
Coding in Industry
David Berry

Director of Engineering

Qualcomm Cambridge Ltd

Agenda

� Potted history

� Basic Tools of the Trade

� Test Driven Development

2

� Code Quality

� Performance

� Open Source

Potted History

� PhD, Heriot-Watt University
� Learned programming in C, Unix V7

� Sun Microsystems – Staff Engineer
� Programming in C and C++

3

� Harlequin (Cambridge) – Group Manager
� C, C++, PostScript, PDF

� Qualcomm (aqcuired Trigenix) – Director of Eng
� C++, Python, Java

4

TOOLS OF THE TRADE

Source Code Control

� Allows multiple developers to work in parallel

� Traceability provides a history of changes and why,
when things change

� Must be able to re-build releases from scratch

5

� Must be able to re-build releases from scratch
� Consideration of branches, labels

� Examples
� CVS, SVN

� Google Code uses SVN

� SourceForge recommends SVN with legacy products on CVS

� Perforce

� ClearCase

Source Code Control - Branches

� Check in multiple file changes in one go

Head/Main

1.0

1.1

2.0 3.0

6

� Check in multiple file changes in one go
� Makes it easier to merge sets of files

� Branches provide a means to develop different product code lines

� Protects released versions, allows you to re-build them from scratch needed
for maintenance

� Requires developers to know how to merge code
� Takes practice and skill to deal with conflicts

� Tools from the source code control help

� Needs a house policy on which direction to merge from
� Head or branch first

Single File Branch Example

7

Writing Code - IDEs

� Essential tools to make development tasks easier

� Examples
� Eclipse

� NetBeans

8

� NetBeans

� Visual Studio

� SunStudio (C, C++, Fortran)

� Emacs, vi ☺

� Gdb

� dbx

Writing Code – Build Tools

� Make

� Make alternatives
� Jam

� Cook

9

� Home Grown

� Ant

� Maven

� Preference is to have command line driven
� Allows automation, continuous integration

� IDE Projects can be accommodated

Maven

� http://maven.apache.org/

� It’s better than ant ☺

� Standard directory layout for code/tests

� Allows you to manage your dependencies
� Gives you control over open source being used

10

� Gives you control over open source being used

� Versioned

� Maven servers provide a means to download dependencies

� IDE Integration (Eclipse, NetBeans)

� Plug in mechanism

� Wide community support

� Auto generation of a project web site

Example POM file
� POM = Project Object Model

<parent>

<groupId>com.qualcomm.qis</groupId>

<artifactId>oneCMS</artifactId>

<version>2.0.0.06-SNAPSHOT</version>

</parent>

<groupId>com.qualcomm.qis.oneCMS</groupId>

<artifactId>cms-api</artifactId>

<version>2.0.0.06-SNAPSHOT</version>

<packaging>jar</packaging>

11

<!-- Dependencies without version indicate they are inherited from parent pom -->

<dependencies>

<dependency>

<groupId>commons-lang</groupId>

<artifactId>commons-lang</artifactId>

</dependency>

<dependency>

<groupId>org.springframework</groupId>

<artifactId>spring-context</artifactId>

<version>2.5.5</version>

<exclusions>

<exclusion>

<groupId>commons-logging</groupId>

<artifactId>commons-logging</artifactId>

</exclusion>

</exclusions>

</dependency>

�

Dependency Graph
http://www.sonatype.com/books/m2eclipse-book/reference/eclipse-sect-analyze-depend.html

12

Continuous Integration

� Build code and run tests every time a check in is made
� Tells you immediately that a build has failed

� Automated

� Essential part of Agile software development

13

� Essential part of Agile software development
� It’s just good engineering so do it anyway

� Example Tools
� Hudson

� Cruise Control

� Home grown (qpbuild Python based)

� TinderBox

� See http://en.wikipedia.org/wiki/Continuous_integration

Hudson Example

14

Defect Tracking

� There will be bugs so we need to track them

� Used to track defects reported
� Another measure of quality

� Used in release notes to say what was fixed

15

� Used in release notes to say what was fixed

� Tools
� Bugzilla

� TeamTrack

� Quality Center

� VersionOne

� JIRA

16

TEST DRIVEN DEVELOPMENT

Test Driven Development

� Writing tests is often some piece of throw away code
� You develop it, make sure the code you are writing works then move on

� Arrival of test frameworks like JUnit has changed this
� Similar frameworks exist for other languages

17

� Write the tests before writing the code
� Helps you think about the API by writing tests

� Tests allow you to change the code more easily

� http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

� Measure the code coverage (%age lines executed) your tests give you
� Use the debugger to single step code

� Tools
� Sonar based tools for CI, http://nemo.sonarsource.org

� http://www.eclemma.org/index.html (Eclipse plug in)

� Rational

� gcov

Automated Test
� Repeatable the machine doesn’t get tired of doing the same thing

