
Unertainty V: probabilisti reasoning through timeWe now examine:� How an agent might operate by keeping trak of the state of itsenvironment in an unertain world, and how alterations in worldstate and unertainty in observing the world an be modelledusing probability distributions.� How inferenes an be performed regarding the urrent state, paststate and future states.� The Viterbi algorithm for omputing the most likely sequene.� A slightly simpli�ed system within this framework alled a hiddenMarkov model (HMM), and the way in whih some inferene tasksan be simpli�ed in the HMM ase.

Reading: Russell and Norvig, hapter 15.

Probabilisti reasoning through timeA fundamental idea throughout the AI ourses has been that an agentshould keep trak of the state of the environment:� The environment's state hanges over time.� The knowledge of how the state hanges may be unertain.� The agent's pereption of the state of the environment may beunertain.For all the usual reasons related to unertainty , we need to movebeyond logi, situation alulus et.

States and evideneWe model the (unobservable) state of the environment as follows:� We use a sequene

(S0, S1, S2, . . .)of sets of random variables (RVs).� Eah St is a set of RVs

St = {S
(1)
t , . . . , S

(n)
t }denoting the state of the environment at time t, where t = 0, 1, 2, . . ..Think of the state as hanging over time.

S0 → S1→ S2 → · · ·

States and evideneAt eah time t there is also an observable set

Et = {E
(1)
t , . . . , E

(m)
t }of random variables denoting the evidene that an agent obtainsabout the state at time t.As usual apitals denote RVs and lower ase denotes atual values.So atual values for the assorted RVs are denoted

St = {s
(1)
t , . . . , s

(n)
t } = st

Et = {e
(1)
t , . . . , e

(m)
t } = et



Stationary and Markov proessesAs t an in priniple inrease without bound we now need some sim-plifying assumptions.Assumption 1: We deal with stationary proesses : probability dis-tributions do not hange over time.Assumption 2: We deal with Markov proessesPr(St|S0:t−1) = Pr(St|St−1) (1)where S0:t−1 = (S0, S1, . . . , St−1).(Stritly speaking this is a �rst order Markov Proess , and we'llonly onsider these.)Pr(St|St−1) is alled the transition model .

Stationary and Markov proessesAssumption 3: We assume that evidene only depends on the urrentstate Pr(Et|S0:t, E1:t−1) = Pr(Et|St) (2)Then Pr(Et|St) is alled the sensor model .

Stationary and Markov proesses

Pr(S0) S0 S1 S2 S3

E1 E2 E3

· · ·

Pr(St|St−1)

Pr(Et|St)

Pr(S0) is the prior probability of the starting state. We need this asthere has to be some way of getting the proess started.

The full joint distributionGiven:1. The prior Pr(S0).2. The transition model Pr(St|St−1).3. The sensor model Pr(Et|St).along with the assumptions of stationarity and the assumptions ofindependene in equations 1 and 2 we have

Pr(S0, S1, . . . , St, E1, E2, . . . , Et) = Pr(S0)

t∏

i=1

Pr(Si|Si−1)Pr(Ei|Si) .

This follows from basi probability theory as for examplePr(S0, S1, S2, E1, E2) = Pr(E2|S0:2, E1)Pr(S2|S0:1, E1)Pr(E1|S0:1)Pr(S1|S0)Pr

= Pr(E2|S2)Pr(S2|S1)Pr(E1|S1)Pr(S1|S0)Pr(S0)



Example: two biased oinsHere's a simple example with only two states and two observations.I have two biased oins.I ip one and tell you the outome.I then either stay with the same oin, or swap them.This ontinues, produing a suession of outomes.

0.2

0.2

coin1 coin2

head

0.90.1

head

0.80.8

Example: two biased oinsWe'll use the following numbers:� The prior Pr(S0 = coin1) = 0.5.� The transition modelPr(St = coin1|St−1 = coin1) = Pr(St = coin2|St−1 = coin2) = 0.8Pr(St = coin1|St−1 = coin2) = Pr(St = coin2|St−1 = coin1) = 0.2

� The sensor modelPr(Et = head|St = coin1) = 0.1Pr(Et = head|St = coin2) = 0.9

Example: two biased oinsThis is straighforward to simulate.Here's an example of what happens:

[C2,C2,C1,C1,C1,C1,C1,C1,C1,C1,C1,C1,C2,C1,C1,C1,C1,C1,C1,C1,C1,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2]

⇓

[Hd,Tl,Tl,Tl,Hd,Tl,Hd,Tl,Tl,Tl,Hd,Tl,Hd,Tl,Tl,Tl,Tl,Tl,Hd,Tl,Tl,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Tl,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Tl,Hd]

As expeted, we tend to see runs of a single oin, and might expetto be able to guess whih is being used as one favours heads and theother tails.

