Theorem. \rightarrow is confluent, that is, if $M_{1} \longleftrightarrow M \rightarrow M_{2}$, then there exists M^{\prime} such that $M_{1} \rightarrow M^{\prime} \leftrightarrow M_{2}$.

Corollary. $\quad M_{1}={ }_{\beta} M_{2}$ iff $\exists M\left(M_{1} \rightarrow M \longleftarrow M_{2}\right)$.

Proof. $={ }_{\beta}$ satisfies the rules generating \rightarrow; so $M \rightarrow M^{\prime}$ implies $M={ }_{\beta} M^{\prime}$. Thus if $M_{1} \rightarrow M \longleftarrow M_{2}$, then $M_{1}={ }_{\beta} M={ }_{\beta} M_{2}$ and so $M_{1}={ }_{\beta} M_{2}$.
Conversely, the relation $\left\{\left(M_{1}, M_{2}\right) \mid \exists M\left(M_{1} \rightarrow M \nVdash M_{2}\right)\right\}$ satisfies the rules generating $={ }_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem. Hence $M_{1}={ }_{\beta} M_{2}$ implies $\exists M\left(M_{1} \rightarrow M^{\prime} \llbracket M_{2}\right)$.

β-Normal Forms

Definition. A λ-term N is in β-normal form (nf) if it contains no β-redexes (no sub-terms of the form $\left.(\lambda x . M) M^{\prime}\right) . M$ has β-nf N if $M={ }_{\beta} N$ with N a β-nf.

β-Normal Forms

Definition. A λ-term N is in β-normal form (nf) if it contains no β-redexes (no sub-terms of the form $\left.(\lambda x \cdot M) M^{\prime}\right) . M$ has β-nf N if $M=\beta N$ with N a β-nf.

Note that if N is a β-nf and $N \rightarrow N^{\prime}$, then it must be that $N={ }_{\alpha} N^{\prime}$ (why?).

Hence if $N_{1}={ }_{\beta} N_{2}$ with N_{1} and N_{2} both β-nfs, then $N_{1}={ }_{\alpha} N_{2}$. (For if $N_{1}={ }_{\beta} N_{2}$, then $N_{1} \longleftrightarrow M \rightarrow N_{2}$ for some M; hence by Church-Rosser, $N_{1} \rightarrow M^{\prime} \llbracket N_{2}$ for some M^{\prime}, so $N_{1}={ }_{\alpha} M^{\prime}={ }_{\alpha} N_{2}$.)
So the β-nf of M is unique up to α-equivalence if it exists.

Non-termination

Some $\boldsymbol{\lambda}$ terms have no $\boldsymbol{\beta}$-nf.
E.g. $\Omega \triangleq(\lambda x . x x)(\lambda x . x x)$ satisfies

- $\Omega \rightarrow(x x)[(\lambda x . x x) / x]=\Omega$,
- $\Omega \rightarrow M$ implies $\Omega={ }_{\alpha} M$.

So there is no $\beta-$ nf N such that $\Omega={ }_{\beta} N$.

Non-termination

Some λ terms have no β-nf.
E.g. $\Omega \triangleq(\lambda x . x x)(\lambda x . x x)$ satisfies
$-\Omega \rightarrow(x x)[(\lambda x . x x) / x]=\Omega$,

- $\Omega \rightarrow M$ implies $\Omega={ }_{\alpha} M$.

So there is no $\beta-\mathrm{nf} N$ such that $\Omega={ }_{\beta} N$.

A term can possess both a β-nf and infinite chains of reduction from it.

$$
\text { E.g. }(\lambda x . y) \Omega \rightarrow y \text {, but also }(\lambda x . y) \Omega \rightarrow(\lambda x . y) \Omega \rightarrow \cdots \text {. }
$$

Non-termination

Normal-order reduction is a deterministic strategy for reducing λ-terms: reduce the "left-most, outer-most" redex first.

