Uncertainty V: probabilistic reasoning through time

We now examine:

e How an agent might operate by keeping track of the state of its
environment in an uncertain world, and how alterations in world
state and uncertainty in observing the world can be modelled
using probability distributions.

e How inferences can be performed regarding the current state, past
state and future states.

e The Viterb: algorithm for computing the most likely sequence.

e A slightly simplified system within this framework called a hidden
Markov model (HMM), and the way in which some inference tasks
can be simplified in the HMM case.

Reading: Russell and Norvig, chapter 15.

Probabilistic reasoning through time

A fundamental idea throughout the AI courses has been that an agent
should keep track of the state of the environment:

e The environment’s state changes over time.
e The knowledge of how the state changes may be uncertain.

e The agent’s perception of the state of the environment may be
uncertain.

For all the usual reasons related to uncertainty, we need to move
beyond logic, situation calculus etc.

States and evidence

We model the (unobservable) state of the environment as follows:

e We use a sequence
(So,S1,52,...)
of sets of random variables (RVs).
e Each S, is a set of RVs

Se={sV ... siM

denoting the state of the environment at time t, wheret =0,1,2,.. ..

Think of the state as changing over time.

So—>S1—>Sz—>"'

States and evidence

At each time t there is also an observable set
E ={E",... E™}

of random variables denoting the evidence that an agent obtains
about the state at time t.

As usual capitals denote RVs and lower case denotes actual values.
So actual values for the assorted RVs are denoted

1
St:{si),...,sin)}:st

1
Et:{ei),...,eim)}:et




Stationary and Markov processes

As t can in principle increase without bound we now need some sim-
plifying assumptions.

Assumption 1: We deal with stationary processes: probability dis-
tributions do not change over time.

Assumption 2: We deal with Markov processes
Pr(S/Sp:t—1) = Pr(S[St-1) (1)
where SO:t—] = (SO) S]) o )St—] )

(Strictly speaking this is a first order Markov Process, and we’ll
only consider these.)

Pr(S{/S¢_1) is called the transition model.

Stationary and Markov processes

Assumption 3: We assume that evidence only depends on the current

state
Pr(E¢So:, E1:-1) = Pr(E4[S¢) (2)

Then

Pr(E{S;) is called the sensor model.

Stationary and Markov processes

Pr(So) is the prior probability of the starting state. We need this as
there has to be some way of getting the process started.

The full joint distribution

Given:

1. The prior Pr(Sy).
2. The transition model Pr(SS; ;).
3. The sensor model Pr(E|S;).

along with the assumptions of stationarity and the assumptions of
independence in equations 1 and 2 we have

t
Pr(So,S1,...,St, E1, Ea, .. Be) = Pr(So) | [ Pr(SilSi1)Pr(EdS:)

i=1

This follows from basic probability theory as for example
Pr(So, $1,S2, E1, B2) = Pr(E2/So2, E1)Pr(S2/Se.1, E1)Pr(Eq|So1)Pr(S1(So)E
= Pr(E2[S2)Pr(S,S1)Pr(E1[S1)Pr(81/S0)Pr(So)




Example: two biased coins

Here'’s a simple example with only two states and two observations.
I have two biased coins.

I flip one and tell you the outcome.

I then either stay with the same coin, or swap them.

This continues, producing a succession of outcomes.

0.2
0.2
0.1 0.9
head head

Example: two biased coins

We'll use the following numbers:

e The prior Pr(Sy = coin1) = 0.5.
e The transition model

Pr(S{ = coin1|Si_; = coinl) = Pr(S; = coin2|S;_; = coin2) = 0.8
Pr(S; = coin1|Si_; = coin2) = Pr(S; = coin2|S;_; = coinl) = 0.2

e The sensor model

Pr(E; = head|S; = coin1) = 0.1
Pr(E; = head|S; = coin2) = 0.9

Example: two biased coins

This is straighforward to simulate.

