## Bayesian learning II

Bayes decision theory tells us that in this context we should consider the quantity $\operatorname{Pr}\left(\omega_{i} \mid \mathbf{s}, \mathbf{x}\right)$ where the involvement of the training sequence has been made explicit.

$$
\begin{aligned}
\operatorname{Pr}\left(\omega_{i} \mid \mathbf{s}, \mathbf{x}\right) & =\sum_{\mathbf{h} \in \mathcal{H}} \operatorname{Pr}\left(\omega_{i}, \mathbf{h} \mid \mathbf{s}, \mathbf{x}\right) \\
& =\sum_{h \in \mathcal{H}} \operatorname{Pr}\left(\omega_{i} \mid \mathbf{h}, \mathbf{s}, \mathbf{x}\right) \operatorname{Pr}(\mathbf{h} \mid \mathbf{s}, \mathbf{x}) \\
& =\sum_{h \in \mathcal{H}} \operatorname{Pr}\left(\omega_{i} \mid \mathbf{h}, \mathbf{x}\right) \operatorname{Pr}(\mathbf{h} \mid \mathbf{s})
\end{aligned}
$$

Here we have re-introduced $\mathcal{H}$ using marginalisation. In moving from line 2 to line 3 we are assuming some independence properties.

## Bayesian learning II

So our classification should be

$$
\omega=\underset{\omega \in\left\{\omega_{1}, \ldots, \omega_{c}\right\}}{\operatorname{argmax}} \sum_{h \in \mathcal{H}} \operatorname{Pr}(\omega \mid \mathrm{h}, \mathbf{x}) \operatorname{Pr}(\mathbf{h} \mid \mathbf{s})
$$

If $\mathcal{H}$ is infinite the sum becomes an integral. So for example for neural network

$$
\omega=\underset{\omega \in\left\{\omega_{1}, \ldots, \omega_{c}\right\}}{\operatorname{argmax}} \int_{\mathbb{R}^{W}} \operatorname{Pr}(\omega \mid \mathbf{w}, \mathbf{x}) \operatorname{Pr}(\mathbf{w} \mid \mathbf{s}) \mathrm{d} \mathbf{w}
$$

where $W$ is the number of weights in $\mathbf{w}$.

## Bayesian learning II

However,

$$
\begin{aligned}
\operatorname{Pr}(\text { class } 1 \mid \mathbf{s}, \mathbf{x}) & =1 \times 0.4+0 \times 0.3+0 \times 0.3 \\
& =0.4 \\
\operatorname{Pr}(\text { class } 2 \mid \mathbf{s}, \mathbf{x}) & =0 \times 0.4+1 \times 0.3+1 \times 0.3 \\
& =0.6
\end{aligned}
$$

so class $C_{2}$ is the more probable!
In this case the Bayes optimal approach in fact leads to a different answer.

## A more in-depth example

Let's take this a step further and work through something a little more complex in detail. For a two-class classification problem, with $h(x)$ denoting $\operatorname{Pr}\left(C_{1} \mid h, x\right)$ and $x \in \mathbb{R}$ :

Hypotheses: We have three hypotheses

$$
\begin{aligned}
& h_{1}(x)=\exp \left(-(x-1)^{2}\right) \\
& h_{2}(x)=\exp \left(-(2 x-2)^{2}\right) \\
& h_{3}(x)=\exp \left(-(1 / 10)(x-3)^{2}\right)
\end{aligned}
$$

Prior: The prior is $\operatorname{Pr}\left(h_{1}\right)=0.1, \operatorname{Pr}\left(h_{2}\right)=0.05$ and $\operatorname{Pr}\left(h_{3}\right)=0.85$.

## A more in-depth example

Now let's classify the point $x^{\prime}=2.5$.
We need

$$
\operatorname{Pr}\left(C_{1} \mid \mathbf{s}, x^{\prime}\right)=\operatorname{Pr}\left(C_{1} \mid h_{1}\right) \operatorname{Pr}\left(h_{1} \mid \mathbf{s}\right)+\operatorname{Pr}\left(C_{1} \mid h_{2}\right) \operatorname{Pr}\left(h_{2} \mid \mathbf{s}\right)+\operatorname{Pr}\left(C_{1} \mid h_{3}\right) \operatorname{Pr}\left(h_{3} \mid \mathbf{s}\right)
$$

$$
=0.6250705317
$$

So: it's most likely to be in class $C_{1}$, but not with great certainty.

