Experimenting: statistical analysis 2

Per Ola Kristensson
Research Methods
M.Phil. Advanced Computer Science University of Cambridge

Michaelmas Term, 2009

Example

- Method A (baseline)
- Method B
- Between-subjects experiment
- One session
- Three participants in each condition
- Six participants in total

Raw data

	Group A	Group B
Observation 1	$X_{A 1}=2$	$X_{B 1}=6$
Observation 2	$X_{A 2}=3$	$X_{B 2}=7$
Observation 3	$X_{A 3}=1$	$X_{B 3}=5$
Sample mean	$\bar{X}_{A}=2$	$\bar{X}_{B}=6$

Two different variance estimates

- Within
- Error
- Between
- Effect
- (Error)

Sum of squares

- Remember the residuals from last lecture:

$$
X_{i}-\bar{X}
$$

- Sum of squares (SS) is simply the sum of the squared residuals:

$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Why sum of squares?

- Intuitive explanation:
- We have individual observations
- We try to fit these observations to an expected value (the mean)
- We do not know the true population mean
- However, we do know an estimate - the sample mean
- Sum of squares gives us a similarity measure or "goodness of fit"
$\left(x_{i}-\bar{X}\right)^{2}$

$\left(X_{j}-\bar{X}\right)^{2}$
X_{j}
- Similar to linear regression

Group A (within)

Group A	Raw value	Residuals (squared)
Observation 1	$X_{A 1}=2$	$\left(X_{A 1}-\bar{X}_{A}\right)^{2}=(2-2)^{2}=0$
Observation 2	$X_{A 2}=3$	$\left(X_{A 2}-\bar{X}_{A}\right)^{2}=(3-2)^{2}=1$
Observation 3	$X_{A 3}=1$	$\left(X_{A 3}-\bar{X}_{A}\right)^{2}=(1-2)^{2}=1$
Sum of squares		$\sum_{i=1}^{3}\left(X_{A i}-\bar{X}_{A}\right)^{2}=2$

Group B (within)

Group A	Raw value	Residuals (squared)
Observation 1	$X_{B 1}=6$	$\left(X_{B 1}-\bar{X}_{B}\right)^{2}=(6-6)^{2}=0$
Observation 2	$X_{B 2}=7$	$\left(X_{B 2}-\bar{X}_{B}\right)^{2}=(7-6)^{2}=1$
Observation 3	$X_{B 3}=5$	$\left(X_{B 3}-\bar{X}_{B}\right)^{2}=(5-6)^{2}=1$
Sum of squares		$\sum_{i=1}^{3}\left(X_{B i}-\bar{X}_{B}\right)^{2}=2$

Group A+B (total)

Overall mean	$\bar{X}_{A B}=4$
Squared residuals 1A +1 B	$\left(X_{A 1}-\bar{X}_{A B}\right)^{2}+\left(X_{B 1}-\bar{X}_{A B}\right)^{2}=8$
Squared residuals 2A +2 B	$\left(X_{A 2}-\bar{X}_{A B}\right)^{2}+\left(X_{B 2}-\bar{X}_{A B}\right)^{2}=10$
Squared residuals 3A +3 B	$\left(X_{A 3}-\bar{X}_{A B}\right)^{2}+\left(X_{B 3}-\bar{X}_{A B}\right)^{2}=10$
Sum of squares	$\sum_{i=1}^{3}\left(X_{A i}-\bar{X}_{A B}\right)^{2}+\sum_{i=1}^{3}\left(X_{B i}-\bar{X}_{A B}\right)^{2}=28$

Intermediary summary

- Group A (within):
- Mean: 2
- Variance: 2
- Group B (within):
- Mean: 6
- Variance: 2
- Groups A+B (total):
- Mean: 4
- Variance: 28
- Question:
- Is there a difference between the means of groups A and B that is due to effect rather than error?

Remember the logic of ANOVA

- Within-groups estimate (error)
- Between-groups estimate (effect of independent variable and error)
- $\mathrm{HO}: \mu_{1}=\mu_{2}$
- Given H0, the variance estimates should be equal

This is because H 0 assumes the effect of the independent variable does not exist

- Then both variance estimates reflect error and their ratio is 1
- A ratio larger than 1 suggests an effect of the independent variable

Remember the assumptions behind

 ANOVA- The population has a mean
- Remember, not all distributions have a mean
- The population is assumed to be normal
- Each observation sampled from a Gaussian distribution
- Each observation is assumed to be independent

