Programming Methods
Dr Robert Harle

IA NST CS and CST
Lent 2008/09
Handout 4

Our Motivating Example

= We're going to make the world’s simplest web server
= |t’s not going to challenge apache etc
= But it will give us something to think about...

= | can’t assume you know how the internet works (pixie dust
primarily)
= So we'll start with a really brief review
= You can find out much more online

3/4/2009

3/4/2009

Client-Server

= The key notion these days is that of client-server

= A serveris a machine that sits there waiting for connections from one
or more clients

= The web is packed with servers that deliver web pages and browsers
that act as clients

I

((] = But what if we have multiple
J——{ types of server application
(web, email, etc)?

E

How does the client know
= where to connect?

For this we use Berkeley
__— sockets (“sockets”)

|

Each machine has an address (c.f. Phone number)
Each machine has lots of ports to contact it on (c.f. Phone extensions)

In software we create sockets which are software objects that represent a
connection between two systems

s c

= o O Server S is listening on port P (red)
0 o |:| _ .
'e) O L Client C creates a socket and associates
o (e j — it with some port (green)

— O O

=1 © O

| 8 o) E C attempts to connect to its socket to port P

o) = on server S (shorthand is S:P)

— O o <

=] O 0

— (@] E S responds and creates a socket at its
O 8 i end to represent the now open
o o) - > connection in software

Java Sockets

= Java class library does the hard work for us

= Class Socket

= Represents a socket (there was a clue in the title...)

= Class ServerSocket
= Listens for connections of a specified port
= Each time a connection comes in, it queues it up

= Each time we call accept() on it, it gives us a Socket object
that is attached to the connection at the top of the queue

= Setup a listening socket on port 10000 (server):

ServerSocket ss = null;
Socket result = null;
try {
ss = new ServerSocket(10000);
// The call below will wait until there is a connection
// from someone and then give us access to that
// connection via variable result
result = ss.accept();

b

= Create a socket and connect to mymachine.com, port 10000
(client):
Socket s = null;
try {
s = new Socket(“mymachine.com", 10000);

}

catch(IOException ioe) {
}

3/4/2009

3/4/2009

= Once we have a connected Socket, it’s just a place to get or
receive data

= You can just apply the usual stream reading or writing tools
that you have seen in the practicals

" Ee Socket s = new Socket(“somewhere.com”,4000);

Reader r = new InputStreamReader(s.getInputStream());
BufferedReader br = new BufferedReader(r);
String text = br.getLine(); ‘

Note that the docs for BufferedReader say: “In general,
each read request made of a Reader causes a
corresponding read request to be made of the
underlying character or byte stream. It is therefore
advisable to wrap a BufferedReader around any Reader
whose read() operations may be costly, such as
FileReaders and InputStreamReaders.” Which design
pattern is in use here?

Common Ports You Might Know (?)

= 21-FTP
= 22-SSH
= 23 —Telnet
= 53-DNS

= 80— Internet (web traffic)

= When you go to www.howtogetafirst.com this is just client-
server in action

= Your machine connects to a preconfigured DNS machine that tells it a
numerical address for the machine associated with
www.howtogetafirst.com

= Your machine then connects to that address on port 80
= |fthere is a web server there, it gets the web page

Web Server Design

WebServer

HTTPConnection

= Really simplistic
connections)

and handles any requests

= WebServer encapsulates the server part (listening for

= HTTPConnection encapsulates a single, live HTTP connection

WebServer State

public class WebServer {

/**
* The connection to a client (if any)
*/

private HTTPConnection mConnection = null;

/**
* The server port
*/

private int mPort;

/**
* Constructor stores the web server's port
* @param port
*/
public WebServer(int port) {
mPort = port;

}

= |nitialise our HTTP

connection to null to
indicate there is no live
connection

= Private port number to

listen on

= Constructor requires

that a port number be
specified when creating
the server

3/4/2009

3/4/2009

WebServer Process

public void runServer() {
while (true) {

// Wait until we are contacted
listenForNewConnection();

// mConnection now set up
mConnection.process();

WebServer: Listening

private void listenForNewConnection() {
ServerSocket serversocket = null;
while (true) {
try {
serversocket = new ServerSocket(mPort);

Socket connection = serversocket.accept();

mConnection = new HTTPConnection(connection);
}
catch(lOException ioe) {
// Something went wrong
}
}
}

The Connection Functionality

public void process() {
try {
// This just gets us something we can read from
BufferedReader input = new BufferedReader(new
InputStreamReader(mSocket.getinputStream()));

// Wait for a message to come in
String line = input.readLine();

// handle the request
handleRequest(line);

}
catch (IOException ioe) { }
finally {
try { mSocket.close(); }
catch(IOException ioe) {}
}
}

HTTP/1.0

= We'll be using the simplest communications protocol for web
pages — HyperText Transfer Protocol (HTTP) v1.0
= The browser connect to the web server and sends it some text
= The server responds in some way (hopefully with a web page!)
= The connection is terminated

= The commands we need to respond to

= “GET /path/to/file/index.htm| HTTP/1.0“
This is a request for a file /path/to/file/index.html on the server. It
wants the whole file in reply

= “HEAD /path/to/file/index.html HTTP/1.0”
This is a request for information about the file

/path/to/file/index.html. It does not expect to get the entire contents.