## A more in-depth example

We see the examples $\left(0.5, C_{1}\right),\left(0.9, C_{1}\right),\left(3.1, C_{2}\right)$ and $\left(3.4, C_{1}\right)$.
Likelihood: For the individual hypotheses the likelihoods are given by

$$
\operatorname{Pr}(\mathbf{s} \mid h)=h\left(x_{1}\right) h\left(x_{2}\right)\left[1-h\left(x_{3}\right)\right] h\left(x_{4}\right)
$$

Which in this case tells us

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathbf{s} \mid \mathbf{h}_{1}\right)=0.0024001365 \\
& \operatorname{Pr}\left(\mathbf{s} \mid \mathbf{h}_{2}\right)=0.0031069836 \\
& \operatorname{Pr}\left(\mathbf{s} \mid \mathbf{h}_{3}\right)=0.0003387476
\end{aligned}
$$

Posterior: Multiplying by the priors and normalising gives

$$
\begin{aligned}
& \operatorname{Pr}\left(h_{1} \mid \mathbf{s}\right)=0.3512575000 \\
& \operatorname{Pr}\left(h_{2} \mid \mathbf{s}\right)=0.2273519164 \\
& \operatorname{Pr}\left(h_{3} \mid \mathbf{s}\right)=0.4213905836
\end{aligned}
$$

## The Bayesian approach to neural networks

Let's now see how this can be applied to neural networks. We have

- A neural network computing a function $f(\mathbf{w} ; \mathbf{x})$
- A training sequence $s=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right)$, split into

$$
\mathbf{y}=\left(\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{m}
\end{array}\right)
$$

and

$$
\mathbf{X}=\left(\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{\mathrm{m}}
\end{array}\right)
$$

The prior distribution $\mathrm{p}(\mathbf{w})$ is now on the weight vectors, and Bayes theorem tells us that

$$
p(w \mid \mathbf{s})=p(w \mid \mathbf{X}, \mathbf{y})=\frac{p(\mathbf{y} \mid \mathbf{w}, \mathbf{X}) p(\mathbf{w} \mid \mathbf{X})}{p(\mathbf{y} \mid \mathbf{X})}
$$

Nothing new so far..

As usual, we don't consider uncertainty in $\mathbf{x}$ and so $\mathbf{X}$ will be omitted. Consequently

$$
p(\mathbf{w} \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \mathbf{w}) p(\mathbf{w})}{p(\mathbf{y})}
$$

where

$$
p(\mathbf{y})=\int_{\mathbb{R}^{w}} p(\mathbf{y} \mid \mathbf{w}) p(\mathbf{w}) d \mathbf{w}
$$

$p(\mathbf{y} \mid \mathbf{w})$ is a model of the noise corrupting the labels and as previously is the likelihood function.

## Reminder: the general Gaussian density

Reminder: we're going to be making a lot of use of the general Gaussian density $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ in d dimensions

$$
p(\mathbf{z})=(2 \pi)^{-\mathrm{d} / 2}|\boldsymbol{\Sigma}|^{-1 / 2} \exp \left[-\frac{1}{2}\left((\mathbf{z}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{z}-\boldsymbol{\mu})\right)\right]
$$

where $\mu$ is the mean vector and $\Sigma$ is the covariance matrix.

$p(\mathbf{w})$ is typically a broad distribution to reflect the fact that in the absence of any data we have little idea of what $w$ might be.

When we see some data the above equation tells us how to obtain $p(w \mid y)$. This will typically be more localised.


To put this into practice we need expressions for $p(w)$ and $p(y \mid w)$.

## The Gaussian prior

A common choice for $p(w)$ is the Gaussian prior with zero mean and

$$
\Sigma=\sigma^{2} \mathbf{I}
$$

so

$$
\mathfrak{p}(\mathbf{w})=(2 \pi)^{-W / 2} \sigma^{-W} \exp \left[-\frac{\mathbf{w}^{\top} \mathbf{w}}{2 \sigma^{2}}\right]
$$

Note that $\sigma$ controls the distribution of other parameters.

- Such parameters are called hyperparameters.
- Assume for now that they are both fixed and known.

Hyperparameters can be learnt using s through the application of more advanced techniques.