� Provides a regression suite

� JUnit
� Can be used to write pure unit tests and integration tests

� Integration tests need some other service, eg an Oracle/MySQL database

� Maven provides a standard place for these

� Drives code coverage measurement

� Other extensions of JUnit exist

� Python PyUnit

� C++ CPPUnit

18

� C++ CPPUnit

� Selenium used for wider system test
� GUI

� Harder to get code coverage (requires an instrumented build deployed)

� Other tools exist

� Quality of the test code is just as important as the code itself

� Opportunities
� JavaScript

� CSS (Validation available)

Manual Testing

� Some manual test will always be required

� Frequently for look and feel issues in Uis

� An experienced tester can flush out many edge
cases that developers tend not to think about

19

cases that developers tend not to think about
� For example on a web form filling the field with a large number of

characters

� The system will often not check and fail at trying to insert the data into the

database

Sonar Code Coverage

� Sonar - Sonar.pdf

20

Frameworks to aid Unit Test

� A pure unit test only tests the code you are writing
� Need to mock out underlying layers

� Provide dummy code that implements an interface

� EasyMock – can generate mock objects on the fly

21

� EasyMock – can generate mock objects on the fly

Spring Framework

� http://www.springsource.org/

� Uses Inversion of Control (IOC) and dependency injection
� http://en.wikipedia.org/wiki/Inversion_of_control

� http://en.wikipedia.org/wiki/Dependency_injection

� Code written to interfaces
� Allows the implementation to be configured

22

� Allows the implementation to be configured

� Code can be unit tested key to our unit testing

� Use of Plain Old Java Objects (POJOs)
� Code does not know what environment it is being used in done by dependency injection

� Dependencies usually specified in XML files

� Solves problems of EJB2.0 which always required a container to run the code in

� Hypersonic is an in memory database which can be used to mock Oracle/MySQL

� Other frameworks along these principles exist for other languages
� Ruby

� Python

� Google-Juice (Java)

23

CODE QUALITY

Writing Clean Code

� To be maintainable code needs to be “Clean”
� Projects, products fail when you own a mess

� Messes happen over time as changes are made

� Developers end up not wanting to change the code for fear of
breaking it, test costs rise

� Developers write the code not anyone else

24

� Developers write the code not anyone else

� Developers move around the same people that started the project
usually aren’t there a few years later

� For example,
� Naming matters

� Smaller methods/functions

� You don’t need lots of comments that get out of date as the code moves

� Robert C Martin, Clean Code

� http://wiki.java.net/bin/view/People/SmellsToRefactorings

Sample Code Quality Rules
� All Code

� Must follow the check in rules for the project

� Check in comments should tell you why the change is being made and a description of the change the BI
number is not enough or "code coverage" for example

� Check in comments must include the BI, Defect task number

� All code changes should be reviewed via Crucible or by review with a colleague

� External APIs must have corresponding javadoc

� If the build breaks (including test failures) due to a change, your first priority is to fix it

� If the Selenium tests fail due to a change, your first priority is to fix it

� New code

25

� New code
� All code will have a corresponding set of unit and integration tests where appropriate

� Minimum of 75% code coverage, aiming for 90%+

� 0 (zero) compliance warnings added

� Existing code (when changed)
� At worst, no decrease in code coverage for the code in question, aim to raise it to new code levels

� At worst, no increase in code compliance violations

� Clean as you go – always leave the code better than you found it, eg

� add tests

� fix broken tests

� remove code compliance issues

� re-factor the code to improve it, make it more readable, cleaner, remove duplications

Static Code Analysis Tools

� Tools
� Lint

� Eclipse/Compiler warnings for example

� Unused imports

� PMD

26

� PMD

� findBugs

� CheckStyle

� Combined with continuous integration give you a
running measure of code quality

Sonar Code Compliance

27

http://nemo.sonarsource.org/

Sample Rules

Unused Private Field UnusedPrivateField Maintainability pmd BLOCKER ACTIVE

Unused formal parameter UnusedFormalParameter Maintainability pmd MAJOR ACTIVE

Unused local variable UnusedLocalVariable Maintainability pmd BLOCKER ACTIVE

Unused private method UnusedPrivateMethod Maintainability pmd BLOCKER ACTIVE

Use Array List Instead Of Vector UseArrayListInsteadOfVector Efficiency pmd MINOR ACTIVE

Use Arrays As List UseArraysAsList Efficiency pmd MAJOR ACTIVE

Use Correct Exception Logging UseCorrectExceptionLogging Maintainability pmd CRITICAL ACTIVE

28

Use Correct Exception Logging UseCorrectExceptionLogging Maintainability pmd CRITICAL ACTIVE

Use Index Of Char UseIndexOfChar Efficiency pmd MAJOR ACTIVE

Use String Buffer Length UseStringBufferLength Efficiency pmd MAJOR ACTIVE

Useless Operation On Immutable UselessOperationOnImmutable Reliability pmd BLOCKER ACTIVE

Useless Overriding Method UselessOverridingMethod Maintainability pmd BLOCKER ACTIVE

Useless String Value Of UselessStringValueOf Efficiency pmd MAJOR ACTIVE

Visibility Modifier com.puppycrawl.tools.checkstyle.checks.design.VisibilityModifierCheckMaintainability checkstyle MAJOR ACTIVE

