
Bayesian learning IIBayes deision theory tells us that in this ontext we should on-sider the quantity Pr(ωi|s,x) where the involvement of the trainingsequene has been made expliit.Pr(ωi|s,x) =
∑

h∈H

Pr(ωi, h|s,x)

=
∑

h∈H

Pr(ωi|h, s,x)Pr(h|s,x)

=
∑

h∈H

Pr(ωi|h,x)Pr(h|s).Here we have re-introduedH using marginalisation. In moving fromline 2 to line 3 we are assuming some independene properties.

Bayesian learning IISo our lassi�ation should be

ω = argmax

ω∈{ω1,...,ωc}

∑

h∈H

Pr(ω|h,x)Pr(h|s)If H is in�nite the sum beomes an integral. So for example for aneural network

ω = argmax
ω∈{ω1,...,ωc}

∫

RW

Pr(ω|w,x)Pr(w|s)dwwhere W is the number of weights in w.

Bayesian learning IIWhy might this make any di�erene? (Aside from the fat that wenow know it's optimal!)Example 1: Say |H| = 3 and h(x) = Pr(x is in lass C1) for a 2 lassproblem. Pr(h1|s) = 0.4Pr(h2|s) = Pr(h3|s) = 0.3Now, say we have an x for whih

h1(x) = 1

h2(x) = h3(x) = 0so hMAP says that x is in lass C1.

Bayesian learning IIHowever, Pr(lass 1|s,x) = 1 × 0.4 + 0 × 0.3 + 0 × 0.3

= 0.4Pr(lass 2|s,x) = 0 × 0.4 + 1 × 0.3 + 1 × 0.3

= 0.6so lass C2 is the more probable!In this ase the Bayes optimal approah in fat leads to a di�erentanswer .



A more in-depth exampleLet's take this a step further and work through something a littlemore omplex in detail. For a two-lass lassi�ation problem, with

h(x) denoting Pr(C1|h, x) and x ∈ R:Hypotheses: We have three hypotheses

h1(x) = exp(−(x − 1)2)

h2(x) = exp(−(2x − 2)2)

h3(x) = exp(−(1/10)(x − 3)2)

Prior: The prior is Pr(h1) = 0.1, Pr(h2) = 0.05 and Pr(h3) = 0.85.

A more in-depth exampleWe see the examples (0.5, C1), (0.9, C1), (3.1, C2) and (3.4, C1).Likelihood: For the individual hypotheses the likelihoods are givenby Pr(s|h) = h(x1)h(x2)[1 − h(x3)]h(x4)Whih in this ase tells usPr(s|h1) = 0.0024001365Pr(s|h2) = 0.0031069836Pr(s|h3) = 0.0003387476Posterior: Multiplying by the priors and normalising givesPr(h1|s) = 0.3512575000Pr(h2|s) = 0.2273519164Pr(h3|s) = 0.4213905836

A more in-depth exampleNow let's lassify the point x ′ = 2.5.We needPr(C1|s, x
′) = Pr(C1|h1)Pr(h1|s) + Pr(C1|h2)Pr(h2|s) + Pr(C1|h3)Pr(h3|s)

= 0.6250705317So: it's most likely to be in lass C1, but not with great ertainty.

The Bayesian approah to neural networksLet's now see how this an be applied to neural networks . We have:� A neural network omputing a funtion f(w;x).� A training sequene s = ((x1, y1), . . . , (xm, ym)), split into

y = ( y1 y2 · · · ym )and

X = ( x1 x2 · · · xm )The prior distribution p(w) is now on the weight vetors, and Bayes'theorem tells us that

p(w|s) = p(w|X,y) =
p(y|w,X)p(w|X)

p(y|X)Nothing new so far...



The Bayesian approah to neural networksAs usual, we don't onsider unertainty in x and so X will be omitted.Consequently

p(w|y) =
p(y|w)p(w)

p(y)where

p(y) =

∫

RW

p(y|w)p(w)dw

p(y|w) is a model of the noise orrupting the labels and as previouslyis the likelihood funtion .

The Bayesian approah to neural networks
p(w) is typially a broad distribution to reet the fat that in theabsene of any data we have little idea of what w might be.When we see some data the above equation tells us how to obtain

p(w|y). This will typially be more loalised .

wMAP
p(w)

p(w|y)

To put this into pratie we need expressions for p(w) and p(y|w).

Reminder: the general Gaussian densityReminder: we're going to be making a lot of use of the general Gaus-sian density N (µ, Σ) in d dimensions

p(z) = (2π)−d/2|Σ|−1/2 exp [−1

2

(

(z − µ)TΣ−1(z − µ)
)

]

where µ is the mean vetor and Σ is the ovariane matrix .
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The Gaussian priorA ommon hoie for p(w) is the Gaussian prior with zero meanand

Σ = σ2Iso

p(w) = (2π)−W/2σ−W exp [−wTw

2σ2

]

Note that σ ontrols the distribution of other parameters.� Suh parameters are alled hyperparameters .� Assume for now that they are both �xed and known.Hyperparameters an be learnt using s through the appliation ofmore advaned tehniques.



