Did you heed the DIRE WARNING?

At the beginning of the course I suggested making sure you can answer the following two questions:

1. Let

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} a_{i} x_{i}^{2}
$$

where the a_{i} are constants. Compute $\partial f / \partial x_{j}$ where $1 \leq j \leq n$? Answer: As

$$
f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}^{2}+\cdots+a_{j} x_{j}^{2}+\cdots+a_{n} x_{n}^{2}
$$

only one term in the sum depends on x_{j}, so all the other terms differentiate to give 0 and

$$
\frac{\partial f}{\partial x_{j}}=2 a_{j} x_{j}
$$

Supervised learning with neural networks

We now look at how an agent might learn to solve a general problem by seeing examples.

Aims:

- To present an outline of supervised learning as part of AI.
- To introduce much of the notation and terminology used.
- To introduce the classical perceptron.
- To introduce multilayer perceptrons and the backpropagation algorithm for training them.

Reading: Russell and Norvig chapter 20.

An example

A common source of problems in AI is medical diagnosis.
Imagine that we want to automate the diagnosis of an Embarrassing Disease (call it D) by constructing a machine:

Could we do this by explicitly writing a program that examines the measurements and outputs a diagnosis?

Experience suggests that this is unlikely.

An alternative approach: each collection of measurements can be written as a vector,

$$
\mathbf{x}^{\top}=\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right)
$$

where,

$$
\begin{aligned}
x_{1}= & \text { heart rate } \\
x_{2}= & \text { blood pressure } \\
x_{3}= & 1 \text { if the patient has green spots } \\
& 0 \text { otherwise } \\
: & \\
& \text { and so on }
\end{aligned}
$$

(Note: it's a common convention that vectors are column vectors by default. This is why the above is written as a transpose.)

An example, continued...

Now imagine that we have a large collection of patient histories (m in total) and for each of these we know whether or not the patient suffered from D.

- The ith patient history gives us an instance \mathbf{x}_{i}.
- This can be paired with a single bit-0 or 1-denoting whether or not the ith patient suffers from D. The resulting pair is called an example or a labelled example.
- Collecting all the examples together we obtain a training sequence

$$
s=\left(\left(x_{1}, 0\right),\left(x_{2}, 0\right), \ldots,\left(x_{m}, 0\right)\right)
$$

An example, continued...

In supervised machine learning we aim to design a learning algorithm which takes s and produces a hypothesis h .

Intuitively, a hypothesis is something that lets us diagnose new patients.

This is IMPORTANT: we want to diagnose patients that the system has never seen.

The ability to do this successfully is called generalisation.

In fact, a hypothesis is just a function that maps instances to labels.

As h is a function it assigns a label to any x and not just the ones that were in the training sequence.

What we mean by a label here depends on whether we're doing classification or regression.

Supervised learning: regression

In regression we're assigning x to a real number $\mathrm{h}(\mathrm{x}) \in \mathbb{R}$.
For example, if x contains measurements taken regarding today's weather then we might have
$h(x)=$ estimate of amount of rainfall expected tomorrow
For the two-class classification problem we will also refer to a situation somewhat between the two, where

$$
h(\mathbf{x})=\operatorname{Pr}\left(\mathbf{x} \text { is in } C_{1}\right)
$$

and so we would typically assign x to class C_{1} if $h(x)>1 / 2$.

Summary

We don't want to design h explicitly.

So we use a learner L to infer it on the basis of a sequence s of training examples.

Neural networks

There is generally a set \mathcal{H} of hypotheses from which L is allowed to select h

$$
\mathrm{L}(\mathrm{~s})=\mathrm{h} \in \mathcal{H}
$$

\mathcal{H} is called the hypothesis space.
The learner can output a hypothesis explicitly or-as in the case of a neural network-it can output a vector

$$
\mathbf{w}^{\top}=\left(\begin{array}{llll}
w_{1} & w_{2} & \cdots & w_{w}
\end{array}\right)
$$

of weights which in turn specify h

$$
h(x)=f(w ; x)
$$

where $\mathrm{w}=\mathrm{L}(\mathrm{s})$.

Some further examples

- Speech recognition.
- Deciding whether or not to give credit.
- Detecting credit card fraud.
- Deciding whether to buy or sell a stock option.
- Deciding whether a tumour is benign.
- Data mining: extracting interesting but hidden knowledge from existing, large databases. For example, databases containing financial transactions or loan applications.
- Deciding whether driving conditions are dangerous.
- Automatic driving. (See Pomerleau, 1989, in which a car is driven for 90 miles at 70 miles per hour, on a public road with other cars present, but with no assistance from humans.)