The Bayesian approach to neural networks

Physicists like to express quantities such as $p(w)$ in terms of a measure of "energy". The expression is therefore usually re-written as

$$
p(\mathbf{w})=\frac{1}{Z_{W}(\alpha)} \exp \left(-\frac{\alpha}{2}\|\mathbf{w}\|^{2}\right)
$$

where

$$
\begin{aligned}
\mathrm{E}_{W}(\mathbf{w}) & =\frac{1}{2}\|\mathbf{w}\|^{2} \\
\mathrm{Z}_{W}(\alpha) & =\left(\frac{2 \pi}{\alpha}\right)^{\mathrm{d} / 2} \\
\alpha & =\frac{1}{\sigma^{2}}
\end{aligned}
$$

This is simply a re-arranged version of the more usual equation.

## The Bayesian approach to neural networks

This expression can also be rewritten in physicist-friendly form

$$
p(\mathbf{y} \mid \mathbf{w})=\frac{1}{Z_{\mathbf{y}}(\beta)} \exp \left(-\beta \mathrm{E}_{\mathbf{y}}(\mathbf{w})\right)
$$

where

$$
\begin{aligned}
\beta & =\frac{1}{\sigma_{n}^{2}} \\
Z_{y}(\beta) & =\left(\frac{2 \pi}{\beta}\right)^{m / 2} \\
E_{y}(\mathbf{w}) & =\frac{1}{2} \sum_{i=1}^{m}\left(y_{i}-f\left(w ; x_{i}\right)\right)^{2}
\end{aligned}
$$

Here, $\beta$ is a second hyperparameter. Again, we assume it is fixed and known, although it can be learnt using s using more advanced techniques

## The Gaussian noise model for regression

We've already seen that for a regression problem with zero mean Gaussian noise having variance $\sigma_{n}^{2}$

$$
\begin{aligned}
y_{i} & =f\left(x_{i}\right)+\epsilon_{i} \\
p\left(\epsilon_{i}\right) & =\frac{1}{\sqrt{2 \pi \sigma_{n}^{2}}} \exp \left(-\frac{\epsilon_{i}^{2}}{2 \sigma_{n}^{2}}\right)
\end{aligned}
$$

where f corresponds to some unknown network, the likelihood function is

$$
p(\mathbf{y} \mid \mathbf{w})=\frac{1}{\left(2 \pi \sigma_{n}^{2}\right)^{m / 2}} \exp \left(-\frac{1}{2 \sigma_{n}^{2}} \sum_{i=1}^{m}\left(y_{i}-f\left(\mathbf{w} ; x_{i}\right)\right)^{2}\right)
$$

Note that there are now two variances: $\sigma^{2}$ for the prior and $\sigma_{n}^{2}$ for the noise.

## The Bayesian approach to neural networks

Combining the two boxed equations gives

$$
p(\mathbf{w} \mid \mathbf{y})=\frac{1}{Z_{S}(\alpha, \beta)} \exp (-S(\mathbf{w}))
$$

where

$$
\mathrm{S}(\mathbf{w})=\alpha \mathrm{E}_{W}(\mathbf{w})+\beta \mathrm{E}_{\mathbf{y}}(\mathbf{w})
$$

The quantity

$$
Z_{S}(\alpha, \beta)=\int_{\mathbb{R}^{W}} \exp (-S(\mathbf{w})) d \mathbf{w}
$$

normalises the density. Recall that this is called the evidence

To find $h_{\text {MAP }}$ (in this scenario by finding $w_{M A P}$ ) we therefore maximise

$$
p(\mathbf{w} \mid \mathbf{y})=\frac{1}{Z_{S}(\alpha, \beta)} \exp \left(-\left(\alpha E_{W}(\mathbf{w})+\beta E_{\mathbf{y}}(\mathbf{w})\right)\right)
$$

or equivalently find

$$
\mathbf{w}_{\mathrm{MAP}}=\underset{\mathbf{w}}{\operatorname{argmin}} \frac{\alpha}{2}\|\mathbf{w}\|^{2}+\frac{\beta}{2} \sum_{i=1}^{m}\left(y_{i}-f\left(\mathbf{w} ; \mathbf{x}_{i}\right)\right)^{2}
$$

This algorithm has also been used a lot in the neural network literature and is called the weight decay technique.

## The Bayesian approach to neural networks

What happens as the number $m$ of examples increases?

- The first term corresponding to the prior remains fixed.
- The second term corresponding to the likelihood increases.

So for small training sequences the prior dominates, but for large ones $h_{\text {ML }}$ is a good approximation to $h_{\text {MAP }}$.


