Lambda-Calculus

Notions of computability

- Church (1936): λ-calculus
- Turing (1936): Turing machines.

Turing showed that the two very different approaches determine the same class of computable functions. Hence:
Church-Turing Thesis. Every algorithm [in intuitive sense of Lect. 1] can be realized as a Turing machine.

λ-Terms, \boldsymbol{M}

are built up from a given, countable collection of

- variables x, y, z, \ldots
by two operations for forming $\boldsymbol{\lambda}$-terms:
- λ-abstraction: $(\lambda \boldsymbol{x} . \boldsymbol{M})$
(where \boldsymbol{x} is a variable and \boldsymbol{M} is a λ-term)
- application: ($\boldsymbol{M} \boldsymbol{M}^{\prime}$)
(where \boldsymbol{M} and \boldsymbol{M}^{\prime} are λ-terms).

λ-Terms, \boldsymbol{M}

are built up from a given, countable collection of

- variables x, y, z, \ldots
by two operations for forming $\boldsymbol{\lambda}$-terms:
- λ-abstraction: $(\lambda x . M)$
(where \boldsymbol{x} is a variable and \boldsymbol{M} is a λ-term)
- application: ($\boldsymbol{M} \boldsymbol{M}^{\prime}$)
(where \boldsymbol{M} and \boldsymbol{M}^{\prime} are λ-terms).
Some random examples of λ-terms:

$$
x \quad(\lambda x \cdot x) \quad((\lambda y \cdot(x y)) x) \quad(\lambda y \cdot((\lambda y \cdot(x y)) x))
$$

λ-Terms, \boldsymbol{M}

Notational conventions:

- $\left(\lambda x_{1} x_{2} \ldots x_{n} \cdot M\right)$ means $\left(\lambda x_{1} \cdot\left(\lambda x_{2} \ldots\left(\lambda x_{n} \cdot M\right) \ldots\right)\right)$
- $\left(M_{1} M_{2} \ldots M_{n}\right)$ means $\left(\ldots\left(M_{1} M_{2}\right) \ldots M_{n}\right)$
(i.e. application is left-associative)
- drop outermost parentheses and those enclosing the body of a λ-abstraction. E.g. write $(\lambda x \cdot(x(\lambda y \cdot(y x))))$ as $\lambda x \cdot x(\lambda y \cdot y x)$.
- x \# M means that the variable x does not occur anywhere in the $\boldsymbol{\lambda}$-term \boldsymbol{M}.

Free and bound variables

In $\lambda x . M$, we call x the bound variable and M the body of the $\boldsymbol{\lambda}$-abstraction.

An occurrence of x in a λ-term M is called

- binding if in between λ and .
(e.g. $(\lambda x . y x) x$)
- bound if in the body of a binding occurrence of x (e.g. $(\lambda x . y x) x$)
- free if neither binding nor bound (e.g. $(\lambda x . y x) x)$.

Free and bound variables

Sets of free and bound variables:

$$
\begin{aligned}
F V(x) & =\{x\} \\
F V(\lambda x . M) & =F V(M)-\{x\} \\
F V(M N) & =F V(M) \cup F V(N) \\
B V(x) & =\varnothing \\
B V(\lambda x \cdot M) & =B V(M) \cup\{x\} \\
B V(M N) & =B V(M) \cup B V(N)
\end{aligned}
$$

If $F V(\boldsymbol{M})=\varnothing, \boldsymbol{M}$ is called a closed term, or combinator.

α-Equivalence $\boldsymbol{M}={ }_{\alpha} \boldsymbol{M}^{\prime}$

$\lambda x . M$ is intended to represent the function f such that $f(x)=M$ for all x.

So the name of the bound variable is immaterial: if $M^{\prime}=M\left\{x^{\prime} / x\right\}$ is the result of taking M and changing all occurrences of x to some variable $x^{\prime} \# M$, then λx. M and $\lambda x^{\prime} \cdot M^{\prime}$ both represent the same function.
For example, $\lambda x . x$ and $\lambda y . y$ represent the same function (the identity function).