Example: 2008, paper 9, question 5A friend of mine likes to limb on the roofs of Cambridge. To makea good start to the oming week, he limbs on a Sunday with prob-ability 0.98. Being onerned for his own safety, he is less likely tolimb today if he limbed yesterday, soPr(climb today|climb yesterday) = 0.4If he did not limb yesterday then he is very unlikely to limb today,so Pr(climb today|¬climb yesterday) = 0.1Unfortunately, he is not a very good limber, and is quite likely toinjure himself if he goes limbing, soPr(injury|climb today) = 0.8whereas Pr(injury|¬climb today) = 0.1



Example: 2008, paper 9, question 5This has a similar orresponding diagram:

0.1

injury

0.10.8

injury

0.4

0.6

0.9climb ¬climb

We'll look at the rest of this exam question later.

Performing infereneThere are four basi inferene tasks that we might want to perform.In eah of the following ases, assume that we have observed theevidene

E1:t = e1:tTask 1: �lteringDedue what state we might now be in by omputingPr(St|e1:t).In the oin tossing question: \If you've seen all the outomes sofar, infer whih oin was used last".In the exam question: \If you observed all the injuries so far, inferwhether my friend limbed today".

Performing infereneTask 2: preditionDedue what state we might be in some time in the future by om-puting Pr(St+T |e1:t) for some T > 0.In the oin tossing question: \If you've seen all the outomes sofar, infer whih oin will be tossed T steps in the future".In the exam question: \If you've observed all the injuries so far,infer whether my friend will go limbing T nights from now".

Performing infereneTask 3: SmoothingDedue what state we might have been in at some point in the pastby omputing Pr(St|e1:T) for 0 ≤ t < T.In the oin tossing question: \If you've seen all the outomes sofar, infer whih oin was tossed at time t in the past".In the exam question: \If you've observed all the injuries so far,infer whether my friend limbed on night t in the past".



Performing infereneTask 4: Find the most likely explanationDedue the most likely sequene of states so far by omputingargmax

s1:t

Pr(s1:t|e1:t)

In the oin tossing question: \If you've seen all the outomes sofar, infer the most probable sequene of oins used".In the exam question: \If you've observed all the injuries so far,infer the most probable olletion of nights on whih my friendlimbed".

FilteringWe want to ompute Pr(St|e1:t). This is often alled the forwardmessage and denoted

f1:t = Pr(St|e1:t)for reasons that are about to beome lear.Remember that St is an RV and so f1:t is a probability distributionontaining a probability for eah possible value of St.It turns out that this an be done in a simple manner with a reursiveestimation . Obtain the result at time t + 1:1. using the result from time t and...2. ...inorporating new evidene et+1.

f1:t+1 = g(et+1, f1:t)for a suitable funtion g that we'll now derive.

FilteringStep 1:Projet the urrent state distribution forwardPr(St+1|e1:t+1) = Pr(St+1|e1:t, et+1)

= cPr(et+1|St+1, e1:t)Pr(St+1|e1:t)

= cPr(et+1|St+1)︸ ︷︷ ︸Sensor model Pr(St+1|e1:t)︸ ︷︷ ︸Needs more workwhere as usual c is a onstant that normalises the distribution. Here,� The �rst line does nothing but split e1:t+1 into et+1 and e1:t.� The seond line is an appliation of Bayes' theorem.� The third line uses assumption 3 regarding sensor models.