Chi-squared distribution

- A sum of squared independent normal random variables have a chi-squared distribution

$$
\sum_{i=1}^{n} X_{i}^{2} \sim \chi_{n}^{2}, n>0
$$

F-distribution

- The F-distribution arises as the ratio of two independent chi-square estimates
- In our case:

$$
\frac{S S_{\text {between }} / d f_{\text {between }}}{S S_{\text {within }} / d f_{\text {within }}}
$$

- where $d f$ are the degrees of freedom for each chi-square estimate

Back to our example

- $S S_{\text {error }}=2+2=4$ (for A and B)
- $S S_{\text {total }}=28$ (for A + B)
- $S S_{\text {effect }}=S S_{\text {total }}-S_{\text {error }}=28-4=24$
- $\mathrm{df}_{\text {error }}=N$ subjects $-N$ groups $=6-2=4$
- $\mathrm{df}_{\text {effect }}=N$ groups $-1=2-1=1$
- $\mathrm{MS}_{\text {error }}=\mathrm{SS}_{\text {error }} / \mathrm{df}_{\text {error }}=4 / 4=1$
- $\mathrm{MS}_{\text {effect }}=\mathrm{SS}_{\text {effect }} / \mathrm{df}_{\text {effect }}=24 / 1=24$
- $\mathrm{F}=\mathrm{MS}_{\text {effect }} / \mathrm{MS}_{\text {error }}=24 / 1=24$
- $\mathrm{p}($ for $\mathrm{df}[1,4]$ and $\mathrm{F}=24) \approx 0.08$
- $F_{1,4}=24.000, p=0.08$

Summary

Between-subjects experiment

- Six participants in total
- Two groups
- $\operatorname{Mean}[A]=2, \operatorname{Mean}[B]=6$
- Variance[A] = Variance[B] = 2
- Mean[Total] $=4$, Variance[Total] $=28$

Variance[Effect] = Variance[Total] - (Variance[A] + Variance $[B])=28-(2+2)=24$

- Degrees of freedom:
- Effect $=2$ groups $-1=1 \mathrm{df}$
- Error $=6$ participants - 2 groups $=4 \mathrm{df}$
- MS[error] = $4 / 4=1$
- MS[effect] $=24 / 1=24$
- $\mathrm{F}=\mathrm{MS}[$ effect $] / \mathrm{MS}[$ error $]=24 / 1=24$

Always remember the assumptions of

 ANOVA- Independence
- Normality
- Residuals are normal
- Homogeneity of variances
- The groups should have equal variance

Typical real usage of ANOVA

- Participants are exposed to three different methods
- ANOVA is used to compute if there is a statistically significant difference between the means (omnibus test)
- ANOVA only tells that there is a difference, it does not tell us which means differ
- Now post-hoc analysis is carried out to compute pair-wise differences between the means
- ANOVA is powerful in this scenario because it protects us against over-testing the data without being too restrictive (unlike t-tests)

When not to use ANOVA

- Data that is inherently non-normal
- Rank data (e.g. user ratings)
- Data that cannot be reasonably transformed so that the residuals are approximately normal

Things to watch out for

- First, ANOVA is relatively robust
- Against non-normal data
- Against unequal variances (as long as the number of participants in both conditions are equal)
- Outliers can cause misleading results
- Outliers that violate ANOVA's assumption of homogeneity of variances is particularly troublesome
- Again, rank/ratings data require a different test

Summary

- We want to find out if means (or sometimes medians) differ among different methods
. We identify the levels of our independent variable (which methods we are going to test)
- Need to find a suitable baseline
- We identify which dependent variables to measure
- We decide on an experimental design
- Get ethical approval (if necessary)
- We carry out a pilot study
- We recruit participants and carry out the experiment

Summary, continued

- To find out if our independent variable could account for the difference in observed means (or medians) we need to conduct a significance test - (The difference could be due to chance)
- A significance test tells us if we can reject the null hypothesis at a preset significance level
- Failing to reject the null hypothesis does not mean that the means are equal
- It just means you failed to reject the null hypothesis (and nothing else)
- If we reject the null hypothesis we conclude that the difference in observed means (or medians) are due to our manipulation of the level of the independent variable

Summary, continued

- Analysis of variance is a popular method for testing for significant differences
- The idea is to partition the variance into variance related to error (sampling error) and effect (due to our manipulation of the independent variable)
- These variances are chi-squared estimates
- The F-distribution tells us the probability that the ratio of two chi-square estimates is the same
- We obtain a probability that we can use to reject the null hypothesis under a preset confidence level

Conclusion

- Choose the right baseline
- Think carefully about experimental design
- Carry out a pilot study
- Plot the data before analysing it further
- Observe all assumptions behind statistical tests
- Explain what you did so others can repeat it
- Motivate any out-of-the-ordinary modifications to experimental procedure or analysis you have carried out