The Bayesian approach to neural networks

Where have we got to...? We have obtained

$$
\begin{aligned}
p(\mathbf{w} \mid \mathbf{y}) & =\frac{1}{Z_{S}(\alpha, \beta)} \exp \left(-\left(\alpha E_{W}(\mathbf{w})+\beta E_{\mathbf{y}}(\mathbf{w})\right)\right) \\
Z_{S}(\alpha, \beta) & =\int_{\mathbb{R}^{W}} \exp \left(-\left(\alpha E_{W}(\mathbf{w})+\beta E_{\mathbf{y}}(\mathbf{w})\right)\right) d \mathbf{w}
\end{aligned}
$$

Translating the expression for the Bayes optimal solution given on the first slide of this handout into the current scenario, we need to compute

$$
p(Y \mid \mathbf{y}, \mathbf{x})=\int_{\mathbb{R}^{W}} p(y \mid \mathbf{w}, \mathbf{x}) p(\mathbf{w} \mid \mathbf{y}) \mathrm{d} \mathbf{w}
$$

Easy huh? Unfortunately not...

In order to make further progress it's therefore necessary to perform integrals of the general form

$$
\int_{\mathbb{R}^{W}} F(\mathbf{w}) p(\mathbf{w} \mid \mathbf{y}) d \mathbf{w}
$$

for various functions $F$ and this is generally not possible.
There are two ways to get around this:

1. We can use an approximate form for $p(w \mid y)$.
2. We can use Monte Carlo methods.

The first approach introduces a Gaussian approximation to $p(w \mid y)$ by using a Taylor expansion of

$$
S(\mathbf{w})=\alpha \mathrm{E}_{W}(\mathbf{w})+\beta \mathrm{E}_{\mathbf{y}}(\mathbf{w})
$$

at $\mathbf{w}_{\text {MAP }}$.
This allows us to use a standard integral.
The result will be approximate but we hope it's good!
Let's recall how Taylor series work...

## Reminder: Taylor expansion

The functions of interest look like this:

where

$$
f(x)=x^{4}-\frac{1}{2} x^{3}-7 x^{2}-\frac{5}{2} x+22
$$

This has a form similar to $S(\mathbf{w})$, but in one dimension.

Here are the approximations for $k=1, k=2$ and $k=3$.


The use of $k=2$ looks promising...

## Method 1: approximation to $p(\mathbf{w} \mid \mathbf{y})$

Applying this to $S(\mathbf{w})$ and expanding around $\mathbf{w}_{\text {MAP }}$
$S(\mathbf{w}) \approx S\left(\mathbf{w}_{\text {MAP }}\right)+\left.\left(\mathbf{w}-\mathbf{w}_{\text {MAP }}\right)^{\top} \nabla S(\mathbf{w})\right|_{\mathbf{w}_{\text {MAP }}}$

$$
+\frac{1}{2}\left(\mathbf{w}-\mathbf{w}_{\mathrm{MAP}}\right)^{\mathrm{T}} \mathbf{A}\left(\mathbf{w}-\mathbf{w}_{\mathrm{MAP}}\right)
$$

notice the following:

- As $\mathbf{w}_{\text {MAP }}$ minimizes the function the first derivatives are zero and the corresponding term in the Taylor expansion disappears.
- The quantity $\mathbf{A}=\left.\nabla \nabla S(\mathbf{w})\right|_{\mathbf{w}_{\text {MAP }}}$ can be simplified.

This is because

$$
\begin{aligned}
\mathbf{A} & =\left.\nabla \nabla\left(\alpha \mathrm{E}_{W}(\mathbf{w})+\beta \mathrm{E}_{\mathbf{y}}(\mathbf{w})\right)\right|_{\mathbf{w}_{\mathrm{MAP}}} \\
& =\alpha \mathbf{I}+\beta \nabla \nabla \mathrm{E}_{\mathbf{y}}\left(\mathbf{w}_{\mathrm{MAP}}\right)
\end{aligned}
$$

## $\underline{\text { Reminder: Taylor expansion }}$

In multiple dimensions the Taylor expansion for $k=2$ is
$\mathrm{f}(\mathrm{x}) \approx \mathrm{f}\left(\mathrm{x}_{0}\right)+\left.\frac{1}{1!}\left(\mathrm{x}-\mathrm{x}_{0}\right)^{\top} \nabla \mathrm{f}(\mathrm{x})\right|_{\mathrm{x}_{0}}+\left.\frac{1}{2!}\left(\mathrm{x}-\mathrm{x}_{0}\right)^{\top} \nabla^{2} \mathrm{f}\left(\mathrm{x}_{0}\right)\right|_{\mathrm{x}_{0}}\left(\mathrm{x}-\mathrm{x}_{0}\right)$
where $\nabla$ denotes gradient

$$
\nabla f(x)=\left(\frac{\partial f(x)}{\partial x_{1}} \frac{\partial f(x)}{\partial x_{2}} \cdots \frac{\partial f(x)}{\partial x_{n}}\right)
$$

and $\nabla^{2} f(x)$ is the matrix with elements

$$
M_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}
$$

(Although this looks complicated, it's just the obvious extension of the 1-dimensional case.)