This process is in fact very similar to curve fitting.
Think of the process as follows:

- Nature picks an $h^{\prime} \in \mathcal{H}$ but doesn't reveal it to us.
- Nature then shows us a training sequence s where each x_{i} is labelled as $h^{\prime}\left(x_{i}\right)+\epsilon_{i}$ where ϵ_{i} is noise of some kind.

Our job is to try to infer what h^{\prime} is on the basis of s only.
This is easy to visualise in one dimension: it's just fitting a curve to some points.

Example: if \mathcal{H} is the set of all polynomials of degree 3 then nature might pick

$$
h^{\prime}(x)=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+2 x-\frac{1}{2}
$$

The line is dashed to emphasise the fact that we don't get to see it.

Curve fitting

We'll use a learning algorithm L that operates in a reasonablelooking way: it picks an $h \in \mathcal{H}$ minimising the following quantity,

$$
E=\sum_{i=1}^{m}\left(h\left(x_{i}\right)-y_{i}\right)^{2}
$$

In other words

$$
h=\mathrm{L}(\mathbf{s})=\underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{m}\left(h\left(x_{i}\right)-y_{i}\right)^{2}
$$

Why is this sensible?

1. Each term in the sum is 0 if $h\left(x_{i}\right)$ is exactly y_{i}.
2. Each term increases as the difference between $h\left(x_{i}\right)$ and y_{i} increases.
3. We add the terms for all examples.

Curve fitting

If we pick h using this method then we get:

The chosen h is close to the target h^{\prime}, even though it was chosen using only a small number of noisy examples.

It is not quite identical to the target concept.
However if we were given a new point x^{\prime} and asked to guess the value $h^{\prime}\left(x^{\prime}\right)$ then guessing $h\left(x^{\prime}\right)$ might be expected to do quite well.

Problem: we don't know what \mathcal{H} nature is using. What if the one we choose doesn't match? We can make our \mathcal{H} 'bigger' by defining it as
$\mathcal{H}=\{\mathrm{h}: \mathrm{h}$ is a polynomial of degree at most 5$\}$
If we use the same learning algorithm then we get:

The result in this case is similar to the previous one: h is again quite close to h^{\prime}, but not quite identical.

Curve fitting

So what's the problem? Repeating the process with,

$$
\mathcal{H}=\{h: h \text { is a polynomial of degree at most } 1\}
$$

gives the following:

In effect, we have made our \mathcal{H} too 'small'. It does not in fact contain any hypothesis similar to h^{\prime}.

Curve fitting

So we have to make \mathcal{H} huge, right? WRONG!!! With

$$
\mathcal{H}=\{h: h \text { is a polynomial of degree at most } 25\}
$$

we get:

BEWARE!!! This is known as overfitting.

Curve fitting

An experiment to gain some further insight: using

$$
h^{\prime}(x)=\frac{1}{10} x^{10}-\frac{1}{12} x^{8}+\frac{1}{15} x^{6}+\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+2 x-\frac{1}{2} .
$$

as the unknown underlying function.
We can look at how the degree of the polynomial the training algorithm can output affects the generalisation ability of the resulting h.

We use the same training algorithm, and we train using $\mathcal{H}=\{h: h$ is a polynomial of degree at most $d\}$
for values of d ranging from 1 to 30

- Each time we obtain an h of a given degree-call it h_{d}-we assess its quality using a further 100 inputs \mathbf{x}_{i}^{\prime} generated at random and calculating

$$
\mathrm{q}(\mathrm{~d})=\frac{1}{100} \sum_{\mathrm{i}=1}^{100}\left(\mathrm{~h}^{\prime}\left(\mathrm{x}_{\mathrm{i}}^{\prime}\right)-\mathrm{h}_{\mathrm{d}}\left(\mathrm{x}_{\mathrm{i}}^{\prime}\right)\right)^{2}
$$

- As the values $q(d)$ are found using inputs that are not necessarily included in the training sequence they measure generalisation.
- To smooth out the effects of the random selection of examples we repeat this process 100 times and average the values $q(d)$.

Curve fitting

Here is the result:

Clearly: we need to choose \mathcal{H} sensibly if we want to obtain good generalisation performance.

The perceptron

The example just given illustrates much of what we want to do. However in practice we deal with more than a single dimension.