α-Equivalence $\boldsymbol{M}={ }_{\alpha} \boldsymbol{M}^{\prime}$

is the binary relation inductively generated by the rules:

$$
\begin{aligned}
& \frac{z \#(M N) \quad M\{z / x\}={ }_{\alpha} N\{z / y\}}{\lambda x \cdot M={ }_{\alpha} \lambda y \cdot N} \\
& \frac{M={ }_{\alpha} M^{\prime} \quad N={ }_{\alpha} N^{\prime}}{M N={ }_{\alpha} M^{\prime} N^{\prime}}
\end{aligned}
$$

where $M\{z / x\}$ is M with all occurrences of x replaced by z.

α-Equivalence $\boldsymbol{M}={ }_{\alpha} \boldsymbol{M}^{\prime}$

For example:

$$
\begin{array}{lc}
& \lambda x \cdot\left(\lambda x x^{\prime} \cdot x\right) x^{\prime}={ }_{\alpha} \lambda y \cdot\left(\lambda x x^{\prime} \cdot x\right) x^{\prime} \\
\text { because } & \left(\lambda z x^{\prime} \cdot z\right) x^{\prime}={ }_{\alpha}\left(\lambda x x^{\prime} \cdot x\right) x^{\prime} \\
\text { because } & \lambda z x^{\prime} \cdot z={ }_{\alpha} \lambda x x^{\prime} \cdot x \text { and } x^{\prime}={ }_{\alpha} x^{\prime} \\
\text { because } & \lambda x^{\prime} \cdot u={ }_{\alpha} \lambda x^{\prime} \cdot u \text { and } x^{\prime}={ }_{\alpha} x^{\prime} \\
\text { because } & u={ }_{\alpha} u \text { and } x^{\prime}={ }_{\alpha} x^{\prime} .
\end{array}
$$

α-Equivalence $\boldsymbol{M}={ }_{\alpha} \boldsymbol{M}^{\prime}$

Fact: $={ }_{\alpha}$ is an equivalence relation (reflexive, symmetric and transitive).

We do not care about the particular names of bound variables, just about the distinctions between them. So α-equivalence classes of λ-terms are more important than λ-terms themselves.

- Textbooks (and these lectures) suppress any notation for α-equivalence classes and refer to an equivalence class via a representative $\boldsymbol{\lambda}$-term (look for phrases like "we identify terms up to α-equivalence" or "we work up to α-equivalence").
- For implementations and computer-assisted reasoning, there are various devices for picking canonical representatives of α-equivalence classes (e.g. de Bruijn indexes, graphical representations, ...).

Substitution $N[M / x]$

$$
\begin{aligned}
x[M / x] & =M \\
y[M / x] & =y \quad \text { if } y \neq x \\
(\lambda y \cdot N)[M / x] & =\lambda y \cdot N[M / x] \quad \text { if } y \#(M x) \\
\left(N_{1} N_{2}\right)[M / x] & =N_{1}[M / x] N_{2}[M / x]
\end{aligned}
$$

Substitution $N[M / x]$

$$
\begin{aligned}
x[M / x] & =M \\
y[M / x] & =y \quad \text { if } y \neq x \\
(\lambda y \cdot N)[M / x] & =\lambda y \cdot N[M / x] \quad \text { if } y \#(M x) \\
\left(N_{1} N_{2}\right)[M / x] & =N_{1}[M / x] N_{2}[M / x]
\end{aligned}
$$

Side-condition y \# ($M x$) (y does not occur in M and $y \neq x$) makes substitution "capture-avoiding".
E.g. if $x \neq y$

$$
(\lambda y . x)[y / x] \neq \lambda y . y
$$

Substitution $N[M / x]$

$x[M / x]=M$
 $y[M / x]=y \quad$ if $y \neq x$
 $(\lambda y \cdot N)[M / x]=\lambda y \cdot N[M / x] \quad$ if $y \#(M x)$
 $\left(N_{1} N_{2}\right)[M / x]=N_{1}[M / x] N_{2}[M / x]$

Side-condition y \# ($M x$) (y does not occur in M and $y \neq x$) makes substitution "capture-avoiding".
E.g. if $x \neq y \neq z \neq x$

$$
(\lambda y \cdot x)[y / x]={ }_{\alpha}(\lambda z \cdot x)[y / x]=\lambda z \cdot y
$$

$N \mapsto N[M / x]$ induces a total operation on α-equivalence classes.

