
Un
ertainty V: probabilisti
 reasoning through timeWe now examine:� How an agent might operate by keeping tra
k of the state of itsenvironment in an un
ertain world, and how alterations in worldstate and un
ertainty in observing the world 
an be modelledusing probability distributions.� How inferen
es 
an be performed regarding the 
urrent state, paststate and future states.� The Viterbi algorithm for 
omputing the most likely sequen
e.� A slightly simpli�ed system within this framework 
alled a hiddenMarkov model (HMM), and the way in whi
h some inferen
e tasks
an be simpli�ed in the HMM 
ase.

Reading: Russell and Norvig, 
hapter 15.

Probabilisti
 reasoning through timeA fundamental idea throughout the AI 
ourses has been that an agentshould keep tra
k of the state of the environment:� The environment's state 
hanges over time.� The knowledge of how the state 
hanges may be un
ertain.� The agent's per
eption of the state of the environment may beun
ertain.For all the usual reasons related to un
ertainty , we need to movebeyond logi
, situation 
al
ulus et
.

States and eviden
eWe model the (unobservable) state of the environment as follows:� We use a sequen
e

(S0, S1, S2, . . .)of sets of random variables (RVs).� Ea
h St is a set of RVs

St = {S
(1)
t , . . . , S

(n)
t }denoting the state of the environment at time t, where t = 0, 1, 2, . . ..Think of the state as 
hanging over time.

S0 → S1→ S2 → · · ·

States and eviden
eAt ea
h time t there is also an observable set

Et = {E
(1)
t , . . . , E

(m)
t }of random variables denoting the eviden
e that an agent obtainsabout the state at time t.As usual 
apitals denote RVs and lower 
ase denotes a
tual values.So a
tual values for the assorted RVs are denoted

St = {s
(1)
t , . . . , s

(n)
t } = st

Et = {e
(1)
t , . . . , e

(m)
t } = et



Stationary and Markov pro
essesAs t 
an in prin
iple in
rease without bound we now need some sim-plifying assumptions.Assumption 1: We deal with stationary pro
esses : probability dis-tributions do not 
hange over time.Assumption 2: We deal with Markov pro
essesPr(St|S0:t−1) = Pr(St|St−1) (1)where S0:t−1 = (S0, S1, . . . , St−1).(Stri
tly speaking this is a �rst order Markov Pro
ess , and we'llonly 
onsider these.)Pr(St|St−1) is 
alled the transition model .

Stationary and Markov pro
essesAssumption 3: We assume that eviden
e only depends on the 
urrentstate Pr(Et|S0:t, E1:t−1) = Pr(Et|St) (2)Then Pr(Et|St) is 
alled the sensor model .

Stationary and Markov pro
esses

Pr(S0) S0 S1 S2 S3

E1 E2 E3

· · ·

Pr(St|St−1)

Pr(Et|St)

Pr(S0) is the prior probability of the starting state. We need this asthere has to be some way of getting the pro
ess started.

The full joint distributionGiven:1. The prior Pr(S0).2. The transition model Pr(St|St−1).3. The sensor model Pr(Et|St).along with the assumptions of stationarity and the assumptions ofindependen
e in equations 1 and 2 we have

Pr(S0, S1, . . . , St, E1, E2, . . . , Et) = Pr(S0)

t∏

i=1

Pr(Si|Si−1)Pr(Ei|Si) .

This follows from basi
 probability theory as for examplePr(S0, S1, S2, E1, E2) = Pr(E2|S0:2, E1)Pr(S2|S0:1, E1)Pr(E1|S0:1)Pr(S1|S0)Pr

= Pr(E2|S2)Pr(S2|S1)Pr(E1|S1)Pr(S1|S0)Pr(S0)



Example: two biased 
oinsHere's a simple example with only two states and two observations.I have two biased 
oins.I 
ip one and tell you the out
ome.I then either stay with the same 
oin, or swap them.This 
ontinues, produ
ing a su

ession of out
omes.

