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Syllabus

Fun new things to be looked at include some more advanced mate-
rial based on the logical approach to AI:

• Further Symbolic Knowledge Representation: Representing
knowledge using First Order Logic (FOL). The situation calculus.
[1 lecture]

• Further Planning: Incorporating heuristics into partial-order plan-
ning. Planning graphs. The GRAPHPLAN algorithm. Planning
using propositional logic. [2 lectures]

(Note: there is no warranty attached to the stated lecture timings!)

Syllabus

We then delve into some more modern material which takes account
of uncertainty .

• Uncertainty and Bayesian Networks: Review of probability as
applied to AI. Bayesian networks. Inference in Bayesian networks
using both exact and approximate techniques. Other ways of
dealing with uncertainty. [3 lectures]

• Utility and Decision-making: Maximising expected utility, deci-
sion networks, the value of information. [1 lecture]

• Uncertain Reasoning Over Time: Markov processes, transition
and sensor models. Inference in temporal models: filtering, pre-
diction, smoothing and finding the most likely explanation. Hidden
Markov models. [2 lectures]

Syllabus

Finally, we look in more depth at Machine Learning:

• Further Supervised Learning: Bayes theorem as applied to
supervised learning. The maximum likelihood and maximum a
posteriori hypotheses. Applying the Bayesian approach to neural
networks. [4 lectures]

• Reinforcement Learning: Learning from rewards and punish-
ments. [2 lectures]



Books

Once again, the main single text book for the course is:

• Artificial Intelligence: A Modern Approach. Stuart Russell and
Peter Norvig, Second edition (important!), Prentice Hall, 2002.

There is an accompanying web site at

http://aima.cs.berkeley.edu/

Books

For some of the new material on neural networks you might also like
to take a look at:

• Neural Networks for Pattern Recognition. Christopher M. Bishop,
Oxford University Press, 1995.

And for some of the new material on reinforcement learning you
might like to consult:

• Machine Learning. Tom Mitchell. McGraw Hill, 1997.

Dire Warning

!!!DIRE WARNING!!!

This course contains large dollops of:

1. Probability

2. Matrix algebra

3. Calculus.

As I am an evil and vindictive person I will assume that you know
everything on these subjects that was covered in earlier courses.

If you don’t it is essential that you re-visit your old notes and make
sure that you’re at home with that material.

YOU HAVE BEEN WARNED. (Cue evil laughter etc.)

How’s your maths?

To see if you’re up to speed on the maths, have a go at the following:

1. Evaluate the integral
∫ ∞

−∞

exp(−x2) dx

(Hint: square it and change to polar coordinates.)

2. Following on from 1, evaluate the integral
∫ ∞

−∞

· · ·

∫ ∞

−∞

exp

(

−
1

2

(

xTXx + xTy + z
)

)

dx1 · · · dxp

where X is a symmetric p × p matrix with real elements, y ∈ R
p,

z ∈ R and
xT =

[

x1 x2 · · · xp

]

∈ R
p

(The second one is a bit tricky. Don’t worry, I’ll show you the answers
somewhere around lecture 10.)



Knowledge representation and reasoning I: FOL

We now look at how an agent might represent knowledge about
its environment using first order logic (FOL), and reason with this
knowledge to achieve its goals.

Aims:

• to show how FOL can be used to represent knowledge about a
simple environment in the form of both background knowledge
and knowledge derived from percepts;

• to show how this knowledge can be used to derive non-perceived
knowledge about the environment;

• to introduce the situation calculus and demonstrate its application
in a simple environment.

Interesting reading

Reading: Russell and Norvig, chapters 7 to 10.

Knowledge representation based on logic is a vast subject and can’t
be covered in full in the lectures.

In particular:

• techniques for representing further kinds of knowledge;

• techniques for moving beyond the idea of a situation;

• reasoning systems based on categories;

• reasoning systems using default information;

• truth maintenance systems.

Happy reading :-)

Knowledge representation and reasoning

A quick look at the world tell us that simply reacting to the environ-
ment is a very poor (non-“intelligent”) way of behaving.

All of us—and all intelligent agents—should use logical reasoning to
help us interact successfully with the world.

Any intelligent agent should:

• possess knowledge about the environment and about how its ac-
tions affect the environment;

• use some form of logical reasoning to maintain its knowledge as
percepts arrive;

• use some form of logical reasoning to deduce actions to perform
in order to achieve goals.

Knowledge representation and reasoning

This leads to a modified format for a potential intelligent agent:

• it can accept tasks to perform in the form of goals;

• it can be told about its environment;

• it can learn about its environment;

• it can update its knowledge to adapt to changes in its environ-
ment.



