
Prolog lecture 6

● Solving Sudoku puzzles
● Constraint Logic Programming
● Natural Language Processing

2

Playing Sudoku

3

Make the problem easier

4

We can model this problem in
Prolog using list permutations

Each row must be a permutation of [1,2,3,4]

Each column must be a permutation of [1,2,3,4]

Each 2x2 box must be a permutation of [1,2,3,4]

5

Represent the board as a list of lists

[[A,B,C,D],
 [E,F,G,H],
 [I,J,K,L],
 [M,N,O,P]]

6

The sudoku predicate is built from
simultaneous perm constraints
sudoku([[X11,X12,X13,X14],[X21,X22,X23,X24],
 [X31,X32,X33,X34],[X41,X42,X43,X44]]) :-
 %rows
 perm([X11,X12,X13,X14],[1,2,3,4]),
 perm([X21,X22,X23,X24],[1,2,3,4]),
 perm([X31,X32,X33,X34],[1,2,3,4]),
 perm([X41,X42,X43,X44],[1,2,3,4]),
 %cols
 perm([X11,X21,X31,X41],[1,2,3,4]),
 perm([X12,X22,X32,X42],[1,2,3,4]),
 perm([X13,X23,X33,X43],[1,2,3,4]),
 perm([X14,X24,X34,X44],[1,2,3,4]),
 %boxes
 perm([X11,X12,X21,X22],[1,2,3,4]),
 perm([X13,X14,X23,X24],[1,2,3,4]),
 perm([X31,X32,X41,X42],[1,2,3,4]),
 perm([X33,X34,X43,X44],[1,2,3,4]).

7

Scale up in the obvious way to 3x3

8

Brute-force is impractically slow

There are very many valid grids:
6670903752021072936960 ≈ 6.671 × 1021

Our current approach does not encode the
interrelationships between the constraints

For more information on Sudoku enumeration:
http://www.afjarvis.staff.shef.ac.uk/sudoku/

9

Prolog programs can be viewed as
constraint satisfaction problems

Prolog is limited to the single equality constraint:
– two terms must unify

We can generalise this to include other types of
constraint

Doing so leads to Constraint Logic Programming
– and a means to solve Sudoku problems (p319)

10

Consider variables taking values
from domains with constraints

Given:
– the set of variables
– the domains of each variable
– constraints on these variables

We want to find:
– an assignment of values to variables satisfying the

constraints

11

Sudoku can be expressed as
constraints

A {1,2,3,4} B {1,2,3,4}
C {1,2,3,4} D {1,2,3,4}
E {1,2,3,4} F {1,2,3,4}
G {1,2,3,4} H {1,2,3,4}
I {1,2,3,4} J {1,2,3,4}
K {1,2,3,4} L {1,2,3,4}
M {1,2,3,4} N {1,2,3,4}
O {1,2,3,4} P {1,2,3,4}

First, we express the variables and domains

12

Express Sudoku as a Constraint
Graph

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

13

Constraints: All variables in rows
are different

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

Edges represent inequalities between variables

14

Constraints: All variables in columns
are different

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

15

Constraints: All variables in boxes
are different

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

16

All constraints shown together

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

17

Reduce domains according to
initial values

{1,2,3,4}
{1,2,3,4}

{4}*

{1,2,3,4}

{1,2,3,4}

{2}*
{1,2,3,4}

{1,2,3,4}{1,2,3,4}
{1,2,3,4}
{1}*

{1,2,3,4}

{1,2,3,4}

{3}*
{1,2,3,4}

{1,2,3,4}

18

When a domain changes we update
its constraints

{1,2,3,4}
{1,2,3,4}

{4}*

{1,2,3,4}

{1,2,3,4}

{2}*
{1,2,3,4}

{1,2,3,4}{1,2,3,4}
{1,2,3,4}
{1}*

{1,2,3,4}

{1,2,3,4}

{3}*
{1,2,3,4}

{1,2,3,4}

The asterisk (*) notation reminds
 us that all constraints which connect

to this variable need updating

19

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}

{4}*

{2}*{1}*

{3}*

Update constraints connected to C
We will remove 4 from the

domain of A, B and D

20

{1,2,3}*
{1,2,3}*

{1,2,3}*

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}

{4}*

{2}*{1}*

{3}*

Update constraints connected to C
We add asterisks to A, B and D

...but will defer looking at them

21

{1,2,3}*
{1,2,3}*

{1,2,3}*

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}

{4}*

{2}*{1}*

{3}*

Update constraints connected to C
Now examine column

constraints

22

{1,2,3}*
{1,2,3}*

{1,2,3}*

{1,2,3,4}

{1,2,3}*
{1,2,3,4}{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3}*
{1,2,3,4}