0.2

0.2

coin1 coin2

head

0.90.1

head

0.80.8

Example: two biased 
oinsWe'll use the following numbers:� The prior Pr(S0 = coin1) = 0.5.� The transition modelPr(St = coin1|St−1 = coin1) = Pr(St = coin2|St−1 = coin2) = 0.8Pr(St = coin1|St−1 = coin2) = Pr(St = coin2|St−1 = coin1) = 0.2

� The sensor modelPr(Et = head|St = coin1) = 0.1Pr(Et = head|St = coin2) = 0.9

Example: two biased 
oinsThis is straighforward to simulate.Here's an example of what happens:

[C2,C2,C1,C1,C1,C1,C1,C1,C1,C1,C1,C1,C2,C1,C1,C1,C1,C1,C1,C1,C1,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2]

⇓

[Hd,Tl,Tl,Tl,Hd,Tl,Hd,Tl,Tl,Tl,Hd,Tl,Hd,Tl,Tl,Tl,Tl,Tl,Hd,Tl,Tl,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Tl,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Tl,Hd]

As expe
ted, we tend to see runs of a single 
oin, and might expe
tto be able to guess whi
h is being used as one favours heads and theother tails.

Example: 2008, paper 9, question 5A friend of mine likes to 
limb on the roofs of Cambridge. To makea good start to the 
oming week, he 
limbs on a Sunday with prob-ability 0.98. Being 
on
erned for his own safety, he is less likely to
limb today if he 
limbed yesterday, soPr(climb today|climb yesterday) = 0.4If he did not 
limb yesterday then he is very unlikely to 
limb today,so Pr(climb today|¬climb yesterday) = 0.1Unfortunately, he is not a very good 
limber, and is quite likely toinjure himself if he goes 
limbing, soPr(injury|climb today) = 0.8whereas Pr(injury|¬climb today) = 0.1



Example: 2008, paper 9, question 5This has a similar 
orresponding diagram:

0.1

injury

0.10.8

injury

0.4

0.6

0.9climb ¬climb

We'll look at the rest of this exam question later.

Performing inferen
eThere are four basi
 inferen
e tasks that we might want to perform.In ea
h of the following 
ases, assume that we have observed theeviden
e

E1:t = e1:tTask 1: �lteringDedu
e what state we might now be in by 
omputingPr(St|e1:t).In the 
oin tossing question: \If you've seen all the out
omes sofar, infer whi
h 
oin was used last".In the exam question: \If you observed all the injuries so far, inferwhether my friend 
limbed today".

Performing inferen
eTask 2: predi
tionDedu
e what state we might be in some time in the future by 
om-puting Pr(St+T |e1:t) for some T > 0.In the 
oin tossing question: \If you've seen all the out
omes sofar, infer whi
h 
oin will be tossed T steps in the future".In the exam question: \If you've observed all the injuries so far,infer whether my friend will go 
limbing T nights from now".

Performing inferen
eTask 3: SmoothingDedu
e what state we might have been in at some point in the pastby 
omputing Pr(St|e1:T) for 0 ≤ t < T.In the 
oin tossing question: \If you've seen all the out
omes sofar, infer whi
h 
oin was tossed at time t in the past".In the exam question: \If you've observed all the injuries so far,infer whether my friend 
limbed on night t in the past".



Performing inferen
eTask 4: Find the most likely explanationDedu
e the most likely sequen
e of states so far by 
omputingargmax

s1:t

Pr(s1:t|e1:t)

In the 
oin tossing question: \If you've seen all the out
omes sofar, infer the most probable sequen
e of 
oins used".In the exam question: \If you've observed all the injuries so far,infer the most probable 
olle
tion of nights on whi
h my friend
limbed".

FilteringWe want to 
ompute Pr(St|e1:t). This is often 
alled the forwardmessage and denoted

f1:t = Pr(St|e1:t)for reasons that are about to be
ome 
lear.Remember that St is an RV and so f1:t is a probability distribution
ontaining a probability for ea
h possible value of St.It turns out that this 
an be done in a simple manner with a re
ursiveestimation . Obtain the result at time t + 1:1. using the result from time t and...2. ...in
orporating new eviden
e et+1.

f1:t+1 = g(et+1, f1:t)for a suitable fun
tion g that we'll now derive.

FilteringStep 1:Proje
t the 
urrent state distribution forwardPr(St+1|e1:t+1) = Pr(St+1|e1:t, et+1)

= cPr(et+1|St+1, e1:t)Pr(St+1|e1:t)

= cPr(et+1|St+1)︸ ︷︷ ︸Sensor model Pr(St+1|e1:t)︸ ︷︷ ︸Needs more workwhere as usual c is a 
onstant that normalises the distribution. Here,� The �rst line does nothing but split e1:t+1 into et+1 and e1:t.� The se
ond line is an appli
ation of Bayes' theorem.� The third line uses assumption 3 regarding sensor models.