Here's an example of what happens:

[c2,c2,c1,C1,C1,C1,C1,C1,C1,C1,C1,C1,C2,C1,C1,C1,C1,C1,C1,C1,C1,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2]

[Hd,T1,T1,T1,Hd,T1,Hd,T1,T1,T1,Hd, T1,Hd, T1,T1, T1, T, T1,Hd, T1,T1,Hd ,Hd, Hd, Hd ,Hd ,Hd,Hd ,Hd, T1,Hd,Hd,Hd,Hd ,Hd,Hd ,Hd, Hd, T1,Hd]

As expected, we tend to see runs of a single coin, and might expect
to be able to guess which is being used as one favours heads and the
other tails.

Example: 2008, paper 9, question 5

A friend of mine likes to climb on the roofs of Cambridge. To make
a good start to the coming week, he climbs on a Sunday with prob-
ability 0.98. Being concerned for his own safety, he is less likely to
climb today if he climbed yesterday, so

Pr(climb today|climb yesterday) = 0.4

If he did not climb yesterday then he is very unlikely to climb today,
o)
Pr(climb today|—climb yesterday) =0.1

Unfortunately, he is not a very good climber, and is quite likely to
injure himself if he goes climbing, so

Pr(injurylclimb today) = 0.8

whereas
Pr(injury/—climb today) = 0.1




Example: 2008, paper 9, question 5

This has a similar corresponding diagram:

0.1

We’'ll look at the rest of this exam question later.

Performing inference

There are four basic inference tasks that we might want to perform.

In each of the following cases, assume that we have observed the
evidence

E]:t = €1t
Task 1: filtering

Deduce what state we might now be in by computing

Pr(st‘elzt)-

In the coin tossing question: “If you’ve seen all the outcomes so
far, infer which coin was used last”.

In the exam question: “If you observed all the injuries so far, infer
whether my friend climbed today”.

Performing inference

Task 2: prediction

Deduce what state we might be in some time in the future by com-
puting
Pr(Si.tley.t) for some T > 0.

In the coin tossing question: “If you’ve seen all the outcomes so
far, infer which coin will be tossed T steps in the future”.

In the exam question: “If you’ve observed all the injuries so far,
infer whether my friend will go climbing T nights from now”.

Performing inference

Task 3: Smoothing

Deduce what state we might have been in at some point in the past
by computing
Pr(Syers) for 0 <t < T

In the coin tossing question: “If you’ve seen all the outcomes so
far, infer which coin was tossed at time t in the past”.

In the exam question: “If you’ve observed all the injuries so far,
infer whether my friend climbed on night t in the past”.




Performing inference

Task 4: Find the most likely explanation

Deduce the most likely sequence of states so far by computing

argmax Pr(sy.¢ej.)
STt

In the coin tossing question: “If you’ve seen all the outcomes so
far, infer the most probable sequence of coins used”.

In the exam question: “If you’ve observed all the injuries so far,
infer the most probable collection of nights on which my friend
climbed”.

Filtering

We want to compute Pr(Sie;). This is often called the forward
message and denoted

f1 = Pr(Siler)
for reasons that are about to become clear.

Remember that S; is an RV and so fy; is a probability distribution
containing a probability for each possible value of S;.

It turns out that this can be done in a simple manner with a recursive
estimation. Obtain the result at time t + 1:

1. using the result from time t and...
2. ...incorporating new evidence ei;1.

frae = glewr, fia)
for a suitable function g that we'll now derive.

Filtering

Step 1:

Project the current state distribution forward

Pr(Si1leris1) = Pr(Seilers, evyr)
= cPr(ew1/Si11, 1) Pr(Seialer)
= cPr(eq1/St11)Pr(Sealerd)
Sensor model Needs more work

where as usual c is a constant that normalises the distribution. Here,

e The first line does nothing but split e;..;1 into e,1; and ej..
e The second line is an application of Bayes’ theorem.

e The third line uses assumption 3 regarding sensor models.

