3/5/2009

Programming Methods
Dr Robert Harle

|IA NST CS and CST
Lent 2008/09
Handout 5

Blob Tracking

§ Our goal is to build an app that detects when something
enters the visual range of a webcam

§ Example use: Detect when someone enters your room.

3/5/2009

The Basic Process

§ Get an image from the webcam

é -

§ Subtract some notion of ‘background’

[

§ ‘Grow’ regions of pixels to reduce noise

Geftting the Image

3/5/2009

Java Media Framework

§ Java itself doesn’t ship with much support for video

and audio media.
§ There are software libraries to get access however

§ We will be using the Java Media Framework (JMF)

§ Itis an ‘official’ Sun library
§ Gives us access to our webcam reasonably simply

2 Log in/ create account ~
[article | [dscussion | | editthis page | | nisory | [
Java Media Framework =
From Wikipedia, the free encyclopedia

Java Media Framework

ework (JMF) is a Java library that enables audio, video and other
added to Java applications and applets al p

y. stream, and transcode multiple media formats, extends the Java Platform, Standard
SE) and allows of cross-platform multimedia

WIKIPEDIA
The Free Eneyclopedia

Contents [hide]

SSeealso
B References

Developed Sun Hicrosys
by

Abstraction, abstraction, abstraction...

§ We don’t want to be stuck with the JMF
though

§ Might need a different library for a different webcam
§ Might even want to input from a video file

§ Try to identify the fundamental components of
something that supplies us with images (=“frames”)

§ Abstract into an interface

public interface Framelnterface {
public void open(String descriptor);
public Bufferedimage getNextFrame();
public void close();

}

3/5/2009

Concrete Instantiation

§ The code in JMFFrameSource is not
<<Interface>> pretty because frankly the JMF is

Framelnterface

pretty awful to work with.

§ You can ignore JMFFrameSource.java
for this course — | refuse to teach
JMF!!

JMFFrameSource

§ This design encapsulates everything
about getting images from a webcam
in a single class.

§ The interface decouples the program
from the JMF so you can easily
substitute a better library

Aside: Bufferedlmage

§ The Framelnterface returns objects of type
Bufferedlmage
§ This is a standard class in the class library to handle images

§ The “Buffered” bit means that the image is represented by
an accessible buffer — a grid of pixels

I'VE HAD TO
LEAVE JIM

REALLY? WHY?

WORSE!
MUCH
WORSE!

|
HE'S A JAVA
sy
I OH MY
DEAR!

g

Aside: RGB Pixels

§ How do you represent the colour of a single pixel?

§ Actually many ways, but commonly we use RGB
§ The colour is made up from only Red, Green and Blue.
§ We use 24 bits to represent the colour
§ 8 bits red (0-255)
§ 8 bits green (0-255)
§ 8 bits blue (0-255)
§ E.g. Purple = 160-32-240 (R-G-B)
§ We can think of this as a colour space

§ Like 3D space but xyz becomes rgb

Aside: RGB Pixels

§ We will need to get at individual pixels
§ Buffered Image provides getRGB(...) methods
§ Each pixel is given as an int:

32 bitint
AEEEEERE R 000000000 |
Alpha Red Green Blue

int colour=...

int r = ((colour>>16) & 0x000000FF);
int g = ((colour>>8) & 0x000000FF);
int b = ((colour) & 0x000000FF);

3/5/2009

Software So Far

<<Interface>>

BlobTracker

DisplayPanel

Framelnterface

BlobTracker
extends JFrame to
make a window on
the screen holding

a DisplayPanel. It
contains the main()
method

A DisplayPanel is
derived from
JPanel and allows
us to display the
outputimage on
the screen

JMFFrameSource

Subtracting the Background

3/5/2009

Strategy Pattern

§ There are lots of algorithms for background subtraction

§ We should structure our software to make it easy to select
between multiple algorithms

§ This of course means using the Strategy pattern

BlobTracker <<interface>>

BackgroundSubtractor

Subtract(...)

SimpleBackgroundSubtractor

Subtracty(...)

BackgroundSubtractor Interface

import java.util.List;

public interface BackgroundSubtractor {
public List<Pixel> Subtract(int[] pixels);
}

§ We provide an array of pixels (in ARGB as discussed)

§ We get back a List of Pixels representing the
foreground pixels

§ Class Pixel just stores an (x,y) pair — we’ll come back
toit

3/5/2009

3/5/2009

SimpleBackgroundSubtractor

§ Remember the notion of RGB as a space?