{4}*

{2}*{1}*

{3}*

Update constraints connected to C

23

{1,2,3}*
{1,2,3}*

{1,2,3}*

{1,2,3,4}

{1,2,3}*
{1,2,3,4}{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3}*
{1,2,3,4}

{4}*

{2}*{1}*

{3}*

Update constraints connected to C
Note that D and G have

already had their domains
updated

24

{1,2,3}*
{1,2,3}*

{1,2,3}*

{1,2,3,4}

{1,2,3}*
{1,2,3}*{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3}*
{1,2,3,4}

{4}*

{2}*{1}*

{3}*

Update constraints connected to C
We have exhausted C's

constraints for now

25

{1,2,3}*
{1,2,3}*

{1,2,3}*

{1,2,3,4}

{1,2,3}*
{1,2,3}*{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3}*
{1,2,3,4}

{4}

{2}*{1}*

{3}*

Update constraints connected to F

26

{1,2,3}*
{1,2,3}*

{1,2,3}*

{1,3,4}*

{1,3}*
{1,3}*{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3}*
{1,2,3,4}

{4}

{2}*{1}*

{3}*

Update constraints connected to F

27

{1,2,3}*
{1,2,3}*

{1,2,3}*

{1,3,4}*

{1,3}*
{1,3}*{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3}*
{1,2,3,4}

{4}

{2}*{1}*

{3}*

Update constraints connected to F

28

{1,2,3}*
{1,3}*

{1,2,3}*

{1,3,4}*

{1,3}*
{1,3}*{1,2,3,4}

{1,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3}*
{1,2,3,4}

{4}

{2}*{1}*

{3}*

Update constraints connected to F

29

{1,2,3}*
{1,3}*

{1,2,3}*

{1,3,4}*

{1,3}*
{1,3}*{1,2,3,4}

{1,3,4}*

{1,2,3,4}

{1,2,3,4}

{1,2,3}*
{1,2,3,4}

{4}

{2}*{1}*

{3}*

Update constraints connected to F

30

{1,3}*
{1,3}*

{1,2,3}*

{1,3,4}*

{1,3}*
{1,3}*{1,2,3,4}

{1,3,4}*

{1,2,3,4}

{1,2,3,4}

{1,2,3}*
{1,2,3,4}

{4}

{2}*{1}*

{3}*

Update constraints connected to F
We have exhausted F's

constraints for now

31

{1,3}*
{1,3}*

{1,2,3}*

{1,3,4}*

{1,3}*
{1,3}*{1,2,3,4}

{1,3,4}*

{1,2,3,4}

{1,2,3,4}

{1,2,3}*
{1,2,3,4}

{4}

{2}{1}*

{3}*

Update constraints connected to K

32

{1,3}*
{1,3}*

{1,2,3}*

{1,3,4}*

{1,3}*
{1,3}*{2,3,4}*

{3,4}*

{2,3,4}*

{1,2,3,4}

{1,2,3}*
{1,2,3,4}

{4}

{2}{1}*

{3}*

Update constraints connected to K

33

{1,3}*
{1,3}*

{1,2,3}*

{1,3,4}*

{1,3}*
{1,3}*{2,3,4}*

{3,4}*

{2,3,4}*

{1,2,3,4}

{1,2,3}*
{1,2,3,4}

{4}

{2}{1}*

{3}*

Update constraints connected to K

34

{1,3}*
{1,3}*

{1,2,3}*

{1,3,4}*

{3}*
{1,3}*{2,3,4}*

{3,4}*

{2,3,4}*

{1,2,3,4}

{2,3}*
{1,2,3,4}

{4}

{2}{1}*

{3}*

Update constraints connected to K

35

{1,3}*
{1,3}*

{1,2,3}*

{1,3,4}*

{3}*
{1,3}*{2,3,4}*

{3,4}*

{2,3,4}*

{1,2,3,4}

{2,3}*
{1,2,3,4}

{4}

{2}{1}*

{3}*

Update constraints connected to K

36

{1,3}*
{1,3}*

{1,2,3}*

{1,3,4}*

{3}*
{1,3}*{2,3,4}*

{3,4}*

{2,3,4}*

{1,2,3,4}

{2,3}*
{2,3,4}*

{4}

{2}{1}*

{3}*

Update constraints connected to K

37

{1,3}*
{1,3}*

{1,2,3}*

{1,3,4}*

{3}*
{1,3}*{2,3,4}*

{3,4}*

{2,3,4}*

{1,2,3,4}

{2,3}*
{2,3,4}*

{4}

{2}{1}

{3}*

Update constraints connected to K
We have exhausted K's

constraints for now

38

{1,3}*
{1,3}*

{1,2,3}*

{1,3,4}*

{3}*
{1,3}*{2,3,4}*

