Concurrency and security

Robert N. M. Watson Computer Laboratory University of Cambridge 7 November 2008

Outline

- What is concurrency?
- How does it relate to security?
- System call wrappers case study
- Lessons learned

concurrent (adj):

Running together in space, as parallel lines; going on side by side, as proceedings; **occurring together, as events or circumstances**; existing or arising together; conjoint, associated.

Oxford English Dictionary, Second Edition

Concurrency

- Multiple computational processes
 execute at the same time and may interact with each other
- Concurrency leads to the appearance of non-determinism

Finding concurrency

5

- Interleaved or asynchronous computation
- Parallel computing
- Distributed systems

UNIVERSITY OF

CAMBRID

GE

Local concurrency

6

- Interleaved or asynchronous execution on a single processor
- More efficient use of computation resources
- Mask I/O latency, multitasking, preemption

JNIVERSITY OF

Shared memory multiprocessing

- Multiple CPUs with shared memory
- Possibly asymmetric memory speed/topology
- Weaker memory model: write order weakened, explicit synchronization
- New programming models

Message passing and distributed systems

- Protocol-centric approach with explicit communication
- Synchronous or asynchronous
- Explicit data consistency management
- Distributed file systems, databases, etc.

Concurrency research

- Produce more concurrency and parallelism
- Maximize performance
- Represent concurrency to the programmer
- Identify necessary and sufficient orderings
- Detect and eliminate incorrectness
- Manage additional visible failure modes

Practical concerns

- Improve performance
- Maintain consistency of replicated data
- Ensure liveliness of concurrency protocols
- Handle distributed system failure modes

Consistency models

- Semantics when accessing replicated data concurrently from multiple processes
 - Strong models support traditional assumptions of non-concurrent access
 - Weak models exchange consistency for performance improvement
- Critical bugs arise if mishandled

ACID Properties

- Database transaction properties
 - Atomicity all or nothing
 - Consistency no inconsistent final states
 - Isolation no inconsistent intermediate states
 - Durability results are durable

Serializability

- Results of concurrent transactions must be equivalent to outcome of a possible serial execution of the transactions
 - Serializable outcomes of {A, B, C}:
 - ABC ACB BAC
 BCA CAB CBA
- Strong model that is easy to reason about

Weaker consistency

- Strong models expose latency/contention
- Desirable to allow access to stale data
 - Timeouts: DNS caches, NFS attribute cache, x509 certificates, Kerberos tickets
 - Weaker semantics: AFS last close, UNIX passwd/group vs. in-kernel credentials
- Must reason carefully about results

Concurrency and security

- Abbot, Bisbey/Hollingworth in 1970's
- Inadequate synchronization or unexpected concurrency leads to violation of security policy
- Race conditions
- Distributed systems, multicore notebooks, ... this is an urgent issue

Concurrency vulnerabilities

- When incorrect concurrency management leads to vulnerability
 - Violation of specifications
 - Violation of user expectations
 - **Passive** leak information or privilege
 - Active allow adversary to extract information, gain privilege, deny service...

A passive vulnerability

- Simultaneously executing UNIX chmod with update syntax
 - chmod g-w file
- stat() and chmod() syscalls can't express update atomically
- Both commands succeed but only one takes effect

The challenge

- Reasoning about security and concurrency almost identical
- "Weakest link" analysis
- Can't exercise bugs deterministically in testing due to state explosion
- Debuggers mask rather than reveal bugs
- Static and dynamic analysis tools limited

From concurrency bug to security bug

- Vulnerabilities in security-critical interfaces
 - Races on arguments and interpretation
 - Atomic "check" and "access" not possible
- Data consistency vulnerabilities
 - Stale or inconsistent security metadata
 - Security metadata and data inconsistent

Learning by example

- Consider three vulnerability types briefly
 - /tmp race conditions
 - SMT covert channels
 - Distributed file system vulnerabilities
- Detailed study
 - System call wrapper races

/tmp race conditons

- Bishop and Dilger, 1996
- UNIX file system APIs allow non-atomic sequences resulting in vulnerability
- Unprivileged processes manipulate /tmp and other shared locations
- Then race against privilege processes to replace targets of open(), etc.

access() system call traverses /tmp/X to file open() system call traverses /tmp/X symlink to /etc/passwd

SMT covert channels

- Percival 2005, Bernstein 2005, Osvik 2005
- Covert channels historically considered a purely academic research topic
- Symmetric multithreading, Hyper-threading, and multicore processors share caches
- Possible to extract RSA, AES key material by analyzing cache misses on shared cache

SMT covert channels

Hyperthread logical processor 1

Hyperthread logical processor 2

Distributed file system vulnerabilities

- Distributed file systems offer many race condition opportunities
- Weak consistency to improve performance
- Cached protection information, access control information, file data
- Often use time-based expiry for revocation
- Area of current research at Cambridge

System call wrapper vulnerabilities

- Our main case study: system call wrappers
- Widely-used security extension technique
- No OS kernel source code required
- Pre- and post-conditions on system calls
- Application sandboxing and monitoring
- Frameworks: GSWTK, Systrace, CerbNG

System call wrappers as a reference monitor

Are wrappers a reference monitor?