The simplest form of hypothesis used is the linear discriminant, also known as the perceptron. Here
$h(\mathbf{w} ; \mathbf{x})=\sigma\left(w_{0}+\sum_{i=1}^{m} w_{i} x_{i}\right)=\sigma\left(w_{0}+w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}\right)$ So: we have a linear function modified by the activation function σ.

The perceptron's influence continues to be felt in the recent and ongoing development of support vector machines.

The perceptron activation function I

There are three standard forms for the activation function:

1. Linear: for regression problems we often use

$$
\sigma(z)=z
$$

2. Step: for two-class classification problems we often use

$$
\sigma(z)=\left\{\begin{array}{l}
C_{1} \text { if } z>0 \\
C_{2} \text { otherwise }
\end{array}\right.
$$

3. Sigmoid/Logistic: for probabilistic classification we often use

$$
\operatorname{Pr}\left(\mathrm{x} \text { is in } \mathrm{C}_{1}\right)=\sigma(z)=\frac{1}{1+\exp (-z)}
$$

The step function is important but the algorithms involved are somewhat different to those we'll be seeing. We won't consider it further.

The sigmoid/logistic function plays a major role in what follows.

Gradient descent

A method for training a basic perceptron works as follows. Assume we're dealing with a regression problem and using $\sigma(z)=z$.

We define a measure of error for a given collection of weights. For example

$$
E(w)=\sum_{i=1}^{m}\left(y_{i}-h\left(w ; x_{i}\right)\right)^{2}
$$

Modifying our notation slightly so that

$$
\begin{aligned}
\mathbf{x}^{\top} & =\left(\begin{array}{lllll}
1 & x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right) \\
\mathbf{w}^{\top} & =\left(\begin{array}{llllll}
w_{0} & w_{1} & w_{2} & \cdots & w_{n}
\end{array}\right)
\end{aligned}
$$

lets us write

$$
E(w)=\sum_{i=1}^{m}\left(y_{i}-w^{\top} \mathbf{x}_{i}\right)^{2}
$$

Gradient descent

We want to minimise $\mathrm{E}(\mathrm{w})$.
One way to approach this is to start with a random \mathbf{w}_{0} and update it as follows:

$$
\mathbf{w}_{\mathrm{t}+\mathrm{l}}=\mathbf{w}_{\mathrm{t}}-\left.\eta \frac{\partial \mathrm{E}(\mathbf{w})}{\partial \mathbf{w}}\right|_{w_{\mathrm{t}}}
$$

where

$$
\frac{\partial \mathrm{E}(\mathbf{w})}{\partial \mathbf{w}}=\left(\frac{\partial \mathrm{E}(\mathbf{w})}{\partial w_{0}} \frac{\partial \mathrm{E}(\mathbf{w})}{\partial w_{1}} \cdots \frac{\partial \mathrm{E}(\mathbf{w})}{\partial w_{n}}\right)^{\top}
$$

and η is some small positive number.
The vector

$$
-\frac{\partial \mathrm{E}(\mathbf{w})}{\partial \mathbf{w}}
$$

tells us the direction of the steepest decrease in $\mathrm{E}(\mathrm{w})$.

Gradient descent

With

$$
E(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{m}\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{i}\right)^{2}
$$

we have

$$
\begin{aligned}
\frac{\partial E(\mathbf{w})}{\partial w_{j}} & =\frac{\partial}{\partial w_{j}}\left(\sum_{i=1}^{m}\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{i}\right)^{2}\right) \\
& =\sum_{i=1}^{m}\left(\frac{\partial}{\partial w_{j}}\left(y_{i}-w^{\top} \mathbf{x}_{i}\right)^{2}\right) \\
& =\sum_{i=1}^{m}\left(2\left(y_{i}-w^{\top} \mathbf{x}_{i}\right) \frac{\partial}{\partial w_{j}}\left(-\mathbf{w}^{\top} \mathbf{x}_{i}\right)\right) \\
& =-2 \mathbf{x}_{i}^{(j)} \sum_{i=1}^{m}\left(y_{i}-w^{\top} \mathbf{x}_{i}\right)
\end{aligned}
$$

where $x_{i}^{(j)}$ is the j th element of x_{i}.

Gradient descent

The method therefore gives the algorithm

$$
\mathbf{w}_{\mathrm{t}+1}=\mathbf{w}_{\mathrm{t}}+2 \eta \sum_{\mathrm{i}=1}^{\mathrm{m}}\left(y_{i}-\mathbf{w}_{\mathrm{t}}^{\top} \mathbf{x}_{\mathrm{i}}\right) \mathbf{x}_{\mathrm{i}}
$$

Some things to note:

- In this case $\mathrm{E}(\mathbf{w})$ is parabolic and has a unique global minimum and no local minima so this works well.
- Gradient descent in some form is a very common approach to this kind of problem.
- We can perform a similar calculation for other activation functions and for other definitions for $\mathrm{E}(\mathbf{w})$.
- Such calculations lead to different algorithms.