Filtering

Step 2:
To obtain Pr(Si.iler.)
Pr(Siilernd) = Z Pr(Sii1, silen)

St

= Z Pr(Siialse, ert)Pr(s¢ler)

St
= Z Pr(S¢i1lst) Pr(s¢ler.)
~— —_—

St Transition model  Available from previous step

Here,

e The first line uses marginalisation.
e The second line uses the basic equation Pr(A,B) = Pr(A|B)Pr(B).

e The third line uses assumption 2 regarding transition models.




Filtering

Pulling it all together

Pr(S¢iilerii1) = cPr(eq1/Se1) Z Pr(S¢i1lse) Pr(s¢ler.)

Sensor model St Transition model From previous step

(3)

This will be shortened to
f1.s1 = cFORWARD (e 1, 1)

Here

e {1, is a shorthand for Pr(Si|ey.).
e f1; is often interpreted as a message being passed forward.

e The process is started using the prior.

Prediction

Prediction is somewhat simpler as

Pr(S¢irilent) = Z Pr(Seit11, seetlert)
~——
Prediction at t+T+1 St4T

= Z Pr(SiirlseT, er) Pr(siirlers)

St+T

= Z Pr(Seiri1lse1) Priseirlend)

St+T Transition model Prediction at t+T

However we do not get to make accurate predictions arbitrarily far
into the future!

Smoothing

For smoothing, we want to calculate Pr(Sile;.t) for 0 <t < T.

Again, we can do this in two steps.

Step 1:
Pr(Sierr) = Pr(Silert, evy17)
= cPr(Silert)Pr(ews1.1/St, ert)
= cPr(S¢ler.d)Pr(eq1:7/St)
= cfyiber
Here

e f1 is the forward message defined earlier.

e by, 1.1 is a shorthand for Pr(e,1.7/S¢) to be regarded as a message
being passed backward.

Smoothing
Step 2:

bt | =Pr(eg7lSe) = Z Pr(ec1:, se11St)

St+1
= Z Pr(egr:rlsi1)Pr(silSi)
St+1
= Z Pr(eq i1, e27/se41)Pr(ses1/Se)
St+1
= Z Pr(eq1lsg1)Pr(ewarlsi1) Pr(selSe)
St+1  Sensor model b1 Transition mode

=| BACKWARD(ei 1.1, biyoT1)

(4)

This process is initialised with
bis1e = Pr(ery7lSt) = (1,...,1)




The forward-backward algorithm

So: our original aim of computing Pr(S|e;.r) can be achieved using:

e a recursive process working from time 1 to time t (equation 3);

e a recursive process working from time T to time t+1 (equation 4).

This results in a process that is O(T) given the evidence et and
smooths for a single point at time t.

To smooth at all points 1: T we can easily repeat the process obtain-
ing O(T?).

Alternatively a very simple example of dynamic programming allows
us to smooth at all points in O(T) time.

The forward-backward algorithm

Recursively compute all values for fq. and store results
- w
Done

Recursively compute all values b1t and combine with stored values for fy..

Computing the most likely sequence: the Viterbi algorithm

In computing the most likely sequence the aim is to obtain

argmax Pr(sy.ej.)
S1:t

Earlier we derived the joint distribution for all relevant variables

t
PI(SOv 51, ) St» E] ) EZ) v vEt) = PI(SO) H Pr(silsifl )Pr(El‘Sl)

i=1

Computing the most likely sequence: the Viterbi algorithm

We therefore have

max Pr(sy.q, Sit1lernis1)
Tt

=cC n;a_x Pr(eq1/St41)Pr(Seiils)Pr(siiler)
it

:CPr(et+]|St+1)msaX Pr(Sii1lst) IsnaXPI(S1:t—1,St|€1:t)
t T:t—1

This looks a bit fierce, despite the fact that:

e The second line is just Bayes’ theorem applied to the joint distri-
bution.

e The last line is just a re-arrangement of the second line.




