
Supervised learning II: the Bayesian approahWe now plae supervised learning into a probabilisti setting by ex-amining:� The appliation of Bayes' theorem to the supervised learningproblem .� Priors, the likelihood, and the posterior probability of a hypoth-esis .� The maximum likelihood and maximum a posteriori hypothe-ses, and some examples.� Bayesian deision theory : minimising the error rate.� Appliation of the approah to neural networks , using approxi-mation tehniques.
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ReadingThere is some relevant material to be found in Russell and Norvig ,hapters 18 to 20, partiularly in hapter 20, although the intersetionbetween that material and what I will over is small.Almost all of what I over an be found in:�Mahine Learning , by Tom Mithell, MGraw Hill 1997, hapter6.� Neural Networks for Pattern Reognition , by Christopher M.Bishop, Oxford University Press 1995, hapter 1, setions 1.8, 1.9and 1.10 and Chapter 10, introdution and setions 10.1, 10.2,10.3 and 10.9.

Supervised learning: a quik reminderWe want to design a lassi�er , denoted h(x)

Attribute vetor Classi�er

h(x)
x

Label

It should take an attribute vetor

x =
(

x1 x2 · · · xn

)and label it.What we mean by label depends on whether we're doing lassi�a-tion or regression .

Supervised learning: a quik reminderIn lassi�ation we're assigning x to one of a set {ω1, . . . ,ωc} of classes .For example, if x ontains measurements taken from a patient thenthere might be three lasses:

ω1 = patient has disease

ω2 = patient doesn't have disease

ω3 = don't ask me buddy, I'm just a omputer!We'll often speialise to the ase of two lasses, denoted C1 and C2.



Supervised learning: a quik reminderIn regression we're assigning x to a real number h(x) ∈ R.For example, if x ontains measurements taken regarding today'sweather then we might have

h(x) = estimate of amount of rainfall expeted tomorrowFor the two-lass lassi�ation problem we will also refer to a situationsomewhat between the two, where

h(x) = Pr(x is in C1)

Supervised learning: a quik reminderWe don't want to design h expliitly.

Attribute vetor Classi�er
h(x)

x

Learner
Training sequene

h = L(s)

L

Label

s

So we use a learner L to infer it on the basis of a sequene s oftraining examples .

Supervised learning: a quik reminderThe training sequene s is a sequene of m labelled examples .
s =









(x1, y1)

(x2, y2)...

(xm, ym)









That is, examples of attribute vetors x with their orret label at-tahed.So a learner only gets to see the labels for a|most probably small|subset of the possible inputs x.Regardless, we aim that the hypothesis h = L(s) will usually besuessful at prediting the label of an input it hasn't seen before.This ability is alled generalization .

Supervised learning: a quik reminderThere is generally a set H of hypotheses from whih L is allowed toselet h

L(s) = h ∈ H
H is alled the hypothesis spae .The learner an output a hypothesis expliitly or|as in the ase ofa multilayer pereptron|it an output a vetor

w =
(

w1 w2 · · · wW

)of weights whih in turn speify h

h(x) = f(w;x)where w = L(s).



Supervised learning: a quik reminderIn AI I you saw the bakpropagation algorithm for training multi-layer pereptrons, in the ase of regression .This worked by minimizing a funtion of the weights representing theerror urrently being made:

E(w) =
1

2

m∑

i=1

(f(w;xi) − yi)
2

The summation here is over the training examples. The expression inthe summation grows as fs predition for xi diverges from the knownlabel yi.Bakpropagation tries to �nd a w that minimises E(w) by performinggradient desent

wt+1 = wt − α
∂E(w)

∂w

∣

∣

∣

∣

wt

DiÆulties with lassial neural networksThere are some well-known diÆulties assoiated with neural networktraining of this kind.Think of the proess as follows:� Nature piks an h ′ ∈ H but doesn't reveal it to us.� Nature then shows us a training sequene s where eah xi is la-belled as h ′(xi) + ǫi where ǫi is noise of some kind.Our job is to try to infer what h ′ is on the basis of s only.This is easy to visualise in one dimension: it's just �tting a urve tosome points.