While Loops Must Use Braces WhileLoopsMustUseBraces Usability pmd BLOCKER ACTIVE

Code Review/Inspection

� Possibly the most effective method of finding bugs,
design issues in code

� Pair Programming (an aspect of Extreme
programming) encourages this

29

� Important to note that code review should be about
the code not the person

� Tools help to do this in a distributed or time shifted
groups
� CodeCollaborator

� Crucible/Fisheye

� Or just print it out and read through the code

Code Collaborator

30
http://smartbear.com/codecollab.php

31

PERFORMANCE &

MISCELLANOUS

Performance

� Begins with the architecture
� Think about how your system would scale to the number of users

� How responsive does the UI need to be users won’t use your site if it appears slow

� Needs to be thought about when coding
� Database usage, sql indexes for example

32

� Web Service calls are expensive

� Use of caches

� Check the code another use of single stepping in the debugger

� Superficially cheap activities soon add up when called millions of
times

� Measure performance first then optimize where needed
� You can spend a lot of time optimizing something that doesn’t need to be

Measuring Performance

� Response times
� Under load

� How many concurrent users do you have

� Soak testing
� Long term testing looking for memory leaks

� Would like to see the classic Java sawtooth pattern

� Degradation in performance over time

33

� Degradation in performance over time

� Usually takes several weeks to run

� Tools
� JMeter

� Grinder

� Performance profiling tools
� Tell you how often a method was called how long it took

� Built into JDK 1.5 and later

� Rational Tools

� May have to use logging on servers with timers
� Spring AOP can be used to measure calls without affecting the code

Logging

� Log4j
� Imitated in other languages

� Python

� C++

� Needed for server products to trace/track issues

34

� Needed for server products to trace/track issues

� Log4j has a set of log levels (Info, Debug, Warning,
Error)
� Log level determines what to print

� It is faster to check the log level in your code then call the logger
rather than letting strings be constructed that are discarded

Database Usage

� Don’t just use it as a place to store object data

� Use the power of the database
� i.e. don’t try to do the databases job in code

� Sort in the database for example

35

� Sort in the database for example

� Use persistence frameworks such as Hibernate are
good to a certain level
� When it comes to making a system perform you almost always

end up wanting to be in control of the SQL

UI Development

� Good easy to use UI development is hard

� User driven
� Not just tables on databases

� Requires multi-disciplinary team

36

� Requires multi-disciplinary team
� User interaction

� Visual design

� Web Developer, HTML/CSS

� Server developer to provide apis

� APIs should be driven from user usage

Web Containers

� Tomcat
� Mainly used in development

� Simple to deploy

� Integrated with Eclipse

� JBoss

37

� JBoss
� Used in deployment

� Can be used in development

� Eclipse Integration

� WebSphere (IBM)
� Used in deployment

� Installs can be scripted

Monitoring

� Essential for long running server products

� Simple Network Management Protocol
� http://en.wikipedia.org/wiki/Simple_Network_Management_Protoc

ol

38

ol

� Java Management Extensions
� Standard part of JDK 1.5

� Allow you to change properties of the system

� http://en.wikipedia.org/wiki/JMX

39

OPEN SOURCE

Open Source

� Used with care provides a huge amount of time saving for projects
� Headcount is usually the biggest expense on projects

� Lots of contributors developing code usually means it’s well tested
� It doesn’t guarantee it’s well documented, you do have access to the source though

� Understand the licences (http://www.opensource.org/licenses/alphabetical)

40

� Some licences are more commercial friendly for example
� Apache 2.0

� MIT

� BSD

� Less commercial friendly include
� GPL

� LGPL

� Mozilla

� Eclipse

Open Source

� Licences determine the conditions of usage
� Respect them

� Know what your implications are before using them

� Does the code contain encryption (see export compliance)

� What happens if you change the code

41

� What happens if you change the code

� You can’t just lift code from other sites

� Companies now make tools to check companies use
of Open Source
� BlackDuck (http://www.blackducksoftware.com/)

� Home grown scanning tools

Open Source Usage

� Spring Framework

� UI
� Spring Web Flow

� Dojo (Javascript Library)

42

� Dojo (Javascript Library)

� Apache
� JUnit

� Commons

� Maven

� Tomcat

Export Compliance

� USA Based companies must comply when any
software is shipped outside the USA
� Companies must apply to the US Government for an export

compliance status

43

� UK and other countries have export compliance rules

� Mainly concerned with encryption

Conclusion

� Taster of the sorts of things we need to think about when
developing code

� Projects/Products last years
� You must be able to maintain it as the team of developers change

� You must be able to change it with confidence

44

� You must be able to change it with confidence
� A regression suite is invaluable in allowing you to do that

� Performance counts
� Testable

� Scalable

� Open Source usage matters

� The tools are there to help you use them
� In the Java/Python/Ruby world a great deal of them are free

45

THANK YOU FOR YOUR TIME

ANY QUESTIONS