Computing the most likely sequence: the Viterbi algorithm

There is however a way to visualise it that leads to a dynamic pro-
gramming algorithm called the Viterb: algorithm.

Step 1: Simplify the notation.

e Assume there are n states s;,...,s, and m possible observations
ey, ...,en at any given time.

e Denote Pr(S; = s;|S¢_1 = si) by pi;(t).
e Denote Pr(eyS; = si) by qi(t).

It’s important to remember in what follows that the observations are
known but that we’re mazimizing over all possible state sequences.

Computing the most likely sequence: the Viterbi algorithm

The equation we’re interested in is now of the form

.
P = H pij(t)ai(t)
t=1

(The prior Pr(Sy) has been dropped out for the sake of clarity, but is
easy to put back in in what follows.)

The equation P will be referred to in what follows.

It is in fact a function of any given sequence of states.

Computing the most likely sequence: the Viterbi algorithm

Step 2: Make a grid: columns denote time and rows denote state.

1 2 3 k k+1 t
1 [ ] [ ] [ ] [ ] [ [ ]
sz [ ] [ J [ ] o ® [ ]
s3 [ ] [ ] [ ] [ [ [ ]
sn1 @ [ J [ ] o ® [ ]

Sn [ ] [ ] [ ] [ [ [ ]

Computing the most likely sequence: the Viterbi algorithm

Step 3: Label the nodes:

e Say at time t the actual observation was e;. Then label the node
for s; in column t with the value gi(t).

e Any sequence of states through time is now a path through the
grid. So for any transition from s; at time t — 1 to s; at time t
label the transition with the value p;;(t).

In the following diagrams we can often just write p;; and q; because
the time is clear from the diagram.

So for instance...




Computing the most likely sequence: the Viterbi algorithm

k k+1 e t
[ ] [ ] [ J
[ [ [ ]
[ [ [ ]
Ana(k+1)
s @ [ [ ] [ [ ]
Prni(k+1)

Sn [ ] [ [ ] [ [ ]

an(k)

Computing the most likely sequence: the Viterbi algorithm

e The value of P = HL] pi;j(t)qgi(t) for any path through the grid is
just the product of the corresponding labels that have been added.

e But we don’t want to find the maximum by looking at all the
possible paths because this would be time-consuming.

e The Viterb: algorithm computes the maximum by moving from
one column to the next updating as it goes.

e Say you're at column k and for each node m in that column you
know the highest value for the product to this point over any
possible path. Call this:

k

Win(k) = IIslliékXHPi,j(t)Qi(t)
i

Computing the most likely sequence: the Viterbi algorithm

1 2 3 e k k+1 s t
Wi(k)

s [ ] [ ] [ J
W, (k)

s> [ ] [ ] [}
Ws(k)

s3 [ ] [ ] [}

Woi(k)  dnalk+1)
sno1 @ [ ] [ [ ] [

Prana(k+1)
P ) ° ° Wa(k) ° °

Computing the most likely sequence: the Viterbi algorithm

Here is the key point: you only need to know

e The values Wj(k) fori=1,...,n at time k.
e The numbers p;;(k+ 1).
e The numbers qi(k+ 1).
to compute the values Wi(k + 1) for the next column k + 1.

This is because

Wl(k + 1 ) = m.aXWj(k)pj‘i(k + 1 )ql(k + 1 )
)




Computing the most likely sequence: the Viterbi algorithm

Once you get to the column for time t:

e The node with the largest value for W;(t) tells you the largest
possible value of P.

e Provided you stored the path taken to get there you can work
backwards to find the corresponding sequence of states.

This is the Viterb: algorithm.