DiÆulties with lassial neural networksFor example, if H is the set of all polynomials of degree 3, then naturemight pik

h ′(x) =
1

3
x3 −

3

2
x2 + 2x −

1

2
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The line is dashed to emphasise the fat that we don't get to see it .

DiÆulties with lassial neural networksWe an now use h ′ to obtain a training sequene s in the mannersuggested..
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Here we have,

s = ((x1, y1), (x2, y2), . . . , (xm, ym))where eah xi and yi is a number.



DiÆulties with lassial neural networksLets use the learning algorithm L that operates in exatly the sameway as bakpropagation: it piks an h ∈ H minimising the followingquantity,

E =

m∑

i=1

(h(xi) − yi)
2In other words

h = L(s) = argmin

h∈H

m∑

i=1

(h(xi) − yi)
2

DiÆulties with lassial neural networksIf we pik h using this method then we get:
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The hosen h is lose to the target h ′, even though it was hosen usingonly a small number of noisy examples. It is not quite idential to thetarget onept; however, if we were given a new point x ′ and askedto guess the value h ′(x ′), then guessing h(x ′) might be expeted todo quite well.

DiÆulties with lassial neural networksWe don't know what H nature is using. What if the one we hoosedoesn't math? We an make our H `bigger' by de�ning it as,
H = {h : h is a polynomial of degree at most 5}If we use the same learning algorithm then we get:
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The result in this ase is similar to the previous one: h is again quitelose to h ′, but not quite idential.

DiÆulties with lassial neural networksSo what's the problem? Repeating the proess with,

H = {h : h is a polynomial of degree at most 1}gives the following:
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In e�et, we have made our H too `small'. It does not in fat ontainany hypothesis similar to h ′.



DiÆulties with lassial neural networksSo we have to make H huge, right? WRONG!!! With

H = {h : h is a polynomial of degree at most 25}we get:
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BEWARE!!! This is known as over�tting .

DiÆulties with lassial neural networksAn experiment to gain some further insight: using
h ′(x) =

1

10
x10 −

1

12
x8 +

1

15
x6 +

1

3
x3 −

3

2
x2 + 2x −

1

2
.as the unknown underlying funtion we an look at how the degreeof the polynomial the training algorithm an output a�ets the gen-eralization ability of the resulting h.We use the same training algorithm, and we train using

H = {h : h is a polynomial of degree at most d}for values of d ranging from 1 to 30

DiÆulties with lassial neural networks� Eah time we obtain an h of a given degree|all it hd|we assessits quality using a further 100 inputs x ′
i generated at random andalulating

q(d) =
1

100

100∑

i=1

(h ′(x ′
i) − hd(x

′
i))

2

� As the values q(d) are found using inputs that are not neessarilyinluded in the training sequene they measure generalization .� To smooth out the e�ets of the random seletion of examples werepeat this proess 100 times and average the values q(d).

DiÆulties with lassial neural networksHere is the result:
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Clearly: we need to hoose H sensibly if we want to obtain goodgeneralisation performane .



Soures of unertaintySo we have to be areful. But let's press on with this approah for alittle while longer...The model used above suggests two soures of unertainty that wemight treat with probabilities.� Let's assume we've seleted an H to use, and it's the same onenature is using .�We don't know how nature hooses h ′ fromH. We therefore modelour unertainty by introduing the prior distribution Pr(h) on H.� There is noise on the training examples.It's worth emphasizing at this point that in modelling noise on thetraining examples we'll only onsider noise on the labels . Theinput vetors x are not modelled using a probability distribution.

The likelihoodWe model our unertainty in the training examples by speifying alikelihood : Pr(Y|h,x)Translation: the probability of seeing a given label Y, when the inputvetor is x and the underlying hypothesis is h.Example: two-lass lassi�ation. A ommon likelihood isPr(Y = C1|h,x) = σ(h(x))where

σ(z) =
1

1 + exp(−z)(Note: stritly speaking, x should not appear in these probabilitiesbeause it's not a random variable. It is inluded for larity.)