FilteringStep 2:To obtain Pr(St+1|e1:t)Pr(St+1|e1:t) =
∑

st

Pr(St+1, st|e1:t)

=
∑

st

Pr(St+1|st, e1:t)Pr(st|e1:t)

=
∑

st

Pr(St+1|st)︸ ︷︷ ︸Transition model Pr(st|e1:t)︸ ︷︷ ︸Available from previous stepHere,� The �rst line uses marginalisation.� The seond line uses the basi equation Pr(A,B) = Pr(A|B)Pr(B).� The third line uses assumption 2 regarding transition models.



FilteringPulling it all togetherPr(St+1|e1:t+1) = cPr(et+1|St+1)︸ ︷︷ ︸Sensor model ∑st

Pr(St+1|st)︸ ︷︷ ︸Transition model Pr(st|e1:t)︸ ︷︷ ︸From previous step (3)This will be shortened to

f1:t+1 = cFORWARD(et+1, f1:t)Here� f1:t is a shorthand for Pr(St|e1:t).� f1:t is often interpreted as a message being passed forward.� The proess is started using the prior .

PreditionPredition is somewhat simpler asPr(St+T+1|e1:t)︸ ︷︷ ︸Predition at t+T+1

=
∑

st+T

Pr(St+T+1, st+T |e1:t)

=
∑

st+T

Pr(St+T+1|st+T , e1:t)Pr(st+T |e1:t)

=
∑

st+T

Pr(St+T+1|st+T)︸ ︷︷ ︸Transition model Pr(st+T |e1:t)︸ ︷︷ ︸Predition at t+T

However we do not get to make aurate preditions arbitrarily farinto the future!

SmoothingFor smoothing, we want to alulate Pr(St|e1:T) for 0 ≤ t < T .Again, we an do this in two steps.Step 1: Pr(St|e1:T) = Pr(St|e1:T , et+1:T)

= cPr(St|e1:t)Pr(et+1:T |St, e1:t)

= cPr(St|e1:t)Pr(et+1:T |St)

= cf1:tbt+1:THere� f1:t is the forward message de�ned earlier.� bt+1:T is a shorthand for Pr(et+1:T |St) to be regarded as a messagebeing passed bakward .

SmoothingStep 2:

bt+1:T = Pr(et+1:T |St) =
∑

st+1

Pr(et+1:T , st+1|St)

=
∑

st+1

Pr(et+1:T |st+1)Pr(st+1|St)

=
∑

st+1

Pr(et+1, et+2:T |st+1)Pr(st+1|St)

=
∑

st+1

Pr(et+1|st+1)︸ ︷︷ ︸Sensor model Pr(et+2:T |st+1)︸ ︷︷ ︸
bt+2:T

Pr(st+1|St)︸ ︷︷ ︸Transition model

= BACKWARD(et+1:T , bt+2:T) (4)This proess is initialised with

bt+1:t = Pr(eT+1:T |ST) = (1, . . . , 1)



The forward-bakward algorithmSo: our original aim of omputing Pr(St|e1:T) an be ahieved using:� a reursive proess working from time 1 to time t (equation 3);� a reursive proess working from time T to time t+1 (equation 4).This results in a proess that is O(T) given the evidene e1:T andsmooths for a single point at time t.To smooth at all points 1 : T we an easily repeat the proess obtain-ing O(T 2).Alternatively a very simple example of dynami programming allowsus to smooth at all points in O(T) time.

The forward-bakward algorithm

DonePrior
Reursively ompute all values bt+1:T and ombine with stored values for f1:t.

Reursively ompute all values for f1:t and store results

Computing the most likely sequene: the Viterbi algorithmIn omputing the most likely sequene the aim is to obtainargmax

s1:t

Pr(s1:t|e1:t)Earlier we derived the joint distribution for all relevant variables

Pr(S0, S1, . . . , St, E1, E2, . . . , Et) = Pr(S0)

t∏

i=1

Pr(Si|Si−1)Pr(Ei|Si)

Computing the most likely sequene: the Viterbi algorithmWe therefore havemax

s1:t

Pr(s1:t, St+1|e1:t+1)

= cmax

s1:t

Pr(et+1|St+1)Pr(St+1|st)Pr(s1:t|e1:t)

= cPr(et+1|St+1)max

st






Pr(St+1|st) max

s1:t−1

Pr(s1:t−1, st|e1:t)




This looks a bit �ere , despite the fat that:� The seond line is just Bayes' theorem applied to the joint distri-bution.� The last line is just a re-arrangement of the seond line.