Knowledge representation and reasoning

This shift in our viewpoint hides considerable subtlety.

• How do we describe the current state of the world?

• How do we infer from our percepts, knowledge of unseen parts of
the world?

• How does the world change as time passes?

• How does the world stay the same as time passes?

• How do we know what we actually want to achieve?

• How do we know the effects of our actions?

Knowledge-based agent design

Central to our new approach will be the concept of a Knowledge
Base, generally abbreviated to KB .

• A KB is a collection of sentences, each of which represents a fact
about the world.

• In order to represent facts we need a knowledge representation
language.

Knowledge-based agent design

Once we have a KB , we also need to be able to interact with it. There
are two standard ways of doing this: ask and tell.

• tell adds new sentences to the KB .

• ask performs inference. It should produce a result that logically
follows from what has been told to the KB .

ask and tell hide, for the time being, an inference algorithm.

A KB can initially contain background knowledge about the world.

An important thing is missing from this description: namely, intelli-
gent beings such as ourselves can also modify our KB by learning.

Wumpus world

As a simple test scenario for a knowledge-based agent we will make
use of the Wumpus World.

GOLD

The Wumpus World is a 4 by 4 grid-based cave. Our intrepid hero
wants to enter the cave, find some gold, and get out again un-
scathed.



Wumpus world

The rules of Wumpus World.

• Unfortunately the cave contains a number of pits, which our hero
can fall into and die. (You don’t want to know what lives in the
pits. It will give you nightmares.)

• The cave also contains the Wumpus, who will eat him. (There are
few known vegetarian Wumpuses.)

• The Wumpus, having munched too many heroes, is too fat to fall
into a pit.

Wumpus world

Our hero can move around the cave at will and can perceive the
following:

• In a position adjacent to the Wumpus, a stench is perceived.
(Wumpuses are famed for their lack of personal hygiene.)

• In a position adjacent to a pit, a breeze is perceived. (Like I said:
just don’t ask what lives in the pits.)

• In the position where the gold is, a glitter is perceived.

• On trying to move into a wall, a bump is perceived.

• On killing the Wumpus a scream is perceived.

In addition, our hero has a single arrow, with which to try to kill the
Wumpus.

“Adjacent” in the following does not include diagonals.

Wumpus world

So we have:

Percepts: stench, breeze, glitter, bump, scream

Actions: forward, rotate left, rotate right, grab, shoot, climb

Of course, our aim now is not just to design an agent that can per-
form well in a single cave layout.

We want to design an agent that can usually perform well regardless
of the layout of the cave.

Logic for knowledge representation

What are the requirements for a knowledge representation language?

• It should be expressive.

• It should be concise.

• It should be unambiguous.

• It should be independent of context.

• It should have an inference procedure.

Our choice of language tends to lead to two important commitments:

• Ontological commitments: what does the world consist of?

• Epistemological commitments: what are the allowable states of
knowledge?



Logic for knowledge representation

A knowledge representation requires:

• syntax - what are the allowable patterns of symbols used to rep-
resent facts as sentences?

• semantics - what facts about the world do the sentences de-
scribe.

We say that an agent believes the facts described by the sentences.
(Warning: “belief” has a minefield all of its own awaiting...)

Logic for knowledge representation

When both syntax and semantics are defined in a sufficiently precise
manner we have a logic.

Our central aim is to generate sentences that are true, IF the sen-
tences in the KB are true. This process is based on concepts familiar
from your introductory logic courses:

• Entailment: KB |= α means that the KB entails α.

• Proof: KB ⊢i α means that α is derived from the KB using i. If i is
sound then we have a proof.

• i is sound if it can generate only entailed α.

• i is complete if it can find a proof for any entailed α.

Logic for knowledge representation

Our central strategy is to ask whether the sentence

KB → α

is valid. This makes sense, because the computer has no idea what
your interpretation is for the symbols used to make sentences.

Representing and reasoning with first-order logic (FOL)

Propositional logic is useful for introducing some fundamental ideas,
but its ontological commitment—that the world consists of facts—
makes it far too limited for further use.

FOL has a different ontological commitment—the world consists of:

• facts;

• objects (with properties distinguishing them from other objects),
and;

• relations that hold between objects (some of which can be func-
tions).



Representing and reasoning with first-order logic (FOL)

FOL has no ontological commitment to:

• time;

• events;

• categories etc.

This is part of the reason for its success: there are too many ways
of dealing with such concepts and you don’t want to fix a single one.
FOL can do it in a way matched to the environment.