The likelihood
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The likelihoodSo: if we're given a training sequene, what is the probability thatit was generated using some h?For an example (x, y), y an be C1 or C2. It's helpful here to renamethe lasses as just 1 and 0 respetively beause this leads to a niesimple expression. NowPr(Y|h,x) =

{
σ(h(x)) if Y = 1

1 − σ(h(x)) if Y = 0Consequently when y has a known value we an writePr(y|h,x) = [σ(h(x))]
y
[1 − σ(h(x))]

(1−y)If we assume that the examples are independent then the probabilityof seeing the labels in a training sequene s is straightforward.



The likelihoodColleting the inputs and outputs in s together into seperate matries,so

y =
(

y1 y2 · · · ym

)and

X =
(

x1 x2 · · · xm

)we have the likelihood of the training sequene

Pr(y|h,X) =

m∏

i=1

Pr(yi|h,xi)

=

m∏

i=1

[σ(h(xi))]
yi [1 − σ(h(xi))]

(1−yi)

The likelihoodAnother example: regression. A ommon likelihood works in theregression ase by assuming that examples are orrupted by Gaussiannoise with mean 0 and some spei�ed variane σ2

y = h(x) + ǫ, where ǫ ∼ N (0, σ2)As usual, the density for N (µ, σ2) is
p(Z) =

1√
2πσ2

exp(−
(z − µ)2

2σ2

)

by adding h(x) to ǫ we just shift its mean, so

p(y|h,x) =
1√

2πσ2

exp(−
(y − h(x))2

2σ2

)

The likelihoodConsequently if the examples are independent then the likelihood ofa training sequene s is

p(y|h,X) =

m∏

i=1

p(yi|h,xi)

=

m∏

i=1

1√
2πσ2

exp(−
(yi − h(xi))

2

2σ2

)

=
1

(2πσ2)m/2

exp(−
1

2σ2

m∑

i=1

(yi − h(xi))
2

)

where we've used the fat thatexp(a) exp(b) = exp(a + b)

Bayes' theorem appears one more...Right: we've take are of the unertainty by introduing the prior

p(h) and the likelihood of the training sequene p(y|h,X).By this point you hopefully want to apply Bayes' theorem and write

p(h|y) =
p(y|h)p(h)

p(y)where

p(y) =
∑

h∈H
p(h,y) =

∑

h∈H
p(y|h)p(h)and to simplify the expression we have now dropped the mention of

X as the inputs are �xed. p(h|y) is alled the posterior distribution .The denominator Z = p(y) is alled the evidene , and leads on tofasinating issues of its own. Unfortunately, we won't have time toexplore them.



Bayes' theorem appears one more...The boxed equation on the last slide has a very simple interpretation:what's the probability that this spei� h was used to generate thetraining sequene I've been given?Two natural learning algorithms now present themselves:1. The maximum likelihood hypothesis

hML = argmax

h∈H
p(y|h)2. The maximum a posteriori hypothesis

hMAP = argmax

h∈H
p(h|y)

= argmax

h∈H
p(y|h)p(h)

Obviously, hML orresponds to the ase where the prior p(h) is uni-form.

Example: maximum likelihood learningWe derived an exat expression for the likelihood in the regressionase above:

p(y|h) =
1

(2πσ2)m/2

exp(−
1

2σ2

m∑

i=1

(yi − h(xi))
2

)

Proposition: under the assumptions used, any learning algorithmthat works by minimising the sum of squared errors on s �nds hML.This is learly of interest: the notable example is the bakpropagationalgorithm .We now prove the proposition...

Example: maximum likelihood learningThe proposition holds beause:

hML = argmax

h∈H
p(y|h)

= argmax

h∈H

log p(y|h)

= argmax

h∈H

log [ 1

(2πσ2)m/2

exp(−
1

2σ2

m∑

i=1

(yi − h(xi))
2

)]

= argmax

h∈H

log [ 1

(2πσ2)m/2

]

−
1

2σ2

m∑

i=1

(yi − h(xi))
2

= argmax

h∈H
−

1

2σ2

m∑

i=1

(yi − h(xi))
2

= argmin

h∈H

m∑

i=1

(yi − h(xi))
2

Example: maximum likelihood learningNote:� If the distribution of the noise is not Gaussian a di�erent result isobtained.� The use of log above to simplify a maximization problem is astandard trik.� The Gaussian assumption is sometimes, but not always a goodhoie. (Beware the Central Limit Theorem!).