Computing the most likely sequene: the Viterbi algorithmThere is however a way to visualise it that leads to a dynami pro-gramming algorithm alled the Viterbi algorithm .Step 1: Simplify the notation.� Assume there are n states s1, . . . , sn and m possible observations

e1, . . . , em at any given time.� Denote Pr(St = sj|St−1 = si) by pi,j(t).� Denote Pr(et|St = si) by qi(t).It's important to remember in what follows that the observations areknown but that we'remaximizing over all possible state sequenes .

Computing the most likely sequene: the Viterbi algorithmThe equation we're interested in is now of the form
P =

T∏

t=1

pi,j(t)qi(t)

(The prior Pr(S0) has been dropped out for the sake of larity, but iseasy to put bak in in what follows.)The equation P will be referred to in what follows.It is in fat a funtion of any given sequene of states .

Computing the most likely sequene: the Viterbi algorithmStep 2: Make a grid: olumns denote time and rows denote state.

... ... ... ... ...... ...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

Computing the most likely sequene: the Viterbi algorithmStep 3: Label the nodes:� Say at time t the atual observation was et. Then label the nodefor si in olumn t with the value qi(t).� Any sequene of states through time is now a path through thegrid. So for any transition from si at time t − 1 to sj at time tlabel the transition with the value pi,j(t).In the following diagrams we an often just write pi,j and qi beausethe time is lear from the diagram.So for instane...



Computing the most likely sequene: the Viterbi algorithm

... ... ... ... ...... ...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

q1(2)

p2,1(2)

qn(k)

q2(1) p1,3(3)

q3(3)

pn,n−1(k + 1)

qn−1(k + 1)

Computing the most likely sequene: the Viterbi algorithm

� The value of P =
∏T

t=1 pi,j(t)qi(t) for any path through the grid isjust the produt of the orresponding labels that have been added.� But we don't want to �nd the maximum by looking at all thepossible paths beause this would be time-onsuming.� The Viterbi algorithm omputes the maximum by moving fromone olumn to the next updating as it goes.� Say you're at olumn k and for eah node m in that olumn youknow the highest value for the produt to this point over anypossible path . Call this:
Wm(k) = max

s1:k

k∏

t=1

pi,j(t)qi(t)

Computing the most likely sequene: the Viterbi algorithm

... ... ... ... ...... ...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

pn,n−1(k + 1)

qn−1(k + 1)

W1(k)

W2(k)

W3(k)

Wn−1(k)

Wn(k)

Computing the most likely sequene: the Viterbi algorithmHere is the key point: you only need to know� The values Wi(k) for i = 1, . . . , n at time k.� The numbers pi,j(k + 1).� The numbers qi(k + 1).to ompute the values Wi(k + 1) for the next olumn k + 1.This is beause

Wi(k + 1) = max

j
Wj(k)pj,i(k + 1)qi(k + 1)



Computing the most likely sequene: the Viterbi algorithmOne you get to the olumn for time t:� The node with the largest value for Wi(t) tells you the largestpossible value of P.� Provided you stored the path taken to get there you an workbakwards to �nd the orresponding sequene of states .This is the Viterbi algorithm .

Computing the most likely sequene: the Viterbi algorithm

... ... ... ... ...... ...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

W3(t) maximum

Hidden Markov modelsNow for a spei� ase: hidden Markov models (HMMs). Here wehave a single , disrete state variable Si taking values s1, s2, . . . , sn.For example, with n = 3 we might have

s1

s2

s3

Pr(St+1|St = s1) Pr(St+1|St = s2)

0.3

0.6

0.1

0.2

0.6

0.2

Pr(St+1|St = s3)

0.2

0.3

0.5

s3

s2s1

Hidden Markov modelsIn this simpli�ed ase the onditional probabilities Pr(St+1|St) an berepresented using the matrix

Sij = Pr(St+1 = sj|St = si)or for the example on the previous slide

S =





0.3 0.1 0.6

0.2 0.6 0.2

0.2 0.3 0.5





← Pr(S|s1)

← Pr(S|s2)

← Pr(S|s3)

=









Pr(s1|s1) Pr(s2|s1) · · · Pr(sn|s1)Pr(s1|s2) Pr(s2|s2) · · · Pr(sn|s2)... ... . . . ...Pr(s1|sn) Pr(s2|sn) · · · Pr(sn|sn)









To save spae, I am abbreviating Pr(St+1 = si|St = sj) to Pr(si|sj).