{3,4}*

{2,3,4}*

{1,2,3,4}

{2,3}*
{2,3,4}*

{4}

{2}{1}

{3}*

Update constraints connected to D

39

{1,3}*
{1,3}*

{1,2,3}*

{1,3,4}*

{3}*
{1,3}*{2,3,4}*

{3,4}*

{2,3,4}*

{1,2,3,4}

{2,3}*
{2,3,4}*

{4}

{2}{1}

{3}*

Update constraints connected to D
No values can be eliminated directly

(we should see the answer though!)

40

{1,3}*
{1,3}*

{1,2,3}*

{1,3,4}*

{3}*
{1,3}*{2,3,4}*

{3,4}*

{2,3,4}*

{1,2,3,4}

{2,3}*
{2,3,4}*

{4}

{2}{1}

{3}*

Update constraints connected to D

41

{1,3}*
{1,3}*

{1,2}*

{1,3,4}*

{3}*
{1,3}*{2,3,4}*

{3,4}*

{2,3,4}*

{1,2,3,4}

{2,3}*
{2,3,4}*

{4}

{2}{1}

{3}*

Change can occur in source domain
Single 3 at G eliminates D's 3

42

{1,3}*
{1,3}*

{1,2}*

{1,3,4}*

{3}*
{1,3}*{2,3,4}*

{3,4}*

{2,3,4}*

{1,2,3,4}

{2,3}*
{2,3,4}*

{4}

{2}{1}

{3}*

Change can occur in source domain
If the source domain changes we mark all its

constraints for update again

43

{3}
{1}

{2}

{4}

{3}
{1}{2}

{4}

{3}

{1}

{2}
{4}

{4}

{2}{1}

{3}

Iterate the algorithm to convergence
(no further changes occur)

Why will the algorithm eventually converge?

44

Outcome 1: Single valued domains

{3}
{1}

{2}
{4}

{3}
{1}{2}

{4}

{3}
{1}

{2}
{4}

{4}

{2}{1}

{3}

We have found a unique solution to the problem

45

Outcome 2: Some empty domains

Variables
A {1}
B {1,2}

 C {1,2}

Constraints
A ≠B, A ≠C, B ≠C

A

BC

{1}

{1,2}{1,2}

Our constraints are shown to be inconsistent
– therefore there is no solution to this problem

46

Outcome 2: Some empty domains

Variables
A {1}
B {1,2}

 C {1,2}

Constraints
A ≠B, A ≠C, B ≠C {2}{2}

Our constraints are shown to be inconsistent
– therefore there is no solution to this problem

A

BC

{1}

47

Outcome 2: Some empty domains

Variables
A {1}
B {1,2}

 C {1,2}

Constraints
A ≠B, A ≠C, B ≠C {2}{}

Our constraints are shown to be inconsistent
– therefore there is no solution to this problem

A

BC

{1}

48

Outcome 3: Some multivalued
domains

{3}
{1}

{2}

{4}

{1,2,3}
{1,2,3}{1,2}

{4}

{1,2,3}

{1,2}

{1,2}
{1,2,3,4}

{4}

{2}{1,2,3}

{3}

Not all combinations of these variable assignment
possibilities are global solutions though...

49

Outcome 3: Hypothesise labellings

To find global solutions from the narrowed
domains we hypothesise a solution in a domain
and propagate the changes

Backtrack if something goes wrong

50

:- use_module(library(bounds)).

valid4(L) :- L in 1..4, all_different(L).

sudoku2([[X11,X12,X13,X14],[X21,X22,X23,X24],
 [X31,X32,X33,X34],[X41,X42,X43,X44]]) :-
 valid4([X11,X12,X13,X14]),valid4([X21,X22,X23,X24]),
 valid4([X31,X32,X33,X34]),valid4([X41,X42,X43,X44]),
 valid4([X11,X21,X31,X41]),valid4([X12,X22,X32,X42]),
 valid4([X13,X23,X33,X43]),valid4([X14,X24,X34,X44]),
 valid4([X11,X12,X21,X22]),valid4([X13,X14,X23,X24]),
 valid4([X31,X32,X41,X42]),valid4([X33,X34,X43,X44]),
 labeling([],[X11,X12,X13,X14,X21,X22,X23,X24,
 X31,X32,X33,X34,X41,X42,X43,X44]).