## Method 1: approximation to $p(\mathbf{w} \mid \mathbf{y})$

## Defining

$$
\Delta \mathbf{w}=\mathbf{w}-\mathbf{w}_{\mathrm{MAP}}
$$

we now have

$$
\mathrm{S}(\mathbf{w}) \approx \mathrm{S}\left(\mathbf{w}_{\mathrm{MAP}}\right)+\frac{1}{2} \Delta \mathbf{w}^{\top} \mathbf{A} \Delta \mathbf{w}
$$

The vector $\mathbf{w}_{\text {MAP }}$ can be obtained using any standard optimization method (such as backpropagation).

The quantity $\nabla \nabla \mathrm{E}_{\mathbf{y}}(\mathbf{w})$ can be evaluated using an extended form of backpropagation.

## A useful integral

Dropping for this slide only the special meanings usually given to vectors $\mathbf{x}$ and $\mathbf{y}$, here is a useful standard integral:

If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric then for $\mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \exp \left(-\frac{1}{2}\left(\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{x}^{\top} \mathbf{b}+\mathbf{c}\right)\right) \mathrm{d} \mathbf{x} \\
&=(2 \pi)^{\mathrm{n} / 2}|\mathbf{A}|^{-1 / 2} \exp \left(-\frac{1}{2}\left(c-\frac{\mathbf{b}^{\top} \mathbf{A}^{-1} \mathbf{b}}{4}\right)\right)
\end{aligned}
$$

At the beginning of the course, two exercises were set involving the evaluation of this integral.

To make this easy to refer to, let's call it the BIG INTEGRAL.

## Method 1: approximation to $p(\mathbf{w} \mid \mathbf{y})$

The likelihood we're using is

$$
\begin{aligned}
p(y \mid \mathbf{w}, x) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(y-f(\mathbf{w} ; x))^{2}}{2 \sigma^{2}}\right) \\
& \propto \exp \left(-\frac{\beta}{2}(y-f(\mathbf{w} ; \mathbf{x}))^{2}\right)
\end{aligned}
$$

and plugging it into the integral gives

$$
p(y \mid \mathbf{x}, \mathbf{y}) \propto \int_{\mathbb{R}^{W}} \exp \left(-\frac{\beta}{2}(y-f(\mathbf{w} ; \mathbf{x}))^{2}\right) \exp \left(-\frac{1}{2} \Delta \mathbf{w}^{\top} \mathbf{A} \Delta \mathbf{w}\right) \mathrm{d} \mathbf{w}
$$

which has no solution!
We need another approximation..

We now have

$$
p(\mathbf{w} \mid \mathbf{y}) \approx \frac{1}{Z(\alpha, \beta)} \exp \left(-S\left(\mathbf{w}_{\mathrm{MAP}}\right)-\frac{1}{2} \Delta \mathbf{w}^{\top} \mathbf{A} \Delta \mathbf{w}\right)
$$

where $\Delta \mathbf{w}=\mathbf{w}-\mathbf{w}_{\mathrm{MAP}}$ and using the BIG INTEGRAL

$$
Z(\alpha, \beta)=(2 \pi)^{W / 2}|\mathbf{A}|^{-1 / 2} \exp \left(-S\left(\mathbf{w}_{\mathrm{MAP}}\right)\right)
$$

Our earlier discussion tells us that given a new input x we should calculate

$$
p(Y \mid \mathbf{y}, \mathbf{x})=\int_{\mathbb{R}^{W}} p(y \mid \mathbf{w}, \mathbf{x}) p(\mathbf{w} \mid \mathbf{y}) \mathrm{d} \mathbf{w}
$$

$\mathrm{p}(\mathrm{y} \mid \mathbf{w}, \mathbf{x})$ is just the likelihood so...