Hidden Markov modelsThe omputations we're making are always onditional on some a-tual observations e1:T .For eah t we an therefore use the sensor model to de�ne a furthermatrix Et:� Et is square and diagonal (all o�-diagonal elements are 0);� the ith element of the diagonal is Pr(et|St = si).So in our present example with 3 states, there will be a matrix

Et =





Pr(et|s1) 0 0

0 Pr(et|s2) 0

0 0 Pr(et|s3)





for eah t = 1, . . . , T .

Hidden Markov modelsIn the general ase the equation for �ltering wasPr(St+1|e1:t+1) = cPr(et+1|St+1)
∑

st

Pr(St+1|st)Pr(st|e1:t)and the message f1:t was introdued as a representation of Pr(St|e1:t).In the present ase we an de�ne f1:t to be the vetor

f1:t =









Pr(s1|e1:t)Pr(s2|e1:t)...Pr(sn|e1:t)









Key point: the �ltering equation now redues to nothing but ma-trix multipliation .

What does matrix multipliation do?What does matrix multipliation do? It omputes weighted sum-mations :

Ab =









a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m... ... . . . ...

an,1 an,2 · · · an,m

















b1

b2...

bm









=









∑m
i=1 a1,ibi∑m
i=1 a2,ibi...∑m
i=1 an,ibi









So the point at the end of the last slide shouldn't ome as a bigsurprise!

Hidden Markov modelsNow, note that if we have n states

STf1:t =











Pr(s1|s1) · · · Pr(s1|sn)Pr(s2|s1) · · · Pr(s2|sn)... . . . ...Pr(sn|s1) · · · Pr(sn|sn)





















Pr(s1|e1:t)Pr(s2|e1:t)...Pr(sn|e1:t)











=











Pr(s1|s1)Pr(s1|e1:t) + · · · + Pr(s1|sn)Pr(sn|e1:t)Pr(s2|s1)Pr(s1|e1:t) + · · · + Pr(s2|sn)Pr(sn|e1:t)...Pr(sn|s1)Pr(s1|e1:t) + · · · + Pr(sn|sn)Pr(sn|e1:t)











=











∑
s Pr(s1|s)Pr(s|e1:t)∑
s Pr(s2|s)Pr(s|e1:t)...∑
s Pr(sn|s)Pr(s|e1:t)













Hidden Markov modelsAnd taking things one step further

Et+1S
Tf1:t =





Pr(et+1|s1) 0. . .

0 Pr(et+1|sn)













∑
sPr(s1|s)Pr(s|e1:t)∑
sPr(s2|s)Pr(s|e1:t)...∑
sPr(sn|s)Pr(s|e1:t)









=









Pr(et+1|s1)
∑

sPr(s1|s)Pr(s|e1:t)Pr(et+1|s2)
∑

sPr(s2|s)Pr(s|e1:t)...Pr(et+1|sn)
∑

sPr(sn|s)Pr(s|e1:t)









Compare this with the equation for �lteringPr(St+1|e1:t+1) = cPr(et+1|St+1)
∑

st

Pr(St+1|st)Pr(st|e1:t)
Hidden Markov modelsComparing the expression for Et+1S

Tf1:t with the equation for �lteringwe see that

f1:t+1 = cEt+1S
Tf1:tand a similar equation an be found for b

bT+1:t = SET+1bT+2:tExerise: derive this.The fat that these an be expressed simply using only multipliationof vetors and matries allows us to make an improvement to theforward-bakward algorithm.

Hidden Markov modelsThe forward-bakward algorithm works by:� Moving up the sequene from 1 to T , omputing and storing valuesfor f.� Moving down the sequene from T to 1 omputing values for b andombining them with the stored values for f using the equationPr(St|e1:T) = cf1:tbt+1:TNow in our simpli�ed HMM ase we have
f1:t+1 = cEt+1S

Tf1:tor multiplying through by (Et+1S
T)−1 and re-arranging

f1:t =
1

c
(ST)−1(Et+1)

−1f1:t+1

Hidden Markov modelsSo as long as:� We know the �nal value for f.� ST has an inverse.� Every observation has non-zero probability in every state.We don't have to store T di�erent values for f|we just work through,disarding intermediate values, to obtain the last value and then workbakward.