- left-most: reduce M before N in $M N$, and then
- outer-most: reduce $(\lambda x . M) N$ rather than either of M or N.
(cf. call-by-name evaluation).
Fact: normal-order reduction of \boldsymbol{M} always reaches the β-nf of \boldsymbol{M} if it possesses one.

Encoding data in $\boldsymbol{\lambda}$-calculus

Computation in λ-calculus is given by β-reduction. To relate this to register/Turing-machine computation, or to partial recursive functions, we first have to see how to encode numbers, pairs, lists, \ldots as λ-terms.

We will use the original encoding of numbers due to Church. . .

Church's numerals

$$
\begin{aligned}
\underline{0} & \triangleq \lambda f x_{0} x \\
\underline{1} & \triangleq \lambda f x_{0} f x \\
\underline{2} & \triangleq \lambda f x_{\cdot} f(f x) \\
& \vdots \\
\underline{n} & \triangleq \lambda f x_{\cdot} \underbrace{f(\cdots(f}_{n \text { times }} x) \cdots)
\end{aligned}
$$

Notation: $\begin{cases}M^{0} N & \triangleq N \\ M^{1} N & \triangleq M N \\ M^{n+1} N & \triangleq M\left(M^{n} N\right)\end{cases}$
so we can write \underline{n} as $\lambda f x . f^{n} x$ and we have $\underline{n} M N={ }_{\beta} M^{n} N$.

λ-Definable functions

Definition. $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is λ-definable if there is a closed $\boldsymbol{\lambda}$-term F that represents it: for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n}$ and $y \in \mathbb{N}$ > if $f\left(x_{1}, \ldots, x_{n}\right)=y$, then $F \underline{x_{1}} \cdots \underline{x_{n}}=\beta \underline{y}$ > if $f\left(x_{1}, \ldots, x_{n}\right) \uparrow$, then $F \underline{x_{1}} \cdots x_{n}$ has no β-nf.

For example, addition is λ-definable because it is represented by $P \triangleq \lambda x_{1} x_{2} . \lambda f x . x_{1} f\left(x_{2} f x\right)$:

$$
\begin{aligned}
P \underline{m} \underline{n} & ={ }_{\beta} \lambda f x \cdot \underline{m} f(\underline{n} f x) \\
& ={ }_{\beta} \lambda f x \cdot \underline{m} f\left(f^{n} x\right) \\
& ={ }_{\beta} \lambda f x \cdot f^{m}\left(f^{n} x\right) \\
& =\lambda f x \cdot f^{m+n} x \\
& =\underline{m+n}
\end{aligned}
$$

Computable $=\lambda$-definable

Theorem. A partial function is computable if and only if it is λ-definable.

We already know that
Register Machine computable
$=$ Turing computable
$=$ partial recursive.
Using this, we break the theorem into two parts:

- every partial recursive function is λ-definable
- λ-definable functions are RM computable

λ-Definable functions

Definition. $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is λ-definable if there is a closed λ-term F that represents it: for all
$\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n}$ and $y \in \mathbb{N}$

$$
>\text { if } f\left(x_{1}, \ldots, x_{n}\right)=y \text {, then } F \underline{x_{1}} \cdots \underline{x_{n}}=\beta \underline{y}
$$

$$
>\text { if } f\left(x_{1}, \ldots, x_{n}\right) \uparrow \text {, then } F \underline{x_{1}} \cdots \underline{x_{n}} \text { has no } \beta \text {-nf. }
$$

This condition can make it quite tricky to find a λ-term representing a non-total function.
For now, we concentrate on total functions. First, let us see why the elements of PRIM (primitive recursive functions) are $\boldsymbol{\lambda}$-definable.