## Method 1: approximation to $p(\mathbf{w} \mid \mathbf{y})$

If we assume that $p(\mathbf{w} \mid \mathbf{y})$ is narrow (this depends on $\mathbf{A}$ ) then we can introduce a linear approximation of $f(\mathbf{w} ; \mathbf{x})$ at $\mathbf{w}_{\text {MAP }}$ :

$$
\mathrm{f}(\mathbf{w} ; \mathbf{x}) \approx \mathrm{f}\left(\mathbf{w}_{\mathrm{MAP}} ; \mathbf{x}\right)+\mathbf{g}^{\top} \Delta \mathbf{w}
$$

where $g=\left.\nabla f(\mathbf{w} ; \mathbf{x})\right|_{\mathbf{w}_{\mathrm{MAP}}}$.
By linear approximation we just mean the Taylor expansion for $k=1$.
This leads to
$\mathfrak{p}(\mathrm{Y} \mid \mathbf{y}, \mathbf{x}) \propto \int_{\mathbb{R}^{W}} \exp \left(-\frac{\beta}{2}\left(y-f\left(\mathbf{w}_{\mathrm{MAP}} ; \mathbf{x}\right)-\mathbf{g}^{\top} \Delta \mathbf{w}\right)^{2}-\frac{1}{2} \Delta \mathbf{w}^{\top} \mathbf{A} \Delta \mathbf{w}\right) \mathrm{dw}$
and this integral can be evaluated using the BIG INTEGRAL to give THE ANSWER...

Finally

$$
p(\mathrm{Y} \mid \mathbf{y}, \mathbf{x})=\frac{1}{\sqrt{2 \pi \sigma_{y}^{2}}} \exp \left(-\frac{\left(\mathrm{y}-\mathrm{f}\left(\mathbf{w}_{\mathrm{MAP}} ; \mathbf{x}\right)\right)^{2}}{2 \sigma_{y}^{2}}\right)
$$

where

$$
\sigma_{y}^{2}=\frac{1}{\beta}+\mathbf{g}^{\top} \mathbf{A}^{-1} \mathbf{g} .
$$

Hooray! But what does it mean?

## Method 1: approximation to $p(\mathbf{w} \mid \mathbf{y})$

This is a Gaussian density, so we can now see that $\mathfrak{p}(\mathrm{Y} \mid \mathbf{y}, \mathrm{x})$ peaks at $\mathrm{f}\left(\mathrm{w}_{\mathrm{MAP}} ; \mathrm{x}\right)$. That is, the MAP solution.

The variance $\sigma_{y}^{2}$ can be interpreted as a measure of certainty.

- The first term of $\sigma_{y}^{2}$ is $1 / \beta$ and corresponds to the noise.
- The second term of $\sigma_{y}^{2}$ is $\mathbf{g}^{\top} \mathbf{A}^{-1} \mathbf{g}$ and corresponds to the width of $p(w \mid y)$.

Or interpreted graphically...

## Method 1: approximation to $p(\mathbf{w} \mid \mathbf{y})$



## Method II: Markov chain Monte Carlo (MCMC) methods

The second solution to the problem of performing integrals

$$
\mathrm{I}=\int \mathrm{F}(\mathbf{w}) \mathfrak{p}(\mathbf{w} \mid \mathbf{y}) \mathrm{d} \mathbf{w}
$$

is to use Monte Carlo methods. The basic approach is to make the approximation

$$
\mathrm{I} \approx \frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{~F}\left(\mathbf{w}_{\mathrm{i}}\right)
$$

where the $w_{i}$ have distribution $p(w \mid y)$. Unfortunately, generating $w_{i}$ with a given distribution can be non-trivial.

## MCMC methods

A simple technique is to introduce a random walk, so

$$
\mathbf{w}_{i+1}=\mathbf{w}_{\boldsymbol{i}}+\boldsymbol{\epsilon}
$$

where $\boldsymbol{\epsilon}$ is zero mean spherical Gaussian and has small variance. Obviously the sequence $\mathbf{w}_{i}$ does not have the required distribution. However we can use the Metropolis algorithm, which does not accept all the steps in the random walk:

1. If $p\left(\mathbf{w}_{i+1} \mid \mathbf{y}\right)>p\left(w_{i} \mid \mathbf{y}\right)$ then accept the step.
2. Else accept the step with probability $\frac{p\left(w_{i+1} \mid y\right)}{p\left(w_{i} \mid y\right)}$.

## MCMC methods

In practice, the Metropolis algorithm has several shortcomings, and a great deal of research exists on improved methods, see:
R. Neal, "Probabilistic inference using Markov chain Monte Carlo methods," University of Toronto, Department of Computer Science Technical Report CRG-TR-93-1, 1993.

