Bayesian learning II

Bayes decision theory tells us that in this context we should con-
sider the quantity Pr(wjls,x) where the involvement of the training
sequence has been made explicit.

Pr(wils,x) = Z Pr(wi, hls, x)
heH
= ) Pr(wih,s,x)Pr(hls,x)
heH
= ) Pr(wih,x)Pr(hjs).
heH
Here we have re-introduced H using marginalisation. In moving from
line 2 to line 3 we are assuming some independence properties.

Bayesian learning II

So our classification should be

w = argmax ZPr(w|h,x)Pr(h\s)

we{wy,...,we} heH

If H is infinite the sum becomes an integral. So for example for a
neural network

W = argmax J Pr(w|w, x)Pr(wl|s) dw
welwy,...,we} JRW

where W is the number of weights in w.

Bayesian learning II

Why might this make any difference? (Aside from the fact that we
now know it’s optimal!)

Example 1: Say |H| = 3 and h(x) = Pr(x is in class C;) for a 2 class
problem.

Pr(hyls) = 0.4
Pr(hy|s) = Pr(hs|s) = 0.3

Now, say we have an x for which

h1(x) =1
h.z(x) = hg X) =0

so hyap says that x is in class C;.

Bayesian learning II

However,
Pr(class 1s,x) =1x 04+ 0x03+0x0.3
=04
Pr(class 2s,x) =0x 04+1x03+1x0.3
=0.6

so class C; is the more probable!

In this case the Bayes optimal approach in fact leads to a different
answer.




A more in-depth example

Let’s take this a step further and work through something a little
more complex in detail. For a two-class classification problem, with
h(x) denoting Pr(Ci|h,x) and x € R:

Hypotheses: We have three hypotheses

hi(x) = exp(—(x — 1))
ha(x) = exp(—(2x — 2)%)
hs(x) = exp(—(1/10)(x — 3))

Prior: The prior is Pr(h;) = 0.1, Pr(h;) = 0.05 and Pr(hz) = 0.85.

A more in-depth example

We see the examples (0.5, Cy), (0.9,C4), (3.1,C;) and (3.4, Cy).

Likelihood: For the individual hypotheses the likelihoods are given
by

Pr(s/h) = h(x1)h(x2)[T — h(x3)h(x4)
Which in this case tells us

Pr(s/hy) = 0.0024001365
Pr(slh;) = 0.0031069836
Pr(s/hs) = 0.0003387476

Posterior: Multiplying by the priors and normalising gives

Pr(hyls) = 0.3512575000
Pr(hyls) = 0.2273519164
Pr(hsls) = 0.4213905836

A more in-depth example

Now let’s classify the point x’ = 2.5.

We need
Pr(Cyls,x") = Pr(Cihy)Pr(hyls) + Pr(Cihz)Pr(hyls) + Pr(Cilhs)Pr(hsls)
= 0.6250705317

So: it's most likely to be in class C;, but not with great certainty.

The Bayesian approach to neural networks

Let’s now see how this can be applied to neural networks. We have:

e A neural network computing a function f(w;x).

e A training sequence s = ((x1,Y1),..., (Xm,Ym)), split into

y=(yr v2 - Ynm)

and
X=(x1x - Xn)

The prior distribution p(w) is now on the weight vectors, and Bayes
theorem tells us that

B _ plylw, X)p(w|X)
p(wls) =p(wlX,y) = Py X)

Nothing new so far...




The Bayesian approach to neural networks

As usual, we don’t consider uncertainty in x and so X will be omitted.
Consequently
_ plylwlp(w)
pwly) =———"+—
ply)
where
ply) = | | plyiwlp(wldw
RW

p(ylw) is a model of the noise corrupting the labels and as previously
is the likelthood function.

The Bayesian approach to neural networks

p(w) is typically a broad distribution to reflect the fact that in the
absence of any data we have little idea of what w might be.

When we see some data the above equation tells us how to obtain
p(wly). This will typically be more localised.

WMaAP

To put this into practice we need expressions for p(w) and p(y|w).

Reminder: the general Gaussian density

Reminder: we're going to be making a lot of use of the general Gaus-
stan density N(u, X) in d dimensions

pla) = (222 exp | ((z— 'L (2 w)

where p is the mean vector and X is the covariance matriz.

The Gaussian prior

A common choice for p(w) is the Gaussian prior with zero mean

and
L =0’

SO

202

Note that o controls the distribution of other parameters.

p(w) = (271) 26V exp [WTW}

e Such parameters are called hyperparameters.

e Assume for now that they are both fixed and known.