§ We have two readings for each pixel — the saved
background reading and the latest webcam reading

§ We treat them as two vectors (rb, gb, bb) and (rw,
gw, gb)
§ Then we compute the Euclidian distance apart in rgb space

§ Ifit’s greater than some threshold, we take it as different
to the background

§ The threshold allows us to account for noise which is there
even for a static background

Things to Note

§ The background image is ‘saved’ using clone() the
first time we get a picture

if (mBackground==null) {
mBackground = pixels.clone();
return new LinkedList<Pixel>();

}

§ Arrays have clone() implemented by default (shallow)

§ This is an array of primitive ints so that’s all we need

Things to Note

§ Always think about efficiency — avoid expensive calls
if you can (e.g. sqrt):

LinkedList<Pixel> foregroundlist = new LinkedList<Pixel>();
for (int i=0; i<pixels.length; i++) {
int r = ((pixels[i]>>16) & 0xO00000FF);

|nt distsq = (r-br)*(r-br) + (b-bb)*(b-bb) + (g-bg)*(g-bg);

if (distsq > mThreshold*mThreshold) {
foregroundlist.add(new Pixel(i, mImageWidth));
}
}

Region Growing

3/5/2009

Why Bother?

§ There is always so much noise that it isn’t enough to just
count the foreground pixels and take that as an indicator of
the size of object in view

§ We need to find regions in the image where all the adjacent
pixels are marked as foreground

§ So how to we go from a list of foreground pixels to lists of

neighbouring, connected pixels?
§ Unsurprisingly, there are lots of algorithms...

Strategy Pattern Again

1
BlobTracker <<Interface>>
Framelnterface

JMFFrameSource

<<Interface>>

RegionExtractor

extractRegions()

T

RecursiveRegionExtractor ScanningRegionExtractor

extractRegions() extractRegions()

3/5/2009

10

RegionExfractor

public interface RegionExtractor {
public List< Region > extractRegions(List<Pixel> pixels);

}

§ We get back a List of Regions
§ Choose a List because we will want ordering
§ Sort by size
§ Remove small regions (noise)
§ How will the program know to sort the Regions by
size?
S We have to tell it

§ To sort objects, there must be a way to compare them
§ Java offers us the Comparable interface

public class Region extends LinkedList<Pixel> implements
Comparable<Region>
{
public int compareTo(Region r) {
if (this.size()>r.size()) return -1;
if (this.size()<r.size()) return 1;
return O;
}
}

3/5/2009

11

§ Now we can use Region in structures that sort

§ Either we use a structure that is always sorted
(TreeSet, keys in a TreeMap, etc.)

§ Or we use the static sort() method in Collections

List< Region > regionlist = mRegionExtractor.extractRegions(fgpixels);

Iterator< Region > it = regionlist.iterator();
while (it.hasNext()) {

Region r = it.next();

if (r.size()<10) it.remove();

}

Collections.sort(regionlist);

RecursiveRegionExtractor

§ So how do we get Regions anyhow?
§ Start by translating the list of foreground pixels to an
array of ints because it’s easier to search through
§ -1 means the cell is background
§ 0 means the cell is believed to be foreground

-11-11-1
» List<Pixel> » 1001
0|0]-1

3/5/2009

12

3/5/2009

RecursiveRegionExtractor

§ First we write a function that, given a pixel that is foreground:
§ Labels it with a region number
§ Runs itself on any neighbouring pixels that are foregound
§ See extractRegion(...)

Start on (1,1) *Mark (1,1) with a unique region ID * Run function on (1,2)
* Look at the neighbours to see
whether (1,1) has any foreground
neighbours

RecursiveRegionExtractor

§ Just these three pixels need a series of recursive calls to
extractRegion (recursive = calls itself)

extractRegion (Pixel: 11 Label 1)
C extractRegion (Pixel: 12 Label 1)

C extractRegion (Pixel: 02 Label 1)

§ So, the bigger the region, the more function calls Java has to
keep track of simultaneously

§ Things can go wrong...
§ We see a StackOverflowException
§ Always a potential problem with recursive functions

13

3/5/2009

ScanningRegionExtractor

§ In reality we want a non-recursive algorithm
§ No StackOverflow
§ Better performance anyway
§ Much easier to debug!!

§ | have implemented such an algorithm for you in
ScanningRegionExtractor.java

§ It’s a neat algorithm but | don’t intend to go through it
here

§ Can you work it out and describe it in < 150 words?

Making it all Fly...

14