FilteringStep 2:To obtain Pr(St+1|e1:t)Pr(St+1|e1:t) =
∑

st

Pr(St+1, st|e1:t)

=
∑

st

Pr(St+1|st, e1:t)Pr(st|e1:t)

=
∑

st

Pr(St+1|st)︸ ︷︷ ︸Transition model Pr(st|e1:t)︸ ︷︷ ︸Available from previous stepHere,� The �rst line uses marginalisation.� The se
ond line uses the basi
 equation Pr(A,B) = Pr(A|B)Pr(B).� The third line uses assumption 2 regarding transition models.



FilteringPulling it all togetherPr(St+1|e1:t+1) = cPr(et+1|St+1)︸ ︷︷ ︸Sensor model ∑st

Pr(St+1|st)︸ ︷︷ ︸Transition model Pr(st|e1:t)︸ ︷︷ ︸From previous step (3)This will be shortened to

f1:t+1 = cFORWARD(et+1, f1:t)Here� f1:t is a shorthand for Pr(St|e1:t).� f1:t is often interpreted as a message being passed forward.� The pro
ess is started using the prior .

Predi
tionPredi
tion is somewhat simpler asPr(St+T+1|e1:t)︸ ︷︷ ︸Predi
tion at t+T+1

=
∑

st+T

Pr(St+T+1, st+T |e1:t)

=
∑

st+T

Pr(St+T+1|st+T , e1:t)Pr(st+T |e1:t)

=
∑

st+T

Pr(St+T+1|st+T)︸ ︷︷ ︸Transition model Pr(st+T |e1:t)︸ ︷︷ ︸Predi
tion at t+T

However we do not get to make a

urate predi
tions arbitrarily farinto the future!

SmoothingFor smoothing, we want to 
al
ulate Pr(St|e1:T) for 0 ≤ t < T .Again, we 
an do this in two steps.Step 1: Pr(St|e1:T) = Pr(St|e1:T , et+1:T)

= cPr(St|e1:t)Pr(et+1:T |St, e1:t)

= cPr(St|e1:t)Pr(et+1:T |St)

= cf1:tbt+1:THere� f1:t is the forward message de�ned earlier.� bt+1:T is a shorthand for Pr(et+1:T |St) to be regarded as a messagebeing passed ba
kward .

SmoothingStep 2:

bt+1:T = Pr(et+1:T |St) =
∑

st+1

Pr(et+1:T , st+1|St)

=
∑

st+1

Pr(et+1:T |st+1)Pr(st+1|St)

=
∑

st+1

Pr(et+1, et+2:T |st+1)Pr(st+1|St)

=
∑

st+1

Pr(et+1|st+1)︸ ︷︷ ︸Sensor model Pr(et+2:T |st+1)︸ ︷︷ ︸
bt+2:T

Pr(st+1|St)︸ ︷︷ ︸Transition model

= BACKWARD(et+1:T , bt+2:T) (4)This pro
ess is initialised with

bt+1:t = Pr(eT+1:T |ST) = (1, . . . , 1)



The forward-ba
kward algorithmSo: our original aim of 
omputing Pr(St|e1:T) 
an be a
hieved using:� a re
ursive pro
ess working from time 1 to time t (equation 3);� a re
ursive pro
ess working from time T to time t+1 (equation 4).This results in a pro
ess that is O(T) given the eviden
e e1:T andsmooths for a single point at time t.To smooth at all points 1 : T we 
an easily repeat the pro
ess obtain-ing O(T 2).Alternatively a very simple example of dynami
 programming allowsus to smooth at all points in O(T) time.

The forward-ba
kward algorithm

DonePrior
Re
ursively 
ompute all values bt+1:T and 
ombine with stored values for f1:t.

Re
ursively 
ompute all values for f1:t and store results

Computing the most likely sequen
e: the Viterbi algorithmIn 
omputing the most likely sequen
e the aim is to obtainargmax

s1:t

Pr(s1:t|e1:t)Earlier we derived the joint distribution for all relevant variables

Pr(S0, S1, . . . , St, E1, E2, . . . , Et) = Pr(S0)

t∏

i=1

Pr(Si|Si−1)Pr(Ei|Si)

Computing the most likely sequen
e: the Viterbi algorithmWe therefore havemax

s1:t

Pr(s1:t, St+1|e1:t+1)

= cmax

s1:t

Pr(et+1|St+1)Pr(St+1|st)Pr(s1:t|e1:t)

= cPr(et+1|St+1)max

st






Pr(St+1|st) max

s1:t−1

Pr(s1:t−1, st|e1:t)




This looks a bit �er
e , despite the fa
t that:� The se
ond line is just Bayes' theorem applied to the joint distri-bution.� The last line is just a re-arrangement of the se
ond line.