Basic functions

- Projection functions, $\operatorname{proj}_{i}^{n} \in \mathbb{N}^{n} \rightarrow \mathbb{N}$:

$$
\operatorname{proj}_{i}^{n}\left(x_{1}, \ldots, x_{n}\right) \triangleq x_{i}
$$

- Constant functions with value $\mathbf{0}$, zero ${ }^{n} \in \mathbb{N}^{n} \rightarrow \mathbb{N}$:

$$
\operatorname{zero}^{n}\left(x_{1}, \ldots, x_{n}\right) \triangleq \mathbf{0}
$$

- Successor function, succ $\in \mathbb{N} \rightarrow \mathbb{N}$:

$$
\operatorname{succ}(x) \triangleq x+1
$$

Basic functions are representable

- $\operatorname{proj}_{i}^{n} \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by $\lambda x_{1} \ldots x_{n} \cdot x_{i}$
- zero $^{n} \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by $\lambda x_{1} \ldots x_{n} . \underline{\mathbf{0}}$
- succ $\in \mathbb{N} \rightarrow \mathbb{N}$ is represented by

$$
\text { Succ } \triangleq \lambda x_{1} f x . f\left(x_{1} f x\right)
$$

since

$$
\text { Succ } \begin{aligned}
\underline{n} & ={ }_{\beta} \lambda f x \cdot f(\underline{n} f x) \\
& ={ }_{\beta} \lambda f x \cdot f\left(f^{n} x\right) \\
& =\lambda f x \cdot f^{n+1} x \\
& =\underline{n+1}
\end{aligned}
$$

Representing composition

If total function $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by F and total functions $g_{1}, \ldots, g_{n} \in \mathbb{N}^{m} \rightarrow \mathbb{N}$ are represented by G_{1}, \ldots, G_{n}, then their composition $f \circ\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{N}^{m} \rightarrow \mathbb{N}$ is represented simply by

$$
\lambda x_{1} \ldots x_{m} . F\left(G_{1} x_{1} \ldots x_{m}\right) \ldots\left(G_{n} x_{1} \ldots x_{m}\right)
$$

because

$$
\begin{aligned}
& F\left(G_{1} a_{1} \ldots, a_{m}\right) \ldots\left(G_{n}, \ldots, a_{1} \ldots \underline{a_{m}}\right) \\
={ }_{\beta} & F g_{1}\left(a_{1}, \ldots, a_{m}\right) \ldots g_{n}\left(a_{1}, \ldots, a_{m}\right) \\
= & \underline{f\left(g_{1}\left(a_{1}, \ldots, a_{m}\right), \ldots, g_{n}\left(a_{1}, \ldots, a_{m}\right)\right)} \\
= & \underline{f \circ\left(g_{1}, \ldots, g_{n}\right)\left(a_{1}, \ldots, a_{m}\right)}
\end{aligned}
$$

Representing composition

If total function $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by F and total functions $g_{1}, \ldots, g_{n} \in \mathbb{N}^{m} \rightarrow \mathbb{N}$ are represented by G_{1}, \ldots, G_{n}, then their composition $f \circ\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{N}^{m} \rightarrow \mathbb{N}$ is represented simply by

$$
\lambda x_{1} \ldots x_{m} . F\left(G_{1} x_{1} \ldots x_{m}\right) \ldots\left(G_{n} x_{1} \ldots x_{m}\right)
$$

This does not necessarily work for partial functions. E.g. totally undefined function $u \in \mathbb{N} \rightarrow \mathbb{N}$ is represented by $U \triangleq \lambda x_{1}, \Omega$ (why?) and zero ${ }^{1} \in \mathbb{N} \rightarrow \mathbb{N}$ is represented by $\mathbf{Z} \triangleq \lambda x_{1} . \underline{0}$; but zero ${ }^{1} \circ u$ is not represented by $\lambda x_{1} \cdot Z\left(U x_{1}\right)$, because $\left(\right.$ zero $\left.^{1} \circ \boldsymbol{u}\right)(n) \uparrow$ whereas $\left(\lambda x_{1} . \mathbf{Z}\left(U x_{1}\right)\right) \underline{n}={ }_{\beta} \mathbf{Z} \Omega={ }_{\beta} \underline{0}$. (What is zero ${ }^{1} \circ u$ represented by?)

