
Arti�ial Intelligene IDr Sean Holden

Notes on games (adversarial searh)

Copyright Sean Holden 2002-2010.

Solving problems by searh: playing gamesHow might an agent at when the outomes of its ations are notknown beause an adversary is trying to hinder it?� This is essentially a more realisti kind of searh problem beausewe do not know the exat outome of an ation.� This is a ommon situation when playing games : in hess, draughts,and so on an opponent responds to our moves.� We don't know what their response will be, and so the outomeof our moves is not lear.Game playing has been of interest in AI beause it provides an ide-alisation of a world in whih two agents at to redue eah other'swell-being.

Playing games: searh against an adversaryDespite the fat that games are an idealisation, game playing an bean exellent soure of hard problems. For instane with hess:� The average branhing fator is roughly 35.� Games an reah 50 moves per player.� So a rough alulation gives the searh tree 35100 nodes.� Even if only di�erent, legal positions are onsidered it's about

1040.So: in addition to the unertainty due to the opponent:� We an't make a omplete searh to �nd the best move...� ... so we have to at even though we're not sure about the bestthing to do.

Playing games: searh against an adversaryAnd hess isn't even very hard:� Go is muh harder than hess.� The branhing fator is about 360.Until very reently it has resisted all attempts to produe a good AIplayer.See:

senseis.xmp.net/?MoGoand others.

Playing games: searh against an adversaryIt seems that games are a step loser to the omplexities inherent inthe world around us than are the standard searh problems onsideredso far.The study of games has led to some of the most elebrated applia-tions and tehniques in AI.We now look at:� How game-playing an be modelled as searh .� The minimax algorithm for game-playing.� Some problems inherent in the use of minimax.� The onept of α − β pruning .Reading: Russell and Norvig hapter 6.

Perfet deisions in a two-person gameSay we have two players. Traditionally, they are alledMax andMinfor reasons that will beome lear.� We'll use noughts and rosses as an initial example.� Max moves �rst.� The players alternate until the game ends.� At the end of the game, prizes are awarded. (Or punishmentsadministered|EVIL ROBOT is starting up his favourite hain-saw...)This is exatly the same game format as hess, Go, draughts and soon.

Perfet deisions in a two-person gameGames like this an be modelled as searh problems as follows:� There is an initial state .

Max to move

� There is a set of operators . Here, Max an plae a ross in anyempty square, or Min a nought.� There is a terminal test . Here, the game ends when three noughtsor three rosses are in a row, or there are no unused spaes.� There is a utility or payo� funtion. This tells us, numerially,what the outome of the game is.This is enough to model the entire game.

Perfet deisions in a two-person gameWe an onstrut a tree to represent a game. From the initial stateMax an make nine possible moves:
. . .

Then it's Min's turn...

Perfet deisions in a two-person gameFor eah of Max's opening moves Min has eight replies:
. . .

. . .

And so on...This an be ontinued to represent all possibilities for the game.

Perfet deisions in a two-person game
. . .

. . .

+1
0

−1

At the leaves a player has won or there are no spaes. Leaves arelabelled using the utility funtion.

Perfet deisions in a two-person gameHow an Max use this tree to deide on a move? Consider a muhsimpler tree:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

Labels on the leaves denote utility.High values are preferred by Max.Low values are preferred by Min.

If Max is rational he will play to reah a position with the biggestutility possibleBut if Min is rational she will play to minimise the utility availableto Max.

The minimax algorithmThere are two moves: Max then Min. Game theorists would all thisone move, or two ply deep.The minimax algorithm allows us to infer the best move that theurrent player an make, given the utility funtion, by working bak-ward from the leaves.
4 5 20 20 15 7 4 10 9 5 8 52

2
6

6
1

1
4

4

As Min plays the last move, she minimises the utility available toMax.