Computing the most likely sequen
e: the Viterbi algorithmThere is however a way to visualise it that leads to a dynami
 pro-gramming algorithm 
alled the Viterbi algorithm .Step 1: Simplify the notation.� Assume there are n states s1, . . . , sn and m possible observations

e1, . . . , em at any given time.� Denote Pr(St = sj|St−1 = si) by pi,j(t).� Denote Pr(et|St = si) by qi(t).It's important to remember in what follows that the observations areknown but that we'remaximizing over all possible state sequen
es .

Computing the most likely sequen
e: the Viterbi algorithmThe equation we're interested in is now of the form
P =

T∏

t=1

pi,j(t)qi(t)

(The prior Pr(S0) has been dropped out for the sake of 
larity, but iseasy to put ba
k in in what follows.)The equation P will be referred to in what follows.It is in fa
t a fun
tion of any given sequen
e of states .

Computing the most likely sequen
e: the Viterbi algorithmStep 2: Make a grid: 
olumns denote time and rows denote state.

... ... ... ... ...... ...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

Computing the most likely sequen
e: the Viterbi algorithmStep 3: Label the nodes:� Say at time t the a
tual observation was et. Then label the nodefor si in 
olumn t with the value qi(t).� Any sequen
e of states through time is now a path through thegrid. So for any transition from si at time t − 1 to sj at time tlabel the transition with the value pi,j(t).In the following diagrams we 
an often just write pi,j and qi be
ausethe time is 
lear from the diagram.So for instan
e...



Computing the most likely sequen
e: the Viterbi algorithm

... ... ... ... ...... ...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

q1(2)

p2,1(2)

qn(k)

q2(1) p1,3(3)

q3(3)

pn,n−1(k + 1)

qn−1(k + 1)

Computing the most likely sequen
e: the Viterbi algorithm

� The value of P =
∏T

t=1 pi,j(t)qi(t) for any path through the grid isjust the produ
t of the 
orresponding labels that have been added.� But we don't want to �nd the maximum by looking at all thepossible paths be
ause this would be time-
onsuming.� The Viterbi algorithm 
omputes the maximum by moving fromone 
olumn to the next updating as it goes.� Say you're at 
olumn k and for ea
h node m in that 
olumn youknow the highest value for the produ
t to this point over anypossible path . Call this:
Wm(k) = max

s1:k

k∏

t=1

pi,j(t)qi(t)

Computing the most likely sequen
e: the Viterbi algorithm

... ... ... ... ...... ...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

pn,n−1(k + 1)

qn−1(k + 1)

W1(k)

W2(k)

W3(k)

Wn−1(k)

Wn(k)

Computing the most likely sequen
e: the Viterbi algorithmHere is the key point: you only need to know� The values Wi(k) for i = 1, . . . , n at time k.� The numbers pi,j(k + 1).� The numbers qi(k + 1).to 
ompute the values Wi(k + 1) for the next 
olumn k + 1.This is be
ause

Wi(k + 1) = max

j
Wj(k)pj,i(k + 1)qi(k + 1)



Computing the most likely sequen
e: the Viterbi algorithmOn
e you get to the 
olumn for time t:� The node with the largest value for Wi(t) tells you the largestpossible value of P.� Provided you stored the path taken to get there you 
an workba
kwards to �nd the 
orresponding sequen
e of states .This is the Viterbi algorithm .

Computing the most likely sequen
e: the Viterbi algorithm

... ... ... ... ...... ...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

W3(t) maximum

Hidden Markov modelsNow for a spe
i�
 
ase: hidden Markov models (HMMs). Here wehave a single , dis
rete state variable Si taking values s1, s2, . . . , sn.For example, with n = 3 we might have

s1

s2

s3

Pr(St+1|St = s1) Pr(St+1|St = s2)

0.3

0.6

0.1

0.2

0.6

0.2

Pr(St+1|St = s3)

0.2

0.3

0.5

s3

s2s1

Hidden Markov modelsIn this simpli�ed 
ase the 
onditional probabilities Pr(St+1|St) 
an berepresented using the matrix

Sij = Pr(St+1 = sj|St = si)or for the example on the previous slide

S =





0.3 0.1 0.6

0.2 0.6 0.2

0.2 0.3 0.5





← Pr(S|s1)

← Pr(S|s2)

← Pr(S|s3)

=









Pr(s1|s1) Pr(s2|s1) · · · Pr(sn|s1)Pr(s1|s2) Pr(s2|s2) · · · Pr(sn|s2)... ... . . . ...Pr(s1|sn) Pr(s2|sn) · · · Pr(sn|sn)









To save spa
e, I am abbreviating Pr(St+1 = si|St = sj) to Pr(si|sj).