- Reference monitors (Anderson 1972)
 - Tamper-proof: in kernel address space
 - Non-bypassable: can inspect all syscalls
 - Small enough to test and analyze: security code neatly encapsulated in one place
- Perhaps they count?

Or not

- No time axis in neat picture
 - System calls are not atomic
 - Wrappers definitely not atomic with system calls
- Opportunity for race conditions on copying and interpretation of arguments and results

Race conditions to consider

- Syntactic races indirect arguments are copied on demand, so wrappers do their own copy and may see different values
- Semantic races even if argument values are the same, interpretations may change between the wrapper and kernel

Types of system call wrapper races

- TOCTTOU time-of-check-to-time-of-use
- TOATTOU time-of-audit-to-time-of-use
- TORTTOU time-of-replacement-to-timeof-use

Goals of the attacker

 Bypass wrapper to perform controlled audited, or modified system calls

open("/sensitive/file", O_RDWR)
write(fd, virusptr, viruslen)
connect(s, controlledaddr, addrlen)

• Can attack indirect arguments: paths, I/O data, socket addresses, group lists, ...

Racing in user memory

- User process, using concurrency, will replace argument memory in address space between wrapper and kernel processing
- Uniprocessor force page fault or blocking so kernel yields to attacking process/thread
- Multiprocessor execute on second CPU or use uniprocessor techniques

Practical attacks

- Consider attacks on three wrapper frameworks implementing many policies
 - Systrace [sudo, sysjail, native policies]
 - GWSTK [demo policies and IDwrappers]
 - CerbNG [demo policies]
- Attackers are policy-specific rather than framework-specific

Uniprocessor example

- Generic Software Wrappers Toolkit (GSWTK) with IDwrappers
 - Ko, Fraser, Badger, Kilpatrick 2000
 - Flexible enforcement + IDS framework
 - I6 of 23 demo wrappers vulnerable
- Employ page faults on indirect arguments

UP GSWTK exploit

Multiprocessor example

- Sysjail over Systrace
 - Provos, 2003; Dzonsons 2006
 - Systrace allows processes to instrument system calls of other processes
 - Sysjail implements FreeBSD's "jail" model on NetBSD and OpenBSD with Systrace
- Employ true parallelism to escape Sysjail

SMP Systrace exploit

Implementation notes

- OS paging systems vary significantly
- On SMP, race window sizes vary
 - TSC a good way to time attacks
 - Systrace experiences 500k cycyle+ windows due to many context switches; others much faster
- Both techniques are extremely reliable

Defence against wrapper races

- Serious vulnerabilities
 - Bypass of audit, control, replacement
- Easily bypassed mitigation techniques
- Interposition requires reliable access to syscall arguments, foiled by concurrency
- More synchronization, message passing, or just not using system call wrappers...

Lessons learned

- Concurrency bugs are a significant security threat to complex software systems
- Developing and testing concurrent programs is extremely difficult
- Static analysis and debugging tools are of limited utility, languages are still immature
- SMP and distributed systems proliferating

Concurrency principles for secure software

- I. Concurrency is hard avoid it
- 2. Strong consistency models are easier to understand and implement than weak
- 3. Prefer multiple readers to multiple writers
- 4. Prefer deterministic invalidation to time expiry of cached data

Principles II

- 5. Don't rely on atomicity that can't be supported by the underlying platform
- 6. Message passing, while slower, enforces a protocol-centric analysis and can make reasoning and debugging easier
- 7. Document locking or message protocols with assertions that see continuous testing

Principles III

- 8. Defending against covert channels is difficult (impossible), but critical for crypto
- Remember that every narrow race window can be widened in a way you don't expect
- 10. Always test on slow hardware

Concurrency vulnerability exercise

- Exploit Systrace concurrency vulnerabilities
 - Break out of "Sysjail" to deface web site
- http://www.cl.cam.ac.uk/~rnw24/concex/
 - Exercise slides, getting started notes
 - VMware disk image