Computing the most likely sequence: the Viterbi algorithm

1 2 3 k k+1 t

$1

S2

S3

Sn

Hidden Markov models

Now for a specific case: hidden Markov models (HMMs). Here we
have a single, discrete state variable S; taking values si,$2,...,Sn.
For example, with n = 3 we might have

Pr(SeSe =s1)  Pr(SenilSe=s52) Pr(SenlSe=s3)
51 0.3 0.2 0.2

s2 0.1 0.6 0.3

s3 0.6 0.2 0.5

Hidden Markov models

In this simplified case the conditional probabilities Pr(S;1|S;) can be
represented using the matrix

Sij = Pr(S¢1 = s5S¢ = s4)
or for the example on the previous slide
0.3 0.1 0.6\ « Pr(S|sy)

S=1020.6 02| < Pr(S|sz)
0.2 0.3 0.5/ « Pr(S|s3)

Pr(si[s1) Pr(szls1) -+ Pr(snls1)
Pr(sils) Pr(sy[sy) --- Pr(salsz)

Pr(si[sn) Pr(sylsn) --- Pr(snlsy)

To save space, [ am abbreviating Pr(Si;1 = si/S¢ = s;) to Pr(sils;).




Hidden Markov models

The computations we're making are always conditional on some ac-
tual observations ej.r.

For each t we can therefore use the sensor model to define a further
matrix Eq:

e E; is square and diagonal (all off-diagonal elements are 0);

e the ith element of the diagonal is Pr(eS; = si).

So in our present example with 3 states, there will be a matrix

Pr(esy) 0 0
E, = 0 Pr(eys;) 0
0 0 Pr(eys3)

foreacht=1,...,T.

Hidden Markov models

In the general case the equation for filtering was

Pr(Sesilerts1) = cPr(eq1/Si1) ) Pr(Seiilse)Pr(sien)

St

and the message 1 was introduced as a representation of Pr(Si|er.t).

In the present case we can define fy to be the vector
Pr(si[er)

fro = Pr(53|€1:t)

Pr(sqler.)

Key point: the filtering equation now reduces to nothing but ma-
triz multiplication.

What does matrix multiplication do?

What does matrix multiplication do? It computes weighted sum-
mations:

m
aj; a2 oo Qi by 2 iy apb;
az; a2 -+ Oym b, >y aziby
Ab = A A . = -7
m
an1 An2 - Onm bm 2121 an,ibi

So the point at the end of the last slide shouldn’t come as a big
surprise!

Hidden Markov models

Now, note that if we have n states

Pr(sils1) --- Pr(silsn) Pr(silers)
STh, — Pr(sy[s1) -+ Pr(salsn) Pr(szler)
Pr(sn‘sl) PI‘(ST\‘S“) Pr(sn‘elzt)

Pr(sils1)Pr(si1ler) + - - - + Pr(silsy)Pr(syler)
Pr(sals1)Pr(silert) + - - - + Pr(salsn)Pr(salernt)

Pr(sn‘sl)Pr(sllel:t) +eee Tt Pr(snlsn)Pr(sn‘elzt)

> Pr(sils)Pr(slery)
> Pr(sa|s)Pr(sler)

S Pr(sls)Pr(slers)




Hidden Markov models

And taking things one step further

r(syls sle.
T Priecnls:) 0 %S Pr( s;}s Es}elg
Ei ST = s :
0 Priecalsn] /\ 5 Pr(sys Pr(sler)
Pr(egiilst) Y Pr(sils)Pr(sles.)
_ Pr(eq1lsz) Z Pr(s,|s)Pr(sler+)

Pr(e¢i1/sn) Z Pr (snls)Pr(sley.)

Compare this with the equation for filtering

Pr(S¢iileri1) = cPr(eg[Sei) Z Pr(S¢iilse)Pr(siler)

St

Hidden Markov models

Comparing the expression for E,,S"f., with the equation for filtering
we see that

101 = cBEey STfl:t

and a similar equation can be found for b

bri1.t = SEr b1y

Ezxercise: derive this.

The fact that these can be expressed simply using only multiplication
of vectors and matrices allows us to make an improvement to the
forward-backward algorithm.