Example: 2008, paper 9, question 5A friend of mine likes to limb on the roofs of Cambridge. To makea good start to the oming week, he limbs on a Sunday with prob-ability 0.98. Being onerned for his own safety, he is less likely tolimb today if he limbed yesterday, soPr(climb today|climb yesterday) = 0.4If he did not limb yesterday then he is very unlikely to limb today,so Pr(climb today|¬climb yesterday) = 0.1Unfortunately, he is not a very good limber, and is quite likely toinjure himself if he goes limbing, soPr(injury|climb today) = 0.8whereas Pr(injury|¬climb today) = 0.1
Example: 2008, paper 9, question 5You learn that on Monday and Tuesday evening he obtains aninjury, but on Wednesday evening he does not. Use the �lteringalgorithm to ompute the probability that he limbed on Wednes-day.Initially

f1:0 =

(

0.98

0.02

)

S =

(

0.4 0.6

0.1 0.9

)

E =

(

0.8 0

0 0.1

)

E ′ =

(

0.2 0

0 0.9

)

Example: 2008, paper 9, question 5The update equation is

f1:t+1 = cEt+1S
Tf1:tso

f1:1 =
c

10, 000

(

8 0

0 1

) (

4 1

6 9

)(

98

2

)

=

(

0.83874

0.16126

)

Repeating this twie more using E ′ rather than E the �nal time gives
f1:2 =

(

0.81268

0.18732

)

f1:3 =

(

0.10429

0.89571

)

so the answer is 0.1.

Example: 2008, paper 9, question 5Over the ourse of the week, you also learn that he does not obtainan injury on Thursday or Friday. Use the smoothing algorithmto ompute the probability that he limbed on Thursday.The S, E and E ′ matries are the same. The bakward message startsas

b6:5 =

(

1

1

)

and the update equation is

bt:T = SEtbt+1:TThen working bakwards

b5:5 =
1

100

(

4 6

1 9

)(

2 0

0 9

)(

1

1

)

=

(

0.62

0.83

)



Example: 2008, paper 9, question 5We also need one more forward step, whih gives

f1:4 =

(

0.03249

0.96751

)

Finally

cf1:4b5:5 = c

(

0.03249 × 0.62

0.96751 × 0.83

)

=

(

0.02447

0.97553

)

giving the answer 0.02447.

Online smoothingSay we want to smooth at a �xed number of time steps . We analso obtain a simple algorithm for updating the result eah time anew et+1 appears.

1 2 TT − lag
· · · · · ·

1 2 TT − lag

· · · · · ·

New eT+1

Smooth here

Update to hereT + 1T − lag+ 1

Online smoothingAs usual we need to alulate

cf1:T−lagbT−lag+1:Tto smooth at time (T − lag) if we've progressed to time T . So: assume
f1:T−lag and bT−lag+1:T are known.What an we now do when eT+1 arrives to obtain f1:T−lag+1 and bT−lag+2:T+1?
f is easy to update beause as usual

f1:T−lag+1 = cET−lag+1S
T f1:T−lagKnown

Online smoothing

b is more triky.We know that

bT−lag+1:T = SET−lag+1bT−lag+2:Tand ontinuing this reursion up to the end of the sequene at T gives

bT−lag+1:T =

T∏

i=T−lag+1

SEi ×









1

1...

1











Online smoothingDe�ne

βa:b =

b∏

i=a

SEiso

bT−lag+1:T = βT−lag+1:T ×









1

1...

1









Online smoothingNow when eT+1 arrives we have
bT−lag+2:T+1 =

T+1∏

i=T−lag+2

SEi ×









1

1...
1









= βT−lag+2:T+1 ×









1

1...
1









= E−1
T−lag+1S

−1βT−lag+1:TSET+1 ×









1

1...

1









Online smoothingThis leads to an easy way to update β

βa+1:b+1 = E−1
a S−1βa:bSEb+1Using this gives the required update for b.59