FOL can express anything at all that can be programmed. Subsets
have limited application while logics with extras are debated but not
fully understood.

Representing and reasoning with first-order logic (FOL)

The precise definitions for ∀, ∃, and ∧ and → require that we’re a
little careful.

If we try to express “all wombats are hairy” as

∀x (Wombat(x) ∧ Hairy(x))

we are essentially saying

Wombat(x1) ∧ Hairy(x1) ∧ Wombat(x2) ∧ Hairy(x2) ∧ · · ·

This is a very strong statement: it says that everything is a hairy
wombat. This is almost certainly not what we want to express.

Much better is
∀x (Wombat(x) → Hairy(x))

This works, because A → B is always true when A is false.

Representing and reasoning with first-order logic (FOL)

Similarly, if you try to express “there is a hairy wombat” as

∃x (Wombat(x) → Hairy(x))

you are effectively saying

(Wombat(x1) → Hairy(x1)) ∨ (Wombat(x2) → Hairy(x2)) ∨ · · ·

and as A → B is true when A is false the overall expression is true if
anything at all is not a wombat. Here the correct expression is

∃x (Wombat(x) ∧ Hairy(x))

Using FOL in AI: ask and tell

To add a sentence α to our KB we use the notation

tell(KB, α)

This is often referred to as an assertion. For example

tell(KB,∀x, y (wife(x, y) ⇐⇒ female(x) ∧ married(x, y)))

tell(KB,female(Violet))

tell(KB,married(Violet,Bill))

To perform inference we ask a question. For example

ask(KB,wife(Violet,Bill))

should result in an indication that, yes, Violet is indeed the wife of
Bill. This is often known as a query or goal.



Using FOL in AI: ask and tell

More usually we ask a question that involves an ∃. For example

ask(KB,∃a married(Violet, a))

and expect the answer to include a substitution or binding list of the
form

{a/Bill}

or several if appropriate.

Using FOL in AI: the triumphant return of the Wumpus

Armed with FOL, the design of an agent for the Wumpus world is
feasible.

There are at least three potential approaches:

• a reflex agent, which acts directly on the basis of its percepts;

• a model-based agent, which constructs and applies a model of
the world;

• a goal-based agent, which formulates goals and attempts to achieve
them.

Representing time using the integers, a percept is for example

Percept([None,Breeze,None,None,None], 1)

which indicates that only a breeze is perceived at time 1.

Using FOL in AI: the triumphant return of the Wumpus

The percept list is: Stench, Breeze, Glitter, Bump, Scream.

The actions are: Forward, Shoot, Grab, Climb, Release, Turn(right),
Turn(left).

To find an action we make a query

ask(KB,∃x Action(x, 1))

to obtain a substitution such as

{x/Forward}

The triumphant return of the Wumpus: reflex agent

It is straightforward to devise background knowledge that can con-
vert percepts to actions

∀x, y, z, a, b Percept([x, y,Glitter, z, a], b) → Action(Grab, b)

and we can if necessary introduce slightly more sophisticated rules
for perception

∀x, y, z, a, b Percept([Stench, x, y, z, a], b) → Stench(b)

∀x, y, z, a, b Percept([x,Breeze, y, z, a], b) → ByPit(b)

∀x, y, z, a, b Percept([x, y,Glitter, z, a], b) → FoundGold(b)
...

followed by further rules for actions such as

∀x FoundGold(x) → Action(Grab,x)

BUT, such agents are not very impressive.

Even in this simple world it’s hard to see how to make a successful
one, as there is no representation of the world.



FOL - representing the world

Let’s assume all percepts are added to the KB.

• A percept history is not useful in itself.

• For example, I know I have socks on and I don’t need to search
today’s percept history to come to that conclusion - it exists in my
representation of the world.

• A Wumpus world agent should not need to search its percept
history to know it has no arrow - this should be part of its world
representation.

Any system of rules based on past percepts can alternatively be
implemented using a representation of the world, provided this rep-
resentation is updated in response to percepts and actions.

Diachronic rules describe how the world changes, or stays the same.

Situation calculus

Ideally we want to be able to speculate freely about the past and
about possible futures. The need to be able to compare different
situations means that something better than search is needed.

Solution:

• include situations in the logical language used by our KB;

• include axioms in our KB that relate to situations.

The oldest and simplest approach to this idea is situation calculus.

Situation calculus

In situation calculus :

• the world consists of sequences of situations;

• over time, an agent moves from one situation to another;

• situations are changed as a result of actions;

• a situation argument is added to the predicate of any relation or
property that can change over time. For example

At(Wumpus, [2, 4], S2) ∧ At(Agent, [2, 3], S5)

suggests our hero might nearly have popped his clogs.