3/4/2009

The HTTP Header

= Everything we send must be prefixed with a nice ‘header’ that
describes the actual data. This is just a string of text for HTTP:

The protocol we’re using

The message type

We intend to close the connection
The name of the server

The data type (we only do HTML)

Usually the web page

= This is done in the method sendHeader()

Sending the File

DatalnputStream input=null;

try {
FileInputStream f = new FilelnputStream(file);

input = new DatalnputStream(f);

}

DataOutputStream output = new

while (true) {
int b = input.read();
if (b==-1){

break; //end of file

}
output.write(b);

}

DataOutputStream(mSocket.getOutputStream());

Open the file for input

Get the socket’s output

Read each byte in from
the file

Send each byte out to the
socket

3/4/2009

Tty o (Cii i)

.- 00 IBE P NI L Bomeor 1 (G vt
I‘l‘!.n-.' o - AF3 BT ™ O Vi " Brsi gt LaBT™™n
T ek Senns [l A st
B e oA L el lanet o cshaRETR
B Therad || Mansngs
ol Ctrogrem fdareipa L8 S ymm s 3 F o 2008 LLIAST

e ey
Flo e e Uy enkmas Tosh ik
B 2 & oY ek 15 - Nied-[esec »
& Mamvams = I s e |
Corgle [e e Cornt b @ B 0@ Fren - s s s it 5 5 b T e e ® () ety
ibvramien Ui Tenpon | mobeenjoe= [R e % w -0
" This page was served from our simple web server! ad

—
26 o oo
e]

But...

= While we are dealing with a new connection

= The SocketServer will queue up any other incoming connections (to a
point)
= But we process them one at a time

= Two problems here
= The SocketServer queue might get full and we might lose connections

= |f the current request takes a long time to process, the queued
requests will be stuck waiting. Thus our web server will seem really
sluggish

= What we want to do is have the server
process requests in parallel/ and not in
serial...

3/4/2009

Multiple Processes (for the NSTs)

= A single processor can only do one thing at a time

= So how does it manage to run multiple applications
simultaneously (word, skype, eclipse, etc)?

= Answer: it fakes it.

= [t rapidly shifts between programs, allowing them to run for very small
amounts of time (milliseconds)

= To us, everything seems to run simultaneously

Skype
Firefox
Eclipse

T E—

Threading (for the NSTs)

= When a single application wants to run multiple things at the
same time, it creates a new thread which is treated in exactly
the same way as a new process

= Why are threads useful?

= Allow one web page to load while you scroll through another

= Allow you to calculate results and still process input (for example, the
cancel button!!)

Skype
Firefox

Eclipse (2 .

threads) T ——

3/4/2009

10

Threads in Java

= Really easy to create

= Extend from java.lang.Thread run()
* |mplement a method to run

public void run()

Override this abstract method.
When started, the new thread
treats this as the new main()
method i.e. It’s the entry point MyThreadedClass
for the thread

run()

public void start()

This method does all the
clever stuff for us. It starts the
new thread and runs the run()
method

Our webserver

= We can make HTTPConnection extend from Thread

= We don’t have to change any existing code, just add a run() method
that calls that existing code!

public class ThreadedHTTPConnection extends Thread {

public void run() {
this.process();

}

3/4/2009

11

Our webserver

= The we just modify the server so that it starts a new thread to
process anything incoming

private void listenForNewConnection() {
ServerSocket serversocket = null;
while (true) {
try {

if (serversocket==null) serversocket = new ServerSocket(mPort);
Socket s = serversocket.accept();

ThreadedHTTPConnection conn = new ThreadedHTTPConnection(s);
conn.start();
}
}
... [/ etc
}

Yes!

And no...

3/4/2009

12

3/4/2009

Close...

= When multiple clients requests come in simultaneously for
different files, they are handled ‘simultaneously’

= |f we stress test it, there will come a point where it can’t handle the
rate of requests, but...

= The problem comes when two clients want the same file

= The second request ends up waiting until the first one has finished
with the file!

= There are obviously ways around this, but that’s a whole lecture
course in itself!

Why Threads Suck...

= |tis cool being able to run things concurrently

= But it gets really complex when:
= We need to share information between threads
= We need to share resources (files etc) between threads
= One thread depends on another in any way

13

Why Threads Suck...

= This is an area known as concurrency control

= Really quite interesting to study that just becomes even more
relevant as we start getting multi-processor chips

= Catches out a huge number of programmers and is the source
of many bugs

= The simplest solution is rarely the most efficient!

= For those of you doing CST next year, you’ll get to study it in
gory detail!

For This Course

® You don’t need to know about concurrency
programming in any detail
= | expect you to:

= Have a general idea of what a thread is
= Know has to make your own class that can run in a thread

3/4/2009

14