Hidden Markov modelsThe 
omputations we're making are always 
onditional on some a
-tual observations e1:T .For ea
h t we 
an therefore use the sensor model to de�ne a furthermatrix Et:� Et is square and diagonal (all o�-diagonal elements are 0);� the ith element of the diagonal is Pr(et|St = si).So in our present example with 3 states, there will be a matrix

Et =





Pr(et|s1) 0 0

0 Pr(et|s2) 0

0 0 Pr(et|s3)





for ea
h t = 1, . . . , T .

Hidden Markov modelsIn the general 
ase the equation for �ltering wasPr(St+1|e1:t+1) = cPr(et+1|St+1)
∑

st

Pr(St+1|st)Pr(st|e1:t)and the message f1:t was introdu
ed as a representation of Pr(St|e1:t).In the present 
ase we 
an de�ne f1:t to be the ve
tor

f1:t =









Pr(s1|e1:t)Pr(s2|e1:t)...Pr(sn|e1:t)









Key point: the �ltering equation now redu
es to nothing but ma-trix multipli
ation .

What does matrix multipli
ation do?What does matrix multipli
ation do? It 
omputes weighted sum-mations :

Ab =









a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m... ... . . . ...

an,1 an,2 · · · an,m

















b1

b2...

bm









=









∑m
i=1 a1,ibi∑m
i=1 a2,ibi...∑m
i=1 an,ibi









So the point at the end of the last slide shouldn't 
ome as a bigsurprise!

Hidden Markov modelsNow, note that if we have n states

STf1:t =











Pr(s1|s1) · · · Pr(s1|sn)Pr(s2|s1) · · · Pr(s2|sn)... . . . ...Pr(sn|s1) · · · Pr(sn|sn)





















Pr(s1|e1:t)Pr(s2|e1:t)...Pr(sn|e1:t)











=











Pr(s1|s1)Pr(s1|e1:t) + · · · + Pr(s1|sn)Pr(sn|e1:t)Pr(s2|s1)Pr(s1|e1:t) + · · · + Pr(s2|sn)Pr(sn|e1:t)...Pr(sn|s1)Pr(s1|e1:t) + · · · + Pr(sn|sn)Pr(sn|e1:t)











=











∑
s Pr(s1|s)Pr(s|e1:t)∑
s Pr(s2|s)Pr(s|e1:t)...∑
s Pr(sn|s)Pr(s|e1:t)













Hidden Markov modelsAnd taking things one step further

Et+1S
Tf1:t =





Pr(et+1|s1) 0. . .

0 Pr(et+1|sn)













∑
sPr(s1|s)Pr(s|e1:t)∑
sPr(s2|s)Pr(s|e1:t)...∑
sPr(sn|s)Pr(s|e1:t)









=









Pr(et+1|s1)
∑

sPr(s1|s)Pr(s|e1:t)Pr(et+1|s2)
∑

sPr(s2|s)Pr(s|e1:t)...Pr(et+1|sn)
∑

sPr(sn|s)Pr(s|e1:t)









Compare this with the equation for �lteringPr(St+1|e1:t+1) = cPr(et+1|St+1)
∑

st

Pr(St+1|st)Pr(st|e1:t)
Hidden Markov modelsComparing the expression for Et+1S

Tf1:t with the equation for �lteringwe see that

f1:t+1 = cEt+1S
Tf1:tand a similar equation 
an be found for b

bT+1:t = SET+1bT+2:tExer
ise: derive this.The fa
t that these 
an be expressed simply using only multipli
ationof ve
tors and matri
es allows us to make an improvement to theforward-ba
kward algorithm.

Hidden Markov modelsThe forward-ba
kward algorithm works by:� Moving up the sequen
e from 1 to T , 
omputing and storing valuesfor f.� Moving down the sequen
e from T to 1 
omputing values for b and
ombining them with the stored values for f using the equationPr(St|e1:T) = cf1:tbt+1:TNow in our simpli�ed HMM 
ase we have
f1:t+1 = cEt+1S

Tf1:tor multiplying through by (Et+1S
T)−1 and re-arranging

f1:t =
1

c
(ST)−1(Et+1)

−1f1:t+1

Hidden Markov modelsSo as long as:� We know the �nal value for f.� ST has an inverse.� Every observation has non-zero probability in every state.We don't have to store T di�erent values for f|we just work through,dis
arding intermediate values, to obtain the last value and then workba
kward.