Hidden Markov models

The forward-backward algorithm works by:

e Moving up the sequence from 1 to T, computing and storing values
for f.

e Moving down the sequence from T to 1 computing values for b and
combining them with the stored values for f using the equation

Pr(Sierr) = cfribprr

Now in our simplified HMM case we have
frap = CEt+1STf1:t
or multiplying through by (E{S")~" and re-arranging

1
f1e = E(ST)_1(Et+1)_]f1:t+1

Hidden Markov models

So as long as:

e We know the final value for f.
e ST has an inverse.

e Every observation has non-zero probability in every state.

We don’t have to store T different values for f—we just work through,
discarding intermediate values, to obtain the last value and then work
backward.




Example: 2008, paper 9, question 5

A friend of mine likes to climb on the roofs of Cambridge. To make
a good start to the coming week, he climbs on a Sunday with prob-
ability 0.98. Being concerned for his own safety, he is less likely to
climb today if he climbed yesterday, so

Pr(climb today|climb yesterday) = 0.4

If he did not climb yesterday then he is very unlikely to climb today,

S0
Pr(climb today|—climb yesterday) = 0.1

Unfortunately, he is not a very good climber, and is quite likely to
injure himself if he goes climbing, so

Pr(injurylclimb today) =0.8

whereas
Pr(injury/—climb today) = 0.1

Example: 2008, paper 9, question 5

You learn that on Monday and Tuesday evening he obtains an
injury, but on Wednesday evening he does not. Use the filtering
algorithm to compute the probability that he climbed on Wednes-
day.

Initially
o= (002
5= (o1 0
= (% o1)
E= (062 099)

Example: 2008, paper 9, question 5

The update equation is

frip = CEt+1STf1:t

fo__°© 80 41 98\ [ 0.83874

"= 70,000\01/)\69)\ 2 )7 o16126
Repeating this twice more using E’ rather than E the final time gives
fo— 0.81268

271 0.18732

¢ (010429
1371 0.89571

S0

so the answer is 0.1.

Example: 2008, paper 9, question 5

Quwer the course of the week, you also learn that he does not obtain
an tnjury on Thursday or Friday. Use the smoothing algorithm
to compute the probability that he climbed on Thursday.

The S, E and E’ matrices are the same. The backward message starts

as 1
b6:5 - <-I >

and the update equation is
bt:T = SEtbt+1:T

Then working backwards

i (19) (65) (1) = (65)




Example: 2008, paper 9, question 5

We also need one more forward step, which gives

¢ (0.03249
14 =\ 0.96751

Finally

0.03249 x 0.62 0.02447
cfrabss = ¢ =

0.96751 x 0.83 0.97553
giving the answer 0.02447.

Online smoothing

Say we want to smooth at a fized number of time steps. We can
also obtain a simple algorithm for updating the result each time a
New ey appears.

Smooth here

1 2 T —lag T
L] L] L] L]
New ety
b 2 T—lagT—lag+1 T  T+1
e L] e L) . cae L] L)
"""""""""""""""""""" T e o here

Online smoothing

As usual we need to calculate

C1.T 1agbTlag+1:T

to smooth at time (T —lag) if we've progressed to time T. So: assume
f1:7-1ag and by_jag41.7 are known.

What can we now do when et arrives to obtain f1.71_1ag1 and br_jag 27417

f is easy to update because as usual

|
f17tag+1 = CET1ag 1S f171ag

Known

Online smoothing

b is more tricky.

We know that
b tag+1:T = SET 1ag41bT 1agt2T
and continuing this recursion up to the end of the sequence at T gives

[
brognr= ] SEix|
i=T—lag+1 1




Online smoothing

Define .
Bav = | [ SE:
i=a
so
1
1
brtag+1T = Brotag1:T X :
1

Online smoothing

Now when er, arrives we have

W]
brojagi2141 = H SEi x | |
i=T—lag+2 :

1

1

1

= Brosagrarin X |

1

e .
= E7 1500157 Broiagr17SET1 X

69

Online smoothing

This leads to an easy way to update 3

Ba+1:b+l = E;1si] Ba:bSEb+1

Using this gives the required update for b.