Perceptrons aren't very powerful: the parity problem

There are many problems a perceptron can't solve.

We need a network that computes more interesting functions.

The multilayer perceptron

Reminder:

We'll continue to use the notation

$$
\begin{aligned}
\mathbf{z}^{\top} & =\left(\begin{array}{lllll}
1 & z_{1} & z_{2} & \cdots & z_{n}
\end{array}\right) \\
\mathbf{w}^{\top} & =\left(\begin{array}{lllll}
w_{0} & w_{1} & w_{2} & \cdots & w_{n}
\end{array}\right)
\end{aligned}
$$

So that

$$
\begin{aligned}
\sum_{i=0}^{n} w_{i} z_{i} & =w_{0}+\sum_{i=1}^{n} w_{i} z_{i} \\
& =\mathbf{w}^{\top} \mathbf{z}
\end{aligned}
$$

Backpropagation

As usual we have:

- Instances $\mathbf{x}^{\top}=\left(x_{1}, \ldots, x_{n}\right)$.
- A training sequence $s=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right)$.

We also define a measure of training error

$$
E(w)=\text { measure of the error of the network on } s
$$ where w is the vector of all the weights in the network.

Our aim is to find a set of weights that minimises $E(w)$ using gradient descent.

In the general case we have a completely unrestricted feedforward structure:

Each node is a perceptron. No specific layering is assumed.
$w_{i \rightarrow j}$ connects node i to node $\mathfrak{j} . w_{0}$ for node \mathfrak{j} is denoted $w_{0 \rightarrow j}$.

Backpropagation: the general case

The central task is therefore to calculate

$$
\frac{\partial \mathrm{E}(\mathbf{w})}{\partial \mathbf{w}}
$$

To do that we need to calculate the individual quantities

$$
\frac{\partial \mathrm{E}(\mathbf{w})}{\partial w_{i}}
$$

for every weight $w_{i \rightarrow j}$ in the network.
Often $\mathrm{E}(\mathrm{w})$ is the sum of separate components, one for each example in s

$$
E(w)=\sum_{p=1}^{m} E_{p}(w)
$$

in which case

$$
\frac{\partial \mathrm{E}(\mathbf{w})}{\partial \mathbf{w}}=\sum_{p=1}^{m} \frac{\partial \mathrm{E}_{\mathrm{p}}(\mathbf{w})}{\partial \mathbf{w}}
$$

We can therefore consider examples individually.

Backpropagation: the general case

Place example p at the input and calculate a_{j} and z_{j} for all nodes including the output y. This is forward propagation.

We have

$$
\frac{\partial \mathrm{E}_{\mathrm{p}}(\mathbf{w})}{\partial w_{i \rightarrow j}}=\frac{\partial \mathrm{E}_{\mathrm{p}}(\mathbf{w})}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{i \rightarrow j}}
$$

where $a_{j}=\sum_{k} w_{k \rightarrow j} z_{k}$.
Here the sum is over all the nodes connected to node j. As
we can write

$$
\frac{\partial a_{j}}{\partial w_{i \rightarrow j}}=\frac{\partial}{\partial w_{i \rightarrow j}}\left(\sum_{k} w_{k \rightarrow j} z_{k}\right)=z_{i}
$$

where we've defined

$$
\frac{\partial \mathrm{E}_{\mathfrak{p}}(\mathbf{w})}{\partial w_{i \rightarrow j}}=\delta_{\mathfrak{j}} z_{\mathrm{i}}
$$

$$
\delta_{j}=\frac{\partial E_{p}(w)}{\partial a_{j}}
$$

So we now need to calculate the values for $\delta_{j} \ldots$
When \mathfrak{j} is the output node-that is, the one producing the output $\mathrm{y}=\mathrm{h}\left(\mathrm{w} ; \mathrm{x}_{\mathrm{p}}\right)$ of the network-this is easy as $z_{j}=\mathrm{y}$ and

$$
\begin{aligned}
\delta_{j} & =\frac{\partial E_{p}(w)}{\partial a_{j}} \\
& =\frac{\partial E_{p}(w)}{\partial y} \frac{\partial y}{\partial a_{j}} \\
& =\frac{\partial E_{p}(w)}{\partial y} \sigma^{\prime}\left(a_{j}\right)
\end{aligned}
$$

using the fact that $y=\sigma\left(a_{j}\right)$.