Example: 2008, paper 9, question 5A friend of mine likes to 
limb on the roofs of Cambridge. To makea good start to the 
oming week, he 
limbs on a Sunday with prob-ability 0.98. Being 
on
erned for his own safety, he is less likely to
limb today if he 
limbed yesterday, soPr(climb today|climb yesterday) = 0.4If he did not 
limb yesterday then he is very unlikely to 
limb today,so Pr(climb today|¬climb yesterday) = 0.1Unfortunately, he is not a very good 
limber, and is quite likely toinjure himself if he goes 
limbing, soPr(injury|climb today) = 0.8whereas Pr(injury|¬climb today) = 0.1
Example: 2008, paper 9, question 5You learn that on Monday and Tuesday evening he obtains aninjury, but on Wednesday evening he does not. Use the �lteringalgorithm to 
ompute the probability that he 
limbed on Wednes-day.Initially

f1:0 =

(

0.98

0.02

)

S =

(

0.4 0.6

0.1 0.9

)

E =

(

0.8 0

0 0.1

)

E ′ =

(

0.2 0

0 0.9

)

Example: 2008, paper 9, question 5The update equation is

f1:t+1 = cEt+1S
Tf1:tso

f1:1 =
c

10, 000

(

8 0

0 1

) (

4 1

6 9

)(

98

2

)

=

(

0.83874

0.16126

)

Repeating this twi
e more using E ′ rather than E the �nal time gives
f1:2 =

(

0.81268

0.18732

)

f1:3 =

(

0.10429

0.89571

)

so the answer is 0.1.

Example: 2008, paper 9, question 5Over the 
ourse of the week, you also learn that he does not obtainan injury on Thursday or Friday. Use the smoothing algorithmto 
ompute the probability that he 
limbed on Thursday.The S, E and E ′ matri
es are the same. The ba
kward message startsas

b6:5 =

(

1

1

)

and the update equation is

bt:T = SEtbt+1:TThen working ba
kwards

b5:5 =
1

100

(

4 6

1 9

)(

2 0

0 9

)(

1

1

)

=

(

0.62

0.83

)



Example: 2008, paper 9, question 5We also need one more forward step, whi
h gives

f1:4 =

(

0.03249

0.96751

)

Finally

cf1:4b5:5 = c

(

0.03249 × 0.62

0.96751 × 0.83

)

=

(

0.02447

0.97553

)

giving the answer 0.02447.

Online smoothingSay we want to smooth at a �xed number of time steps . We 
analso obtain a simple algorithm for updating the result ea
h time anew et+1 appears.

1 2 TT − lag
· · · · · ·

1 2 TT − lag

· · · · · ·

New eT+1

Smooth here

Update to hereT + 1T − lag+ 1

Online smoothingAs usual we need to 
al
ulate

cf1:T−lagbT−lag+1:Tto smooth at time (T − lag) if we've progressed to time T . So: assume
f1:T−lag and bT−lag+1:T are known.What 
an we now do when eT+1 arrives to obtain f1:T−lag+1 and bT−lag+2:T+1?
f is easy to update be
ause as usual

f1:T−lag+1 = cET−lag+1S
T f1:T−lagKnown

Online smoothing

b is more tri
ky.We know that

bT−lag+1:T = SET−lag+1bT−lag+2:Tand 
ontinuing this re
ursion up to the end of the sequen
e at T gives

bT−lag+1:T =

T∏

i=T−lag+1

SEi ×









1

1...

1











Online smoothingDe�ne

βa:b =

b∏

i=a

SEiso

bT−lag+1:T = βT−lag+1:T ×









1

1...

1









Online smoothingNow when eT+1 arrives we have
bT−lag+2:T+1 =

T+1∏

i=T−lag+2

SEi ×









1

1...
1









= βT−lag+2:T+1 ×









1

1...
1









= E−1
T−lag+1S

−1βT−lag+1:TSET+1 ×









1

1...

1









Online smoothingThis leads to an easy way to update β

βa+1:b+1 = E−1
a S−1βa:bSEb+1Using this gives the required update for b.59