• things that can change over time are sometimes called fluents;

• a situation argument is not needed for things that don’t change.
These are sometimes referred to as eternal or atemporal.

Representing change as a result of actions

Situation calculus uses a function

Result(action,situation)

to denote the new situation arising as a result of performing the spec-
ified action in the specified situation.

Result(Grab, S1) = S2

Result(Turn(left), S2) = S3

Result(Shoot, S3) = S4

Result(Forward, S4) = S5
...



Effects of actions

Given that an action results in a new situation, we then specify the
properties of the new situation.

For example, to keep track of whether our hero has the gold we need
effect axioms to describe the effect of picking it up:

Portable(Gold)

∀s SeeGold(s) → Available(Gold, s)

∀x, s Available(x, s) ∧ Portable(x) → Have(x,Result(Grab, s))

Effect axioms describe the way in which the world changes.

Effects of actions

We need frame axioms to describe the effect of having something
but not dropping it:

∀a, x, s Have(x, s) ∧ (a 6= Release) → Have(x,Result(a, s))

or of not having something and not picking it up:

∀a, x, s ¬Have(x, s) ∧ (a 6= Grab ∨ ¬(Available(x, s) ∧ (Portable(x)))

→ ¬Have(x,Result(a, s))

Frame axioms describe the way in which the world stays the same.

The Frame problem, and other problems

The frame problem has historically been associated with situation
calculus.

Representational frame problem: a large number of frame axioms
are required to represent the many things in the world which will not
change as the result of an action.

We will see how to solve this in a moment.

Inferential frame problem: when reasoning about a sequence of
situations within the situation calculus, all the unchanged properties
still need to be carried through all the steps.

This can be alleviated using planning systems that allow us to reason
efficiently when actions change only a small part of the world.

The Frame problem, and other problems

Qualification problem: we are in general never completely certain
what conditions are required for an action to be effective.

Consider for example turning the key to start your car.

This will lead to problems if important conditions are omitted from
axioms.

Ramification problem: actions tend to have implicit consequences
that are large in number.

For example, if I pick up a sandwich in a dodgy sandwich shop, I will
also be picking up all the bugs that live in it. I don’t want to model
this explicitly.



Successor-state axioms

Effect axioms and frame axioms can be combined into successor-
state axioms.

One is needed for each predicate that can change over time.

true in new situation ⇐⇒ you did something to

make it true

∨ it was already true and

and you didn’t make it

false

For example

∀a, x, s Have(x, Result(a, s)) ⇐⇒ (Portable(x)

∧ Available(x, s)

∧ a = Grab)

∨ (Have(x, s) ∧ a 6= Release)

Knowing where you are

If S0 is the initial situation we know that

At(Agent, [1, 1], S0)

We need to keep track of what way we’re facing. Say east is 0, north
is 90, west is 180 and south is 270.

Facing(Agent, S0) = 0

We need to know how motion affects location

∀x, y ForwardResult([x, y], 0) = [x + 1, y]

∀x, y ForwardResult([x, y], 270) = [x, y − 1]
...

and

∀l, a, s At(a, l, s) → GoForward(a, s) = ForwardResult(l,Facing(a, s

The concept of adjacency is very important in the Wumpus world

∀l1, l2 Adjacent(l1, l2) ⇐⇒ ∃d ForwardResult(l1, d) = l2

Knowing where you are

We also know that the cave is 4 by 4 and surrounded by walls

∀x, y WallHere([x, y]) ⇐⇒ (x = 0 ∨ y = 0 ∨ x = 5 ∨ y = 5)

It is only possible to change location by moving, and this only works
if you’re not facing a wall. We need a successor-state axiom

∀a, b, s, l At(b, l,Result(a, s)) ⇐⇒ (l = GoForward(b, s)

∧ a = Forward

∧ ¬WallHere(l))

∨ (At(b, l, s) ∧ a 6= Forward)

It is only possible to change orientation by turning. Again, we need
a successor-state axiom
∀b, a, s, o Facing(b,Result(a, s)) = o ⇐⇒

a = Turn(right) ∧ o = Mod(Facing(b, s) − 90, 360)

∨ a = Turn(left) ∧ o = Mod(Facing(b, s) + 90, 360)

∨ (Facing(b, s) = o ∧ a 6= Turn(right) ∧ a 6= Turn(left))

and so on...

Deducing other properties of the world

If you know where you are, then you can think about places rather
than just situations.

∀l, s At(Agent, l, s) ∧ Breeze(s) → BreezeAt(l)

∀l, s At(Agent, l, s) ∧ Stench(s) → StenchAt(l)

This is important.