The minimax algorithmMin takes the �nal move:� If Min is in game position 1, her best hoie is move 3. So fromMax's point of view this node has a utility of 2.� If Min is in game position 2, her best hoie is move 3. So fromMax's point of view this node has a utility of 6.� If Min is in game position 3, her best hoie is move 1. So fromMax's point of view this node has a utility of 1.� If Min is in game position 4, her best hoie is move 4. So fromMax's point of view this node has a utility of 4.

The minimax algorithmMoving one further step up the tree:
4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

1 42 6 6

We an see that Max's best opening move is move 2, as this leads tothe node with highest utility.

The minimax algorithmIn general:� Generate the omplete tree and label the leaves aording to theutility funtion.� Working from the leaves of the tree upward, label the nodes de-pending on whether Max or Min is to move.� IfMin is to move label the urrent node with theminimum utilityof any desendant.� If Max is to move label the urrent node with the maximumutility of any desendant.If the game is p ply and at eah point there are q available movesthen this proess has (surprise, surprise) O(qp) time omplexity andspae omplexity linear in p and q.

Making imperfet deisionsWe need to avoid searhing all the way to the end of the tree. So:� We generate only part of the tree: instead of testing whether anode is a leaf we introdue a ut-o� test telling us when to stop.� Instead of a utility funtion we introdue an evaluation funtionfor the evaluation of positions for an inomplete game.The evaluation funtion attempts to measure the expeted utility ofthe urrent game position.

Making imperfet deisionsHow an this be justi�ed?� This is a strategy that humans learly sometimes make use of.� For example, when using the onept of material value in hess.� The e�etiveness of the evaluation funtion is ritial ...� ... but it must be omputable in a reasonable time.� (In priniple it ould just be done using minimax.)The importane of the evaluation funtion an not be understated|itis probably the most important part of the design.

The evaluation funtionDesigning a good evaluation funtion an be extremely triky:� Let's say we want to design one for hess by giving eah piee itsmaterial value: pawn = 1, knight/bishop = 3, rook = 5 and soon.� De�ne the evaluation of a position to be the di�erene betweenthe material value of blak's and white's pieeseval(position) =
∑blak's piees pi

value of pi −
∑white's piees qi

value of qi

This seems like a reasonable �rst attempt. Why might it go wrong?

The evaluation funtionConsider what happens at the start of a game:� Until the �rst apture the evaluation funtion gives 0, so in fatwe have a ategory ontaining many di�erent game positions withequal estimated utility.� For example, all positions where white is one pawn ahead.� The evaluation funtion for suh a ategory should perhaps rep-resent the probability that a position hosen at random from itleads to a win.So in fat this seems highly naive...

The evaluation funtionIdeally, we should onsider individual positions .If on the basis of past experiene a position has 50% hane of win-ning, 10% hane of losing and 40% hane of reahing a draw, wemight give it an evaluation ofeval(position) = (0.5 × 1) + (0.1 × −1) + (0.4 × 0) = 0.4.Extending this to the evaluation of ategories, we should then weightthe positions in the ategory aording to their likelihood of our-ring.Of ourse, we don't know what any of these likelihoods are...

The evaluation funtionUsing material value an be thought of as giving us a weighted linearevaluation funtion eval(position) =

n∑

i=1

wifiwhere the wi are weights and the fi represent features of the position.In this example

fi = value of the ith piee
wi = number of ith piees on the boardwhere blak and white piees are regarded as di�erent and the fi arepositive for one and negative for the other.

The evaluation funtionEvaluation funtions of this type are very ommon in game playing.There is no systemati method for their design.Weights an be hosen by allowing the game to play itself and usinglearning tehniques to adjust the weights to improve performane.By using more arefully rafted features we an give di�erent eval-uations to individual positions .

α − β pruningEven with a good evaluation funtion and ut-o� test, the time om-plexity of the minimax algorithm makes it impossible to write a goodhess program without some further improvement.� Assuming we have 150 seonds to make eah move, for hess wewould be limited to a searh of about 3 to 4 ply whereas...� ...even an average human player an manage 6 to 8.Lukily, it is possible to prune the searh tree without a�eting theoutome and without having to examine all of it .