β-Reduction

Recall that λx. M is intended to represent the function f such that $f(x)=M$ for all x. We can regard $\lambda x . M$ as a function on λ-terms via substitution: map each N to $M[N / x]$.
So the natural notion of computation for $\boldsymbol{\lambda}$-terms is given by stepping from a
β-redex $\quad(\lambda x . M) N$
to the corresponding
β-reduct $\quad M[N / x]$

β-Reduction

One-step β-reduction, $\boldsymbol{M} \rightarrow \boldsymbol{M}^{\prime}$:

$$
M \rightarrow M^{\prime}
$$

$\overline{(\lambda x . M) N \rightarrow M[N / x]}$
$\overline{\lambda x \cdot M \rightarrow \lambda x \cdot M^{\prime}}$

$$
\begin{array}{lr}
\frac{M \rightarrow M^{\prime}}{M N \rightarrow M^{\prime} N} & \frac{M \rightarrow M^{\prime}}{N M \rightarrow N M^{\prime}} \\
\begin{array}{c}
N={ }_{\alpha} M
\end{array} \quad M \rightarrow M^{\prime} & M^{\prime}={ }_{\alpha} N^{\prime} \\
\hline
\end{array}
$$

β-Reduction

E.g.

$$
\begin{aligned}
&(\lambda x . x y)((\lambda y . \lambda z . z) u)((\lambda y \cdot \lambda z . z) u) y \\
&(\lambda x . x y)(\lambda z . z)
\end{aligned}
$$

β-Reduction

E.g.

$$
(\lambda x . x y)((\lambda y . \lambda z . z) u) \longrightarrow((\lambda y . \lambda z . z) u) y
$$

β-Reduction

E.g.

$$
(\lambda x . x y)((\lambda y \cdot \lambda z . z) u) \longrightarrow((\lambda y . \lambda z . z) u) y
$$

β-Reduction

E.g.

$$
\begin{aligned}
&(\lambda x . x y)((\lambda y . \lambda z . z) u)((\lambda y \cdot \lambda z . z) u) y \\
&(\lambda x . x y)(\lambda z . z)
\end{aligned}
$$

β-Reduction

E.g.

$$
\begin{aligned}
&(\lambda x . x y)((\lambda y . \lambda z . z) u)((\lambda y \cdot \lambda z . z) u) y \\
&(\lambda x . x y)(\lambda z . z)
\end{aligned}
$$

β-Reduction

E.g.

$$
(\lambda x . x y)((\lambda y \cdot \lambda z . z) u) \longrightarrow((\lambda y \cdot \lambda z . z) u) y
$$

E.g. of "up to $\boldsymbol{\alpha}$-equivalence" aspect of reduction:
$(\lambda x . \lambda y . x) y={ }_{\alpha}(\lambda x . \lambda z . x) y \rightarrow \lambda z . y$

Many-step β-reduction, $\boldsymbol{M} \rightarrow \boldsymbol{M}^{\prime}$:

$$
\begin{array}{ccc}
M={ }_{\alpha} M^{\prime} \\
\begin{array}{c}
M \rightarrow M^{\prime} \\
\text { (no steps) }
\end{array} & \begin{array}{c}
M \rightarrow M^{\prime} \\
M \rightarrow M^{\prime} \\
\text { (1 step) }
\end{array} & M \rightarrow M^{\prime} \quad M^{\prime} \rightarrow M^{\prime \prime} \\
M \rightarrow M^{\prime \prime} \\
\text { (1 more step) }
\end{array}
$$

E.g.
$(\lambda x . x y)((\lambda y z . z) u) \rightarrow y$
$(\lambda x . \lambda y . x) y \rightarrow \lambda z . y$