Different actions will lead to different situations, but what we want to
know is where breezes, stenches etc are so we can deduce prop-
erties such as where the pits are, where it’s safe to move, and so
on.

Synchronic rules relate properties shared by a single state of the
world.

There are two kinds: causal and diagnostic.



Deducing other properties of the world

Causal rules: some properties of the world will produce percepts.

∀s, l1, l2 At(Wumpus, l1, s) ∧ Adjacent(l1, l2) → StenchAt(l2)

∀s, l1, l2 At(Pit, l1, s) ∧ Adjacent(l1, l2) → BreezeAt(l2)

Systems reasoning with such rules are known as model-based rea-
soning systems.

Deducing other properties of the world

Diagnostic rules: infer properties of the world from percepts.

For example, we have already seen

∀l, s At(Agent, l, s) ∧ Breeze(s) → BreezeAt(l)

∀l, s At(Agent, l, s) ∧ Stench(s) → StenchAt(l)

These may not be very strong.

For example, knowing that the absence of a smell or breeze means
adjacent squares are safe is unlikely to be as powerful as knowing
that the absence of a Wumpus or a pit means a square is safe.

(Squares can be safe even when there are smells and breezes!)

The difference between model-based and diagnostic reasoning can
be important. For example, medical diagnosis can be done based
on symptoms or based on a model of disease.

Preferring some actions to others

In general we need to know the relative desirability of different ac-
tions.

• For example, it is initially good to explore, but having found the
gold it is better to pick it up.

• As usual, we want to maintain modularity. In this context: we don’t
want a change in an agent’s beliefs about one thing to require a
change in the rules governing others.

• We should therefore separate facts about goals from facts about
actions.

Preferring some actions to others

For example, actions can be ranked: Great, Good, Medium, Risky,
Deadly

∀a, s Great(a, s) → Action(a, s)

∀a, s Good(a, s) ∧ ¬∃a2 Great(a2, s) → Action(a, s)

∀a, s Medium(a, s) ∧ ¬∃a2 (Good(a2, s) ∨ Great(a2, s)) → Actions(a, s)
...

This produces an action-value system.



Preferring some actions to others

We now need to describe the action values. For example:

• great actions are picking up the gold or climbing out of the cave
after it’s found.

• good actions are...

Also, as our priorities change once the gold has been found we need
to change our agent’s goal:

∀s Have(Gold, s) → Goal([1, 1], s)

Preferring some actions to others

Once a goal is defined there are at least three ways to achieve it:

• inference: ask the KB for a sequence of actions. (Computational
complexity!)

• search: best first search. This requires us to change the KB into
operators and a state representation.

• planning.

Problems

Assume the existence of a constant nil denoting the empty list and
and function cons as well as the usual shorthand: [] for the empty
list, [a] for the list containing only a, [a, b] for the list containing a and
b, [a|l] for the list obtained by adding a to the list l, and so on.

1. Write the definition of a FOL function Action sequence that
can be used in conjunction with the situation calculus as follows

sresult = Action sequence([a1, a2, . . . , an], sstart)

to map a starting situation sstart and a list [a1, a2, . . . , an] of actions
to the situation sresult that results if the given list of actions is car-
ried out beginning in the specified situation.

2. Explain how this function might be used in conjunction with ask
to ask the knowledge base for a sequence of actions required to
achieve a goal, rather than just a single action to try at a given
time.

Problems

Making correct use of the situation calculus, write the sentences in
FOL required to implement the following actions in Wumpus World:

1. Climb

2. Shoot



Problems

Paper 9, Question 8, 2003 - part 2

You wish to construct a robotic pet cat for the purposes of entertain-
ment. One purpose of the cat is to scratch valuable objects when
the owner is not present. Give a brief general description of situation
calculus and describe how it might be used for knowledge represen-
tation by the robot. Include in your answer one example each of a
frame axiom, an effect axiom, and a successor-state axiom, along
with example definitions of suitable predicates and functions. [12
marks]

Planning II: heuristics, planning graphs, and planning with propositional

We now examine:

• the way in which basic heuristics might be defined for use in plan-
ning problems;

• the construction of planning graphs and their use in obtaining
more sensible heuristics;

• planning graphs as the basis of the GraphPlan algorithm;

• planning using propositional logic.

Reading: Russell and Norvig, chapter 11, sections 11.3, 11.4 and
11.5.

Planning so far: a brief review

We used the following simple example problem.