Hyperparameters can be learnt using s through the application of
more advanced techniques.




The Bayesian approach to neural networks

Physicists like to express quantities such as p(w) in terms of a mea-
sure of “energy”. The expression is therefore usually re-written as

pw) = 5—s e (5 IwF)
where
Eu(w) = Jlwl?
d/2
Zulo) = (z”)
x
1
i

This 1s simply a re-arranged version of the more usual equation.

The Gaussian noise model for regression

We've already seen that for a regression problem with zero mean

Gaussian noise having variance o2

yi = f(xi) + &

plei) 1 . D < e >
) = <o [ —
. 2702 202
where f corresponds to some unknown network, the likelihood func-
tion is

1 1 =
p(y‘w):(meﬁ)m/z ( 202 Z f(w;x;) z)

n o
Note that there are now two variances: o> for the prior and o’
for the nozise.

The Bayesian approach to neural networks

This expression can also be rewritten in physicist-friendly form

plylw) = ﬁexp (—BE, (w))
Y
where
1
b=
m/2
Z,(8) = (zﬁ”)

Ey( ZZ f(w;xy)) 2

Here, {3 is a second hyperparameter. Again, we assume it is fixed
and known, although it can be learnt using s using more advanced
techniques.

The Bayesian approach to neural networks

Combining the two boxed equations gives

p(wly) exp(—S(w))

1
B ZS((X, B)

where

S(w) = abw(w) + BEy(w)

The quantity
Zs(ex B) = | | explS(w))dw
RW

normalises the density. Recall that this is called the evidence.




Example I: gradient descent revisited...

To find hyap (in this scenario by finding wiap) we therefore maximise

pwly) = exp(—(xEw(w) + BEy(w)))

_ 1
ZS(OC) B)

or equivalently find

m
.o
Wi = angmin S+ 5 3 (us— i)’
This algorithm has also been used a lot in the neural network litera-
ture and is called the weight decay technique.

Example II: two-class classification in two dimensions

Examples Prior density p(w)

The Bayesian approach to neural networks

What happens as the number m of examples increases?

e The first term corresponding to the prior remains fixed.

e The second term corresponding to the likelihood increases.

So for small training sequences the prior dominates, but for large ones
hut is a good approximation to hyap.

The Bayesian approach to neural networks

Where have we got to...? We have obtained

plwly) = mexp(—(oazw(w) 1 BEy(w))
Zs(et,B) = | | expl—(@Ewlw) + BEy(w))dw

Translating the expression for the Bayes optimal solution given on
the first slide of this handout into the current scenario, we need to
compute

p(Vly.x) = | pluiw,xlp(wiy) dw
Easy huh? Unfortunately not...




The Bayesian approach to neural networks

In order to make further progress it’s therefore necessary to perform
integrals of the general form

||, Fwptwlylaw
]RW
for various functions F and this is generally not possible.

There are two ways to get around this:

1. We can use an approzimate form for p(wly).

2. We can use Monte Carlo methods.

Method 1: approximation to p(wly)

The first approach introduces a Gaussian approzimation to p(wly)
by using a Taylor expansion of

S(w) = abw(w) + BEy(w)

at WMAP-
This allows us to use a standard integral.
The result will be approzimate but we hope it’s good!

Let’s recall how Taylor series work...

Reminder: Taylor expansion

In one dimension the Taylor expansion about a point xy € R for a
function f: R — R is

1 1 1
f(x) =~ f(xo) + F(X —x0)f(x0) + E(X —x0)*f"(x0) + -+ + F(X — x0)f*(xo)
What does this look like for the kinds of function we're interested in?
We can try to approximate

exp (—f(x))
where : 5
f(x) =x*— zx3 —7x = zx—l—ZZ

This has a form similar to S(w), but in one dimension.

Reminder: Taylor expansion

The functions of interest look like this:

By replacing —f(x) with its Taylor expansion about its maximum,
which is at

Xmax = 2.1437
we can see what the approximation to exp(—f(x)) looks like. Note
that the exp hugely emphasizes peaks.




Reminder: Taylor expansion

Here are the approximations for k =1, k =2 and k = 3.
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The use of k = 2 looks promising...

Reminder: Taylor expansion

In multiple dimensions the Taylor expansion for k = 2 is
! T ! T2

f(x) = f(x0) + 37 (3 = %0)" VE(x)ly, + 57(x — %0)" VH(x0)

where V denotes gradient

Vi(x) = (af(x) of(x)  Af(x) )

0xq 0x) OxXn

|, (x = xo)

and V?f(x) is the matrix with elements

o 0%f(x)

v aXian
(Although this looks complicated, it’s just the obuious extension
of the 1-dimensional case.)