α − β pruningReturning for a moment to the earlier, simpli�ed example:
4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

The searh is depth-�rst and left to right.

α − β pruningThe searh ontinues as previously for the �rst 8 leaves.
4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

2 6 ≤ 1

Then we note: if Max plays move 3 then Min an reah a leaf withutility at most 1.So: we don't need to searh any further under Max's openingmove 3. This is beause the searh has already established thatMax an do better by making opening move 2.

α − β pruning in general
m

Tree= Player= Opponent

nm ′

then this node will never be reahed.If n < m or n < m ′ here

So: one you've established that n is suÆiently small, you don'tneed to explore any more of the orresponding node's hildren.

α − β pruning in general
m

Tree= Player= Opponent

nm ′

then this node will never be reahed.If n > m or n > m ′ here

So: one you've established that n is suÆiently large, you don'tneed to explore any more of the orresponding node's hildren.

α − β pruning in generalThe searh is depth-�rst, so we're only ever looking at one paththrough the tree .We need to keep trak of the values α and β where
α = the highest utility seen so far on the path for Max
β = the lowest utility seen so far on the path for MinAssume Max begins . Initial values for α and β are

α = −∞and

β = +∞.

α − β pruning in generalSo: we start with the funtion all

max(−∞, +∞, root)where max is the funtion

max(alpha,beta,node)

{

if (node is at cut-off)

return evaluation(node);

else

{

for (each successor n’ of node)

{

alpha = maximum(alpha,min(alpha,beta,n’));

if (alpha >= beta)

return beta; // pruning happens here.

}

return alpha;

}

}

α − β pruning in generalThe funtion min is

min(alpha,beta,node)

{

if (node is at cut-off)

return evaluation(node);

else

{

for (each successor n’ of node)

{

beta = minimum(beta,max(alpha,beta,n’));

if (beta <= alpha)

return alpha; // pruning happens here.

}

return beta;

}

}

α − β pruning in generalApplying this to the earlier example and keeping trak of the valuesfor α and β you should obtain:
4 5 2 20 20 15 6 7 1

2 6

Return 2

α = −∞ = 2 = 6

β = +∞Return 6

α = 2

β = +∞ = 6

α = −∞

β = +∞ = 2

α = 6

β = +∞ = 1

Return 6

How e�etive is α − β pruning?(Warning: the theoretial results that follow are somewhat idealised.)A quik inspetion should onvine you that the order in whihmoves are arranged in the tree is ritial.So, it seems sensible to try good moves �rst:� If you were to have a perfet move-ordering tehnique then α − βpruning would be O(qp/2) as opposed to O(qp).� so the branhing fator would e�etively be √
q instead of q.� We would therefore expet to be able to searh ahead twie asmany moves as before .However, this is not realisti: if you had suh an ordering tehniqueyou'd be able to play perfet games!

How e�etive is α − β pruning?If moves are arranged at random then α − β pruning is:� O((q/ log q)p) asymptotially when q > 1000 or...� ...about O(q3p/4) for reasonable values of q.In pratie simple ordering tehniques an get lose to the best ase.For example, if we try aptures, then threats, then moves forwardet.Alternatively, we an implement an iterative deepening approah anduse the order obtained at one iteration to drive the next.

A further optimisation: the transposition tableFinally, note that many games orrespond to graphs rather than treesbeause the same state an be arrived at in di�erent ways.� This is essentially the same e�et we saw in heuristi searh: reallgraph searh versus tree searh .� It an be addressed in a similar way: store a state with its evalua-tion in a hash table|generally alled a transposition table|the�rst time it is seen.The transposition table is essentially equivalent to the losed listintrodued as part of graph searh.This an vastly inrease the e�etiveness of the searh proess, be-ause we don't have to evaluate a single state multiple times.

34