The intrepid little scamps in the Cambridge University Roof-Climbing
Society wish to attach an inflatable gorilla to the spire of a famous
College. To do this they need to leave home and obtain:

• An inflatable gorilla: these can be purchased from all good joke
shops.

• Some rope: available from a hardware store.

• A first-aid kit: also available from a hardware store.

They need to return home after they’ve finished their shopping.

How do they go about planning their jolly escapade?

The STRIPS language

STRIPS: “Stanford Research Institute Problem Solver” (1970).

States: are conjunctions of ground literals with no functions.

At(Home) ∧ ¬Have(Gorilla)

∧ ¬Have(Rope)

∧ ¬Have(Kit)

Goals: are conjunctions of literals where variables are assumed ex-
istentially quantified.

At(x) ∧ Sells(x,Gorilla)

A planner finds a sequence of actions that makes the goal true when
performed.



An example of partial-order planning

Here is the initial plan:

Start

Finish

At(Home) ∧ Sells(JS,G)∧ Sells(HS,R) ∧ Sells(HS,FA)

At(Home) ∧ Have(G) ∧ Have(R) ∧ Have(FA)

Thin arrows denote ordering.

An example of partial-order planning

There are two actions available:

Go(y)

At(y),¬At(x)

Buy(y)

At(x),Sells(x, y)

Have(y)

At(x)

An example of partial-order planning

Start

Buy(G)

At(JS),Sells(JS,G)

Go(JS)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)At(Home)

Buy(R)

Sells(HS,R),At(HS)

Go(HS)

At(x)

¬At(x)

The At(HS) precondition is easy to achieve.

But if we introduce a causal link from Start to Go(HS) then we risk
invalidating the precondition for Go(JS).

An example of partial-order planning

The planner could backtrack and try to achieve the At(x) precondi-
tion using the existing Go(JS) step.

Start

Buy(G)

At(JS),Sells(JS,G)

Go(JS)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)At(Home)

Buy(R)

Go(HS)

At(JS)

¬At(JS)

Sells(HS,R),At(HS)

This involves a threat, but one that can be fixed using promotion.



Using heuristics in planning

We found in looking at search problems that heuristics were a helpful
thing to have.

Note that now:

• there is no simple representation of a state;

• consequently it is harder to measure the distance to a goal.

Defining heuristics for planning is therefore more difficult than it was
for search problems.

Using heuristics in planning

We can quickly suggest some possibilities.

For example

h = number of unsatisfied preconditions

or

h =number of unsatisfied preconditions
− number satisfied by the start state

These can lead to underestimates or overestimates:

• underestimates if actions can affect one another in undesirable
ways;

• overestimates if actions achieve many preconditions.

Using heuristics in planning

We can go a little further by learning from Constraint Satisfaction
Problems and adopting the most constrained variable heuristic:

• prefer the precondition satisfiable in the smallest number of ways.

This can be computationally demanding but two special cases are
helpful:

• choose preconditions for which no action will satisfy them;

• choose preconditions that can only be satisfied in one way.

Planning graphs

Planning graphs can be used:

• to compute more sensible heuristics;

• to generate entire plans.

Also, planning graphs are easy to construct.

They apply only when it is possible to work entirely using proposi-
tional representations of plans.

Luckily, STRIPS can always be propositionalized...



Planning graphs

For example: the triumphant return of the gorilla-purchasing roof-
climbers...

Go(y)

At(y),¬At(x)

At(x)

Go(Home)

At(JS)

At(Home)

Go(JS)

and so on...

Predicate Propositional

At(Home)

Go(HS)

Go(HS)

At(HS),¬At(Home)

At(Home),¬At(JS)

At(JS)

At(JS),¬At(Home) At(HS),¬At(JS)

Planning graphs

A planning graph is constructed in levels:

• level 0 corresponds to the start state;

• at each level we keep approximate track of all things that could
be true at the corresponding time;

• at each level we keep approximate track of what actions could be
applicable at the corresponding time.

The approximation is due to the fact that not all conflicts between
actions are tracked. So:

• the graph can underestimate how long it might take for a particu-
lar proposition to appear, and therefore;

• a heuristic can be extracted.

Planning graphs: a simple example

Our intrepid student adventurers will of course need to inflate their
gorilla before attaching it to a distinguished roof. It has to be pur-
chased before it can be inflated.

Start state: empty.

We assume that anything not mentioned in a state is false. So the
state is actually

¬Have(Gorilla) and ¬Inflated(Gorilla)

Actions:

Buy(Gorilla)

¬Have(Gorilla)

Have(Gorilla)

Inflate(Gorilla)

Inflated(Gorilla)

Have(Gorilla)

Goal: Have(Gorilla) and Inflated(Gorilla).