The Bayesian approah to neural networksPhysiists like to express quantities suh as p(w) in terms of a mea-sure of \energy". The expression is therefore usually re-written as

p(w) =
1

ZW(α)

exp(−α

2
||w||2

)

where

EW(w) =
1

2
||w||2

ZW(α) =

(

2π

α

)d/2

α =
1

σ2This is simply a re-arranged version of the more usual equation.

The Gaussian noise model for regressionWe've already seen that for a regression problem with zero meanGaussian noise having variane σ2
n

yi = f(xi) + ǫi

p(ǫi) =
1

√

2πσ2
n

exp(−
ǫ2

i

2σ2
n

)

where f orresponds to some unknown network, the likelihood fun-tion is

p(y|w) =
1

(2πσ2
n)m/2

exp(−
1

2σ2
n

m∑

i=1

(yi − f(w;xi))
2

)

Note that there are now two varianes: σ2 for the prior and σ2
nfor the noise.

The Bayesian approah to neural networksThis expression an also be rewritten in physiist-friendly form
p(y|w) =

1

Zy(β)

exp (−βEy(w))

where

β =
1

σ2
n

Zy(β) =

(

2π

β

)m/2

Ey(w) =
1

2

m∑

i=1

(yi − f(w;xi))
2Here, β is a seond hyperparameter . Again, we assume it is �xedand known, although it an be learnt using s using more advanedtehniques.

The Bayesian approah to neural networksCombining the two boxed equations gives

p(w|y) =
1

ZS(α, β)

exp(−S(w))

where

S(w) = αEW(w) + βEy(w)The quantity

ZS(α, β) =

∫

RW

exp(−S(w))dwnormalises the density. Reall that this is alled the evidene .



Example I: gradient desent revisited...To �nd hMAP (in this senario by �ndingwMAP) we therefore maximise

p(w|y) =
1

ZS(α, β)

exp(−(αEW(w) + βEy(w)))or equivalently �nd

wMAP = argmin

w

α

2
||w||2 +

β

2

m∑

i=1

(yi − f(w;xi))
2

This algorithm has also been used a lot in the neural network litera-ture and is alled the weight deay tehnique.

Example II: two-lass lassi�ation in two dimensions
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The Bayesian approah to neural networksWhat happens as the number m of examples inreases?� The �rst term orresponding to the prior remains �xed.� The seond term orresponding to the likelihood inreases.So for small training sequenes the prior dominates, but for large ones
hML is a good approximation to hMAP.

The Bayesian approah to neural networksWhere have we got to...? We have obtained

p(w|y) =
1

ZS(α, β)

exp(−(αEW(w) + βEy(w)))

ZS(α, β) =

∫

RW

exp(−(αEW(w) + βEy(w)))dwTranslating the expression for the Bayes optimal solution given onthe �rst slide of this handout into the urrent senario, we need toompute

p(Y|y,x) =

∫

RW

p(y|w,x)p(w|y)dwEasy huh? Unfortunately not...



The Bayesian approah to neural networksIn order to make further progress it's therefore neessary to performintegrals of the general form

∫

RW

F(w)p(w|y)dwfor various funtions F and this is generally not possible.There are two ways to get around this:1. We an use an approximate form for p(w|y).2. We an use Monte Carlo methods.

Method 1: approximation to p(w|y)The �rst approah introdues a Gaussian approximation to p(w|y)by using a Taylor expansion of
S(w) = αEW(w) + βEy(w)at wMAP.This allows us to use a standard integral .The result will be approximate but we hope it's good!Let's reall how Taylor series work...

Reminder: Taylor expansionIn one dimension the Taylor expansion about a point x0 ∈ R for afuntion f : R → R is

f(x) ≈ f(x0) +
1

1!
(x − x0)f

′(x0) +
1

2!
(x − x0)

2f ′′(x0) + · · · + 1

k!
(x − x0)

kfk(x0)What does this look like for the kinds of funtion we're interested in?We an try to approximate exp (−f(x))where

f(x) = x4 −
1

2
x3 − 7x2 −

5

2
x + 22This has a form similar to S(w), but in one dimension.

Reminder: Taylor expansionThe funtions of interest look like this:

−5 0 5
0

100

200

300

400

500

600
The function f(x)

x

f
(x

)

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
The function exp(−f(x))

x

ex
p(
−f(

x
))

By replaing −f(x) with its Taylor expansion about its maximum,whih is at

xmax = 2.1437we an see what the approximation to exp(−f(x)) looks like. Notethat the exp hugely emphasizes peaks.



Reminder: Taylor expansionHere are the approximations for k = 1, k = 2 and k = 3.
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The use of k = 2 looks promising...

Reminder: Taylor expansionIn multiple dimensions the Taylor expansion for k = 2 is
f(x) ≈ f(x0) +

1

1!
(x − x0)

T ∇f(x)|x0
+

1

2!
(x − x0)

T ∇2f(x0)
∣

∣

x0
(x − x0)where ∇ denotes gradient

∇f(x) =
(

∂f(x)

∂x1

∂f(x)

∂x2
· · · ∂f(x)

∂xn

)

and ∇2f(x) is the matrix with elements
Mij =

∂2f(x)

∂xi∂xj(Although this looks ompliated, it's just the obvious extensionof the 1-dimensional ase.)