Backpropagation: the general case

The first term is in general easy to calculate for a given E as the error is generally just a measure of the distance between y and the label in the training sequence.

Example: when

$$
E_{p}(w)=\left(y-y_{p}\right)^{2}
$$

we have

$$
\begin{aligned}
\frac{\partial \mathrm{E}_{\mathfrak{p}}(\mathbf{w})}{\partial y} & =2\left(y-y_{p}\right) \\
& =2\left(f\left(\mathbf{w} ; \mathbf{x}_{p}\right)-y_{p}\right)
\end{aligned}
$$

Backpropagation: the general case

When \mathfrak{j} is not an output node we need something different:

We're interested in

$$
\delta_{j}=\frac{\partial E_{p}(\mathbf{w})}{\partial a_{j}}
$$

Altering a_{j} can affect several other nodes $k_{1}, k_{2}, \ldots, k_{q}$ each of which can in turn affect $E_{p}(w)$.

We have

$$
\delta_{j}=\frac{\partial E_{p}(\mathbf{w})}{\partial a_{j}}=\sum_{k \in\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}} \frac{\partial E_{p}(\mathbf{w})}{\partial a_{k}} \frac{\partial a_{k}}{\partial a_{j}}=\sum_{k \in\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}} \delta_{k} \frac{\partial a_{k}}{\partial a_{j}}
$$

where $k_{1}, k_{2}, \ldots, k_{q}$ are the nodes to which node j sends a connection.

Backpropagation: the general case

$$
\frac{\partial a_{k}}{\partial a_{j}}=\frac{\partial}{\partial a_{j}}\left(\sum_{i} w_{i \rightarrow k} \sigma\left(a_{i}\right)\right)=w_{j \rightarrow k} \sigma^{\prime}\left(a_{j}\right)
$$

and

$$
\delta_{j}=\sum_{k \in\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}} \delta_{k} w_{j \rightarrow k} \sigma^{\prime}\left(a_{j}\right)=\sigma^{\prime}\left(a_{j}\right) \sum_{k \in\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}} \delta_{k} w_{j \rightarrow k}
$$

Because we know how to compute δ_{j} for the output node we can work backwards computing further δ values.

We will always know all the values δ_{k} for nodes ahead of where we are.

Hence the term backpropagation.

Backpropagation: the general case

Summary: to calculate $\frac{\partial \mathrm{E}_{\mathrm{p}}(\mathrm{w})}{\partial \mathrm{w}}$ for the p th pattern:

1. Forward propagation: apply x_{p} and calculate outputs etc for all the nodes in the network.
2. Backpropagation 1: for the output node

$$
\frac{\partial \mathrm{E}_{\mathfrak{p}}(\mathbf{w})}{\partial w_{i \rightarrow j}}=z_{i} \delta_{j}=z_{i} \sigma^{\prime}\left(\mathbf{a}_{\mathfrak{j}}\right) \frac{\partial \mathrm{E}_{\mathfrak{p}}(\mathbf{w})}{\partial y}
$$

where $y=h\left(w ; x_{p}\right)$.
3. Backpropagation 2: For other nodes

$$
\frac{\partial E_{p}(\mathbf{w})}{\partial w_{i \rightarrow j}}=z_{i} \sigma^{\prime}\left(a_{j}\right) \sum_{k} \delta_{k} w_{j \rightarrow k}
$$

where the δ_{k} were calculated at an earlier step.

Backpropagation: a specific example

For the output: $\sigma(a)=a$. For the hidden nodes $\sigma(a)=\frac{1}{1+\exp (-a)}$.

Backpropagation: a specific example

For the output: $\sigma(\mathrm{a})=\mathrm{a}$ so $\sigma^{\prime}(\mathrm{a})=1$.
For the hidden nodes:

$$
\sigma(a)=\frac{1}{1+\exp (-a)}
$$

so

$$
\sigma^{\prime}(a)=\sigma(a)[1-\sigma(a)]
$$

We'll continue using the same definition for the error

$$
\begin{aligned}
E(w) & =\sum_{p=1}^{m}\left(y_{p}-h\left(w ; x_{p}\right)\right)^{2} \\
E_{p}(w) & =\left(y_{p}-h\left(w ; x_{p}\right)\right)^{2}
\end{aligned}
$$