Planning graphs

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

Describe start
state.

All actions available in
start state.

S1 S1

All possibilities for
what might be the
case at time1.

All actions that might
be available at time
1.

All possibilities for
what might be the
case at time2.

= a persistence action—what happens if no action is taken.

An action levelAi containsall actions thatcould happen given the propositions inSi.



Mutex links

We also record, using mutual exclusion (mutex) links which pairs of
actions could not occur together.

Mutex links 1: Effects are inconsistent.

Buy(G)

¬H(G) ¬H(G)

A0S0

H(G)

S1

The effect of one action negates the effect of another.

Mutex links

Mutex links 2: The actions interfere.

Inf(G)

¬I(G)

I(G)

¬I(G)

S1 A1 S1

The effect of an action negates the precondition of another.

Mutex links

Mutex links 3: Competing for preconditions.

Buy(G)

Inf(G)

¬H(G)

A1

H(G)

S1

The precondition for an action is mutually exclusive with the precon-
dition for another. (See next slide!)

Mutex links

A state level Si contains all propositions that could be true, given the
possible preceding actions.

We also use mutex links to record pairs that can not be true simulta-
neously:

Possibility 1: pair consists of proposition and its negation.

¬H(G)

H(G)

S1



Mutex links

Possibility 2: all pairs of actions that could achieve the pair of propo-
sitions are mutex.

Buy(G)

Inf(G)

¬H(G)

A1

H(G)

I(G)

S1

The construction of a planning graph is continued until two identical
levels are obtained.

Planning graphs

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

Obtaining heuristics from a planning graph

To estimate the cost of reaching a single proposition:

• any proposition not appearing in the final level has infinite cost
and can never be reached;

• the level cost of a proposition is the level at which it first appears
but this may be inaccurate as several actions can apply at each
level and this cost does not count the number of actions. (It is
however admissible.)

• a serial planning graph includes mutex links between all pairs of
actions except persistence actions;

Level cost in serial planning graphs can be quite a good measure-
ment.

Obtaining heuristics from a planning graph

How about estimating the cost to achieve a collection of proposi-
tions?

• Max-level: use the maximum level in the graph of any proposition
in the set. Admissible but can be inaccurate.

• Level-sum: use the sum of the levels of the propositions. Inad-
missible but sometimes quite accurate if goals tend to be decom-
posable.

• Set-level: use the level at which all propositions appear with none
being mutex. Can be accurate if goals tend not to be decompos-
able.



Other points about planning graphs

A planning graph guarantees that:

1. if a proposition appears at some level, there may be a way of
achieving it;

2. if a proposition does not appear, it can not be achieved.

The first point here is a loose guarantee because only pairs of items
are linked by mutex links.

Looking at larger collections can strengthen the guarantee, but in
practice the gains are outweighed by the increased computation.

Graphplan

The GraphPlan algorithm goes beyond using the planning graph as
a source of heuristics.

Start at level 0;
while(true)
{
if (all goal propositions appear in the current level

AND no pair has a mutex link)
{

attempt to extract a plan;
if (a solution is obtained)
return the solution;

else if (graph indicates there is no solution)
return fail;

else
expand the graph to the next level;

}
}

We extract a plan directly from the planning graph. Termination can
be proved but will not be covered here.

Graphplan in action

Here, at levels S0 and S1 we do not have both H(G) and I(G) avail-
able with no mutex links, and so we expand first to S1 and then to
S2.

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

At S2 we try to extract a solution (plan).

Extracting a plan from the graph

Extraction of a plan can be formalised as a search problem.

States contain a level, and a collection of unsatisfied goal proposi-
tions.

Start state: the current final level of the graph, along with the relevant
goal propositions.

Goal: a state at level S0 containing the initial propositions.



Extracting a plan from the graph

Actions: For a state S with level Si, a valid action is to select any set
X of actions in Ai−1 such that:

1. no pair has a mutex link;

2. no pair of their preconditions has a mutex link;

3. the effects of the actions in X achieve the propositions in S.

The effect of such an action is a state having level Si−1, and contain-
ing the preconditions for the actions in X.

Each action has a cost of 1.

Graphplan in action

Start state

Action: Action: Inf(G) and2Buy(G)

H(G)

S0 S1 S2

H(G) I(G)

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

Heuristics for plan extraction

We can of course also apply heuristics to this part of the process.

For example, when dealing with a set of propositions:

• choose the proposition having maximum level cost first;

• for that proposition, attempt to achieve it using the action for which
the maximum/sum level cost of its preconditions is minimum.