Method 1: approximation to p(w|y)Applying this to S(w) and expanding around wMAP

S(w) ≈ S(wMAP) + (w − wMAP)T ∇S(w)|wMAP

+
1

2
(w − wMAP)TA(w − wMAP)notie the following:� As wMAP minimizes the funtion the �rst derivatives are zero andthe orresponding term in the Taylor expansion disappears .� The quantity A = ∇∇S(w)|wMAP an be simpli�ed.This is beause

A = ∇∇(αEW(w) + βEy(w))|
wMAP

= αI + β∇∇Ey(wMAP)

Method 1: approximation to p(w|y)De�ning

∆w = w − wMAPwe now have

S(w) ≈ S(wMAP) +
1

2
∆wTA∆wThe vetor wMAP an be obtained using any standard optimizationmethod (suh as bakpropagation).The quantity ∇∇Ey(w) an be evaluated using an extended form ofbakpropagation .



A useful integralDropping for this slide only the speial meanings usually given tovetors x and y, here is a useful standard integral:If A ∈ R
n×n is symmetri then for b ∈ R

n and c ∈ R

∫

Rn

exp(−
1

2

(

xTAx + xTb + c
)

)

dx

= (2π)n/2|A|−1/2 exp(−
1

2

(

c −
bTA−1b

4

))

At the beginning of the ourse, two exerises were set involving theevaluation of this integral.To make this easy to refer to, let's all it the BIG INTEGRAL.

Method 1: approximation to p(w|y)We now have

p(w|y) ≈
1

Z(α, β)

exp(−S(wMAP) −
1

2
∆wTA∆w

)

where ∆w = w − wMAP and using the BIG INTEGRAL
Z(α, β) = (2π)W/2|A|−1/2 exp(−S(wMAP))Our earlier disussion tells us that given a new input x we shouldalulate

p(Y|y,x) =

∫

RW

p(y|w,x)p(w|y)dw

p(y|w,x) is just the likelihood so...

Method 1: approximation to p(w|y)The likelihood we're using is

p(y|w,x) =
1√

2πσ2

exp(−
(y − f(w;x))2

2σ2

)

∝ exp(−
β

2
(y − f(w;x))2

)

and plugging it into the integral gives

p(y|x,y) ∝
∫

RW

exp(−
β

2
(y − f(w;x))2

) exp(−
1

2
∆wTA∆w

)

dwwhih has no solution!We need another approximation...

Method 1: approximation to p(w|y)If we assume that p(w|y) is narrow (this depends on A) then we anintrodue a linear approximation of f(w;x) at wMAP:

f(w;x) ≈ f(wMAP;x) + gT∆wwhere g = ∇f(w;x)|wMAP.By linear approximation we just mean the Taylor expansion for k = 1.This leads to

p(Y|y,x) ∝
∫

RW

exp(−
β

2

(

y − f(wMAP;x) − gT∆w
)2

−
1

2
∆wTA∆w

)

dwand this integral an be evaluated using the BIG INTEGRAL togive THE ANSWER...



Method 1: approximation to p(w|y)Finally

p(Y|y,x) =
1

√

2πσ2
y

exp(−
(y − f(wMAP;x))2

2σ2
y

)

where

σ2
y =

1

β
+ gTA−1g.Hooray! But what does it mean?

Method 1: approximation to p(w|y)This is a Gaussian density , so we an now see that p(Y|y,x) peaksat f(wMAP;x). That is, the MAP solution .The variane σ2
y an be interpreted as a measure of ertainty .� The �rst term of σ2

y is 1/β and orresponds to the noise.� The seond term of σ2
y is gTA−1g and orresponds to the width of

p(w|y).Or interpreted graphially...

Method 1: approximation to p(w|y)
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Method II: Markov hain Monte Carlo (MCMC) methodsThe seond solution to the problem of performing integrals

I =

∫

F(w)p(w|y)dwis to use Monte Carlo methods. The basi approah is to make theapproximation

I ≈
1

N

N∑

i=1

F(wi)where the wi have distribution p(w|y). Unfortunately, generating wiwith a given distribution an be non-trivial.



MCMC methodsA simple tehnique is to introdue a random walk, so

wi+1 = wi + ǫwhere ǫ is zero mean spherial Gaussian and has small variane.Obviously the sequene wi does not have the required distribution.However we an use theMetropolis algorithm , whih does not aeptall the steps in the random walk:1. If p(wi+1|y) > p(wi|y) then aept the step.2. Else aept the step with probability p(wi+1|y)

p(wi|y)

.

MCMC methodsIn pratie, the Metropolis algorithm has several shortomings, anda great deal of researh exists on improved methods, see:R. Neal, \Probabilisti inferene using Markov hain MonteCarlo methods," University of Toronto, Department ofComputer Siene Tehnial Report CRG-TR-93-1, 1993.38