Backpropagation: a specific example

For the output: the equation is

$$
\frac{\partial \mathrm{E}_{\mathrm{p}}(\mathbf{w})}{\partial w_{i \rightarrow \text { output }}}=z_{i} \delta_{\text {output }}=z_{i} \sigma^{\prime}\left(\mathrm{a}_{\text {output }}\right) \frac{\partial \mathrm{E}_{p}(\mathbf{w})}{\partial y}
$$

where $y=h\left(w ; x_{p}\right)$. So as

$$
\begin{aligned}
\frac{\partial E_{p}(w)}{\partial y} & =\frac{\partial}{\partial y}\left(\left(y_{p}-y\right)^{2}\right) \\
& =2\left(y-y_{p}\right) \\
& =2\left[h\left(w ; x_{p}\right)-y_{p}\right]
\end{aligned}
$$

and $g^{\prime}(a)=1$ so

$$
\delta_{\text {output }}=2\left[h\left(w ; x_{p}\right)-y_{p}\right]
$$

and

$$
\frac{\partial E_{p}(\mathbf{w})}{\partial w_{i \rightarrow \text { output }}}=2 z_{i}\left(h\left(\mathbf{w} ; \mathbf{x}_{\mathfrak{p}}\right)-y_{p}\right)
$$

Backpropagation: a specific example

For the hidden nodes: the equation is

$$
\frac{\partial \mathrm{E}_{\mathfrak{p}}(\mathbf{w})}{\partial w_{\mathfrak{i} \rightarrow \mathfrak{j}}}=z_{i} \sigma^{\prime}\left(\mathfrak{a}_{\mathfrak{j}}\right) \sum_{k} \delta_{k} w_{\mathfrak{j} \rightarrow k}
$$

However there is only one output so

$$
\frac{\partial \mathrm{E}_{\mathrm{p}}(\mathbf{w})}{\partial w_{i \rightarrow j}}=z_{i} \sigma\left(\mathrm{a}_{\mathrm{j}}\right)\left[1-\sigma\left(\mathrm{a}_{\mathfrak{j}}\right)\right] \delta_{\text {output }} w_{j \rightarrow o u t p u t}
$$

and we know that

$$
\delta_{\text {output }}=2\left[h\left(w ; x_{p}\right)-y_{p}\right]
$$

so

$$
\begin{aligned}
\frac{\partial \mathrm{E}_{\mathfrak{p}}(\mathbf{w})}{\partial w_{i \rightarrow j}} & =2 z_{i} \sigma\left(\mathrm{a}_{\mathfrak{j}}\right)\left[1-\sigma\left(\mathrm{a}_{\mathfrak{j}}\right)\right]\left[\mathrm{h}\left(\mathbf{w} ; \mathbf{x}_{\mathrm{p}}\right)-y_{p}\right] w_{\mathfrak{j} \rightarrow \text { output }} \\
& =2 x_{i} z_{\mathfrak{j}}\left(1-z_{\mathrm{j}}\right)\left[\mathrm{h}\left(\mathbf{w} ; \mathbf{x}_{\mathrm{p}}\right)-y_{\mathrm{p}}\right] w_{\mathrm{j} \rightarrow \text { output }}
\end{aligned}
$$

Putting it all together

We can then use the derivatives in one of two basic ways:
Batch: (as described previously)

$$
\frac{\partial E(w)}{\partial w}=\sum_{p=1}^{m} \frac{\partial E_{p}(w)}{\partial w}
$$

then

$$
\mathbf{w}_{\mathrm{t}+1}=\mathbf{w}_{\mathrm{t}}-\left.\eta \frac{\partial \mathrm{E}(\mathbf{w})}{\partial \mathbf{w}}\right|_{\mathbf{w}_{\mathrm{t}}}
$$

Sequential: using just one pattern at once

$$
\mathbf{w}_{\mathrm{t}+1}=\mathbf{w}_{\mathrm{t}}-\left.\eta \frac{\partial \mathrm{E}_{\mathrm{p}}(\mathbf{w})}{\partial \mathbf{w}}\right|_{w_{\mathrm{t}}}
$$

selecting patterns in sequence or at random.

As an example we show the result of training a network with:

- Two inputs.
- One output.
- One hidden layer containing 5 units.
- $\eta=0.01$.
- All other details as above.

The problem is the parity problem. There are 40 noisy examples.
The sequential approach is used, with 1000 repetitions through the entire training sequence.

Example: the parity problem revisited

Example: the parity problem revisited

