Lambda-Calculus

Notions of computability

- ► Church (1936): **\(\lambda\)**-calculus
- ► Turing (1936): Turing machines.

Turing showed that the two very different approaches determine the same class of computable functions. Hence:

Church-Turing Thesis. Every algorithm [in intuitive sense of Lect. 1] can be realized as a Turing machine.

λ -Terms, M

are built up from a given, countable collection of

 \triangleright variables x, y, z, \dots

by two operations for forming λ -terms:

- ▶ λ -abstraction: $(\lambda x.M)$ (where x is a variable and M is a λ -term)
- ▶ application: (M M') (where M and M' are λ -terms).

λ -Terms, M

are built up from a given, countable collection of

 \triangleright variables x, y, z, \dots

by two operations for forming λ -terms:

- ▶ λ -abstraction: $(\lambda x.M)$ (where x is a variable and M is a λ -term)
- ▶ application: (M M') (where M and M' are λ -terms).

Some random examples of λ -terms:

$$x = (\lambda x.x) = ((\lambda y.(xy))x) = (\lambda y.((\lambda y.(xy))x))$$

λ -Terms, M

Notational conventions:

- $(\lambda x_1 x_2 \dots x_n M) \text{ means}$ $(\lambda x_1 (\lambda x_2 \dots (\lambda x_n M) \dots))$
- $(M_1 M_2 ... M_n)$ means $(... (M_1 M_2) ... M_n)$ (i.e. application is left-associative)
- drop outermost parentheses and those enclosing the body of a λ -abstraction. E.g. write $(\lambda x.(x(\lambda y.(yx))))$ as $\lambda x.x(\lambda y.yx)$.
- x # M means that the variable x does not occur anywhere in the λ -term M.

Free and bound variables

In $\lambda x.M$, we call x the bound variable and M the body of the λ -abstraction.

An occurrence of x in a λ -term M is called

- binding if in between λ and . (e.g. $(\lambda x.yx)x$)
- bound if in the body of a binding occurrence of x (e.g. $(\lambda x.yx)x$)
- free if neither binding nor bound (e.g. $(\lambda x.yx)x$).

Free and bound variables

Sets of free and bound variables:

$$FV(x) = \{x\}$$

$$FV(\lambda x.M) = FV(M) - \{x\}$$

$$FV(MN) = FV(M) \cup FV(N)$$

$$BV(x) = \emptyset$$

$$BV(\lambda x.M) = BV(M) \cup \{x\}$$

$$BV(MN) = BV(M) \cup BV(N)$$

If $FV(M) = \emptyset$, M is called a closed term, or combinator.

 $\lambda x.M$ is intended to represent the function f such that

$$f(x) = M$$
 for all x .

So the name of the bound variable is immaterial: if $M' = M\{x'/x\}$ is the result of taking M and changing all occurrences of x to some variable x' # M, then $\lambda x.M$ and $\lambda x'.M'$ both represent the same function.

For example, $\lambda x.x$ and $\lambda y.y$ represent the same function (the identity function).

is the binary relation inductively generated by the rules:

$$\frac{z \# (MN) \qquad M\{z/x\} =_{\alpha} N\{z/y\}}{\lambda x. M =_{\alpha} \lambda y. N}$$

$$\frac{M =_{\alpha} M' \qquad N =_{\alpha} N'}{MN =_{\alpha} M' N'}$$

where $M\{z/x\}$ is M with all occurrences of x replaced by z.

For example:

because
$$\lambda x.(\lambda xx'.x) \ x' =_{\alpha} \lambda y.(\lambda x \ x'.x) x'$$
because
$$(\lambda z \ x'.z) x' =_{\alpha} (\lambda x \ x'.x) x'$$
because
$$\lambda z \ x'.z =_{\alpha} \lambda x \ x'.x \ \text{and} \ x' =_{\alpha} x'$$
because
$$\lambda x'.u =_{\alpha} \lambda x'.u \ \text{and} \ x' =_{\alpha} x'$$
$$u =_{\alpha} u \ \text{and} \ x' =_{\alpha} x'.$$

Fact: $=_{\alpha}$ is an equivalence relation (reflexive, symmetric and transitive).