Method 1: approximation to p(wly)

Applying this to S(w) and expanding around wyap

S(w) = S(wumap) + (W — wuap)' VS(W)lyap

+ E(W — wyap) A (W — Wyap)

notice the following:

o As wyap minimaizes the function the first derivatives are zero and
the corresponding term in the Taylor expansion disappears.

e The quantity A = VVS(W)|WMAP can be simplified.

This is because
A = VV(aEw(w) + BEy(w))]
=al+ BVVEy(Wwmap)

WMAP

Method 1: approximation to p(wly)

Defining
Aw =w — WMAP
we now have

1
S(w) ~ S(wnap) + EAWTAAW

The vector wyap can be obtained using any standard optimization
method (such as backpropagation).

The quantity VVEy(w) can be evaluated using an exrtended form of
backpropagation.




A useful integral

Dropping for this slide only the special meanings usually given to
vectors x and y, here is a useful standard integral:

If A € R™" is symmetric then for b€ R™ and c € R
1
J exp <—§ (x"Ax+x"b+ c)> dx
RTI

1 b'A~ b
= (22| A|71/? = =
(2m)™ A" exp { —5 { ¢ 7
At the beginning of the course, two exercises were set involving the

evaluation of this integral.

To make this easy to refer to, let’s call it the BIG INTEGRAL.

Method 1: approximation to p(wly)

We now have

1 1
p(W|Y) ~ 7Z((X, ﬁ) exp (_S(WMAP) — ZAWTAAW)
where Aw = w — wyap and using the BIG INTEGRAL
Z(a,B) = (2m)"?A|7"* exp(—S(wuap))

Our earlier discussion tells us that given a new input x we should
calculate

p(Yy,x) = | plyiw,xip(wly)dw
R
p(ylw,x) is just the likelthood so...

Method 1: approximation to p(wly)

The likelihood we're using is

plylw,x) = —— exp (MWX))Z>
’ V2mo? 202

and plugging it into the integral gives

pylx,y) = JRW exp (—%(y — f(w;x))2> exp <—%AWTAAW> dw

which has no solution!

We need another approzimation...

Method 1: approximation to p(wly)

If we assume that p(wly) is narrow (this depends on A) then we can
introduce a linear approzimation of f(w;x) at wyap:

f(w;x) ~ f(wuap;X) + g' Aw

where g = Vf(w;x)|

WMAP'

By linear approximation we just mean the Taylor expansion for k = 1.
This leads to

1
p(Yly,x) o J exp <—% (y — f(wyap;x) — gTAw)2 — EAWTAAW> dw
RW

and this integral can be evaluated using the BIG INTEGRAL to
give THE ANSWER...




Method 1: approximation to p(wly)

Finally

(y— f(WMAP§X))Z)

1
p(Yly,x) = exp (
\/ 2703 203

where

1 _
U§:E+gTA ]g.

Hooray! But what does it mean?

Method 1: approximation to p(wly)

This is a Gaussian density, so we can now see that p(Y|y,x) peaks
at f(wyap;x). That is, the MAP solution.

The variance Gﬁ can be interpreted as a measure of certainty.

e The first term of 0'5 is 1/f and corresponds to the noise.

e The second term of crfJ is g"A~'g and corresponds to the width of
p(wly).

Or interpreted graphically...

Method 1: approximation to p(wly)

Typical behaviour of the Bayesian solution

Method II: Markov chain Monte Carlo (MCMC) methods

The second solution to the problem of performing integrals

1= | Fwlp(wiyldw
is to use Monte Carlo methods. The basic approach is to make the
approximation
N
1
N ; F(wi)

where the w; have distribution p(wly). Unfortunately, generating w;
with a gwen distribution can be non-trivial.




MCMC methods

A simple technique is to introduce a random walk, so
Wit] = Wi+ €

where € is zero mean spherical Gaussian and has small variance.
Obviously the sequence w; does not have the required distribution.
However we can use the Metropolis algorithm, which does not accept
all the steps in the random walk:

1. If p(wis1ly) > p(wily) then accept the step.

2. Else accept the step with probability %.

8¢

MCMC methods

In practice, the Metropolis algorithm has several shortcomings, and
a great deal of research exists on improved methods, see:

R. Neal, “Probabilistic inference using Markov chain Monte
Carlo methods,” Unwversity of Toronto, Department of
Computer Science Technical Report CRG-TR-93-1, 1993.