Propositional logic for planning

Earlier we saw that plans might be extracted from a knowledge base
via theorem proving, using first order logic (FOL) and situation cal-
culus.

BUT: this might be computationally infeasible for realistic problems.

Sophisticated techniques are available for testing satisfiability in propo-
sitional logic, and these have also been applied to planning.

The basic idea is to attempt to find a model of a sentence having the
form

description of start state
∧ descriptions of the possible actions
∧ description of goal



Propositional logic for planning

We attempt to construct this sentence such that:

• if M is a model of the sentence then M assigns ⊤ to a proposition
if and only if it is in the plan;

• any assignment denoting an incorrect plan will not be a model as
the goal description will not be ⊤.

• the sentence is unsatisfiable if no plan exists.

Propositional logic for planning

Start state:

S =At0(a,spire) ∧ At0(b,ground)

∧ ¬At0(a,ground) ∧ ¬At0(b,spire)

a

b

The two climbers want to swap places...

Remember that an expression such as At0(a,spire) is a proposi-
tion. The superscripted number now denotes time.

Propositional logic for planning

Goal:

G =Ati(a,ground) ∧ Ati(b,spire)

∧ ¬Ati(a,spire) ∧ ¬Ati(b,ground)

Actions: can be introduced using the equivalent of successor-state
axioms

At1(a,ground) ↔

(At0(a,ground) ∧ ¬(At0(a,ground) ∧ Move0(a,ground,spire)))

∨ (At0(a,spire) ∧ Move0(a,spire,ground))

(1)

Denote by A the collection of all such axioms.

Propositional logic for planning

We will now find that S∧A∧G has a model in which Move0(a,spire,ground
and Move0(b,ground,spire) are ⊤ while all remaining actions are
⊥.

In more realistic planning problems we will clearly not know in ad-
vance at what time the goal might expect to be achieved.

We therefore:

• loop through possible final times T ;

• generate a goal for time T and actions up to time T ;

• try to find a model and extract a plan;

• until a plan is obtained or we hit some maximum time.



Propositional logic for planning

Unfortunately there is a problem—we may, if considerable care is not
applied, also be able to obtain less sensible plans.

In the current example

Move0(b,ground,spire) = ⊤

Move0(a,spire,ground) = ⊤

Move0(a,ground,spire) = ⊤

is a model, because the successor-state axiom (1) does not in fact
preclude the application of Move0(a,ground,spire).

We need a precondition axiom

Movei(a,ground,spire) → Ati(a,ground)

and so on.

Propositional logic for planning

Life becomes more complicated still if a third location is added: hospital

Move0(a,spire,ground) ∧ Move0(a,spire,hospital)

is perfectly valid and so we need to specify that he can’t move to two
places simultaneously

¬(Movei(a,spire,ground) ∧ Movei(a,spire,hospital))
¬(Movei(a,ground,spire) ∧ Movei(a,ground,hospital))

...

and so on.

These are action-exclusion axioms.

Unfortunately they will tend to produce totally-ordered rather than
partially-ordered plans.

Propositional logic for planning

Alternatively:

1. prevent actions occurring together if one negates the effect or
precondition of the other, or;

2. specify that something can’t be in two places simultaneously

∀x, i,l1,l2 l1 6= l2 → ¬(Ati(x,l1) ∧ Ati(x,l2))

This is an example of a state constraint.

Clearly this process can become very complex, but there are tech-
niques to help deal with this.

Problems

An undergraduate, Mr. R. J. Compsci, has turned up at this term’s
Big Party, only to find that it is in the home of his arch rival, who has
turned him away. He spies in the driveway a large box and a ladder,
and hatches a plan to gatecrash by getting in through a second floor
window. Party on!

Here is the planning problem. He needs to move the box to the
house, the ladder onto the box, then climb onto the box himself and
at that point he can climb the ladder to the window.



Problems

Using the abbreviations

• B - Box

• L - Ladder

• H - House

• C - Mr Compsci

• W - Window

The start state is ¬At(B, H), ¬At(L,B), ¬At(C,W ) and ¬At(C,B).
The goal is At(C,W ).

Problems

The available actions are

Move(L, B)

At(L, B)

¬At(L, B)

Move(B, H)

At(B, H)

¬At(B, H),¬At(L, B)

Move(C, W )

At(C, W )

At(B, H),At(L, B),At(C, B)

Move(C, B)

At(C, B)

¬At(C, B)

Move(L, D)

¬At(L, B)

At(L, B)

Construct the planning graph for this problem (you should probably
start by finding a nice big piece of paper) and use the Graphplan
algorithm to obtain a plan.
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