The next step...We have so far onentrated throughout our overage of mahinelearning on hoosing a single hypothesis .Are we asking the right question though?Ultimately, we want to generalise.That means being presented with a new x and asking the question:what is the most probable lassi�ation of x?Is it reasonable to expet a single hypothesis to provide the optimalanswer?We need to look at what the optimal solution to this kind ofproblem might be...

Bayesian deision theoryWhat is the optimal approah to this problem?Put another way: how should we make deisions in suh a way thatthe outome obtained is, on average, the best possible? Say we have:� Attribute vetors x ∈ R
d.� A set of lasses {ω1, . . . ,ωc}.� Several possible ations {α1, . . . , αa}.The ations an be thought of as saying \assign the vetor to lass1" and so on.There is also a loss λ(αi, ωj) assoiated with taking ation αi whenthe lass is ωj.The loss will sometimes be abbreviated to λ(αi, ωj) = λij.

Bayesian deision theorySay we an also model the world as follows:� Classes have probabilities Pr(ω) of ourring.� The probability of seeing x when the lass is ω has density p(x|ω).Think of nature hoosing lasses at random (although not revealingthem) and showing us a vetor seleted at random using p(x|ω).As usual Bayes rule tells us thatPr(ω|x) =
p(x|ω)Pr(ω)

p(x)and now the denominator is
p(x) =

c∑

i=1

p(x|ωi)Pr(ωi).

Bayesian deision theorySay nature shows us x and we take ation αi.If we always take ation αi when we see x then the average loss onseeing x is

R(αi|x) = Eω∼p(ω|x) [λij|x] =

c∑

j=1

λ(αi,ωj)Pr(ωj|x).The quantity R(αi|x) is alled the onditional risk .Note that this partiular x is �xed .



Bayesian deision theory

Now say we have a deision rule α : R
d → {α1, . . . , αa} telling uswhat ation to take on seeing any x ∈ R
d.The average loss, or risk , is

R = E(x,ω)∼p(x,ω) [λ(α(x), ω)]

= Ex∼p(x)

[

Eω∼Pr(ω|x) [λ(α(x), ω)|x]
]

= Ex∼p(x) [R(α(x)|x)] (1)

=

∫

R(α(x)|x)p(x)dxwhere we have used the standard result from probability theory that

E [E [X|Y]] = E [X] .(See the supplementary notes for a proof.)

Bayesian deision theoryClearly the risk is minimised for the deision rule de�ned as follows:

α outputs the ation αi that minimises R(αi|x), for all x ∈ R
d.The provides us with the minimum possible risk, or Bayes risk R⋆.The rule spei�ed is alled the Bayes deision rule .

Example: minimum error rate lassi�ationIn supervised learning our aim is often to work in suh a way thatwe minimise the probability of error .What loss should we onsider in these irumstanes? From basiprobability theory Pr(A) = E [I(A)]where

I(A) =

{
1 if A happens
0 otherwise(See the supplementary notes for a proof.)

Example: minimum error rate lassi�ationSo if we are addressing a supervised learning problem with c lasses

{ω1, . . . ,ωc} and we interpret ation αi as meaning `the input is inlass ωi', then a loss

λij =

{
1 if i 6= j

0 otherwisemeans that the risk R is

R = E [λ] = Pr(α(x) is in error)and the Bayes deision rule minimises the probability of error.



Example: minimum error rate lassi�ationNow, what is the Bayes deision rule?

R(αi|x) =

c∑

j=1

λ(αi,ωj)Pr(ωj|x)

=
∑

i6=j

Pr(ωj|x)

= 1 − Pr(ωi|x)so α(x) should be the lass that maximises Pr(ωi|x).THE IMPORTANT SUMMARY : Given a new x to lassify, hoos-ing the lass that maximises Pr(ωi|x) is the best strategy if your aimis to obtain the minimum error rate!
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