Using CLP in Prolog

Rows

Cols

Boxes

Chapter 14 of the textbook has more information

51

Prolog can be used for parsing
context-free grammars (p555)

Here is a simple grammar:

Terminal symbols:
a, b, c

Non-terminal symbols:
s

s → 'a' 'b'
s → 'a' 'c'
s → s s

52

Parsing by consumption

Write a predicate for each non-terminal that:
– consumes as much of the first list as is necessary to

match the non-terminal, and
– returns the remaining elements in the second list

These predicate evaluations will thus be true:
– s([a,b],[])
– s([a,b,c,d],[c,d])

53

A Prolog program that accepts
sentences from our grammar

s → 'a' 'b'
s → 'a' 'c'
s → s s% match a single character

c([X|T],X,T).

% grammar predicates
s(In,Out) :- c(In,a,In2),
 c(In2,b,Out).
s(In,Out) :- c(In,a,In2),
 c(In2,c,Out).
s(In,Out) :- s(In,In2),
 s(In2,Out).

54

Prolog DCG syntax

Prolog provides us with a shortcut for
encoding Definite Clause Grammar
(DCG) syntax.

This will both test and generate:
– s([a,c,a,b],[]).
– s(A,[]).

s → 'a' 'b'
s → 'a' 'c'
s → s s

s --> [a],[b].
s --> [a],[c].
s --> s,s.

55

Building a parse tree

% match a single character
c([X|T],X,T).

% grammar predicates
s(ab,In,Out) :- c(In,a,In2),
 c(In2,b,Out).
s(ac,In,Out) :- c(In,a,In2),
 c(In2,c,Out).
s(t(A,B),In,Out) :- s(A,In,In2),
 s(B,In2,Out).

:- s(Result,[a,c,a,b,a,b],[]).

56

Prolog's DCG syntax helps us again

s(ab) --> [a],[b].
s(ac) --> [a],[c].
s(t(A,B)) --> s(A),s(B).

Unfortunately the DCG syntax is not part of the
ISO Prolog standard
– Almost all modern compilers will include it though

57

Parsing Natural Language
(back to Prolog's roots)

This is a very limited English
grammar subset.

Things get complicated very
quickly!
– see the Natural Language

Processing course next year
(Prolog is not a pre-requisite)

s --> np,vp.
np --> det,n.
vp --> v.
vp --> v,np.

n --> [cat].
n --> [dog].
v --> [eats].
det --> [the].

58

the dog eats the cat

det noun

verb

det noun

np

np

vp

s

59

We can also handle agreement

We consider only
third-person
constructions here!

s(N) --> np(N),vp(N).
np(N) --> det,n(N).
vp(N) --> v(N).
vp(N) --> v(N),np(_).

n(s) --> [cat].
n(s) --> [dog].
n(p) --> [cats].
v(s) --> [eats].
v(p) --> [eat].
det --> [the].

60

the cats eat the dog

det n(p)

verb(p)

det n(s)

np(p)

np(s)

vp(p)

s

61

Real Natural Language Processing

Things get much more complicated very quickly

Ambiguities, special cases and noise all make the
approach we have demonstrated hard to scale
– Although people have definitely tried!

62

Prolog has lasting influence

Languages that have been influenced by Prolog:
– Mercury

● Compiled language that takes advantage of
knowledge about predicate determinism

– Erlang
● Massively concurrent programming

Projects
– Overlog

● Declarative networking
– XSB

● Declarative database: tabled resolution, HiLog

63

Closing Remarks

Declarative programming is different to Functional or
Procedural programming
– Foundations of Computer Science & Programming in Java

Prolog is built on logical deduction
– formal explanation in Logic & Proof

It can provide concise implementations of algorithms such as
sorting or graph search
– Algorithms I & Algorithms II

64

Closing Remarks

Foundations of Functional Programming (Part IB)
– Building computation from first principles

Databases (Part 1B)
– Find out more about representing data and SQL

Artificial Intelligence (Part 1B)
– Search, constraint programming and more

C & C++ (Part 1B)
– Doing useful stuff in the real world

Natural Language Processing (Part II)
– Parsing natural language

End
C

You shoot yourself in the foot.

C++
You accidentally create a dozen instances of yourself and shoot

them all in the foot. Providing emergency medical care is
impossible since you can't tell which are bitwise copies and which

are just pointing at others and saying, "That's me over there."

Prolog
You explain in your program that you want to be shot in the foot.
The interpreter figures out all the possible ways to do it, but then

backtracks completely, instead destroying the gun.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