We do not care about the particular names of bound variables, just about the distinctions between them. So α -equivalence classes of λ -terms are more important than λ -terms themselves.

- ► Textbooks (and these lectures) suppress any notation for α -equivalence classes and refer to an equivalence class via a representative λ -term (look for phrases like "we identify terms up to α -equivalence" or "we work up to α -equivalence").
- ▶ For implementations and computer-assisted reasoning, there are various devices for picking canonical representatives of α -equivalence classes (e.g. de Bruijn indexes, graphical representations, . . .).

Substitution N[M/x]

```
x[M/x] = M

y[M/x] = y if y \neq x

(\lambda y.N)[M/x] = \lambda y.N[M/x] if y \# (M x)

(N_1 N_2)[M/x] = N_1[M/x] N_2[M/x]
```

Substitution N[M/x]

```
x[M/x] = M

y[M/x] = y if y \neq x

(\lambda y.N)[M/x] = \lambda y.N[M/x] if y \# (M x)

(N_1 N_2)[M/x] = N_1[M/x] N_2[M/x]
```

Side-condition y # (M x) (y does not occur in M and $y \neq x$) makes substitution "capture-avoiding".

E.g. if
$$x \neq y$$

$$(\lambda y.x)[y/x] \neq \lambda y.y$$

Substitution N[M/x]

```
x[M/x] = M
y[M/x] = y \quad \text{if } y \neq x
(\lambda y.N)[M/x] = \lambda y.N[M/x] \quad \text{if } y \# (M x)
(N_1 N_2)[M/x] = N_1[M/x] N_2[M/x]
```

Side-condition y # (M x) (y does not occur in M and $y \neq x$) makes substitution "capture-avoiding".

E.g. if $x \neq y \neq z \neq x$

$$(\lambda y.x)[y/x] =_{\alpha} (\lambda z.x)[y/x] = \lambda z.y$$

 $N \mapsto N[M/x]$ induces a <u>total</u> operation on α -equivalence classes.

Recall that $\lambda x.M$ is intended to represent the function f such that f(x) = M for all x. We can regard $\lambda x.M$ as a function on λ -terms via substitution: map each N to M[N/x].

So the natural notion of computation for λ -terms is given by stepping from a

 β -redex $(\lambda x.M)N$

to the corresponding

 β -reduct M[N/x]

One-step β -reduction, $M \rightarrow M'$:

$$\frac{M \to M'}{\lambda x.M)N \to M[N/x]} \qquad \frac{M \to M'}{\lambda x.M \to \lambda x.M'}$$

$$\frac{M \to M'}{M N \to M' N} \qquad \frac{M \to M'}{N M \to N M'}$$

$$\frac{N =_{\alpha} M \qquad M \to M' \qquad M' =_{\alpha} N'}{N \to N'}$$

E.g.

$$(\lambda x.xy)((\lambda y.\lambda z.z)u) \underbrace{\qquad \qquad ((\lambda y.\lambda z.z)u)y}_{(\lambda x.xy)(\lambda z.z)} (\lambda z.z)y \longrightarrow y$$

E.g. of "up to α -equivalence" aspect of reduction:

$$(\lambda x.\lambda y.x)y =_{\alpha} (\lambda x.\lambda z.x)y \to \lambda z.y$$

Many-step β -reduction, $M \rightarrow M'$:

$$M =_{lpha} M' \ M o M'$$
 $M o M'$ $M o M'$ $M o M''$ $M o M''$ (no steps) (1 step) (1 more step)

$$(\lambda x.xy)((\lambda yz.z)u) \rightarrow y$$

 $(\lambda x.\lambda y.x)y \rightarrow \lambda z.y$