
Logic and Proof
Computer Science Tripos Part IB

Michaelmas Term

Lawrence C Paulson
Computer Laboratory

University of Cambridge

lp15@cam.ac.uk

Copyright c© 2008 by Lawrence C. Paulson

Contents
1 Introduction and Learning Guide 1

2 Propositional Logic 3

3 Proof Systems for Propositional Logic 13

4 First-order Logic 20

5 Formal Reasoning in First-Order Logic 27

6 Clause Methods for Propositional Logic 33

7 Skolem Functions and Herbrand’s Theorem 42

8 Unification 50

9 First-Order Resolution and Prolog 58

10 BDDs, or Binary Decision Diagrams 65

11 Modal Logics 68

12 Tableaux-Based Methods 74

i

ii

1

1 Introduction and Learning Guide
This course gives a brief introduction to logic, with including the resolution
method of theorem-proving and its relation to the programming language Prolog.
Formal logic is used for specifying and verifying computer systems and (some-
times) for representing knowledge in Artificial Intelligence programs.

The course should help you with Prolog for AI and its treatment of logic
should be helpful for understanding other theoretical courses. Try to avoid getting
bogged down in the details of how the various proof methods work, since you
must also acquire an intuitive feel for logical reasoning.

The most suitable course text is this book:

Michael Huth and Mark Ryan, Logic in Computer Science:
Modelling and Reasoning about Systems, 2nd edition (CUP, 2004)

It costs £35. It covers most aspects of this course with the exception of resolution
theorem proving. It includes material (symbolic model checking) that should be
useful for Specification and Verification II next year.

The following book may be a useful supplement to Huth and Ryan. It covers
resolution, as well as much else relevant to Logic and Proof. The current Amazon
price is £24.50.

Mordechai Ben-Ari, Mathematical Logic for Computer Science, 2nd
edition (Springer, 2001)

Quite a few books on logic can be found in the Mathematics section of any
academic bookshop. They tend to focus more on results such as the completeness
theorem rather than on algorithms for proving theorems by machine. A typical
example is

Dirk van Dalen, Logic and Structure (Springer, 1994).

The following book is nearly 600 pages long and proceeds at a very slow pace.
At £41, it is not cheap.

Jon Barwise and John Etchemendy, Language Proof and Logic, 2nd
edition (University of Chicago Press, 2003)

It briefly covers some course topics (resolution and unification) but omits many
others (BDDs, the DPLL method, modal logic). Formal proofs are done in the
Fitch style instead of using the sequent calculus. The book comes with a CD-
ROM (for Macintosh and Windows) containing software to support the text. You
may find it useful if you find these course notes too concise.

Also relevant is

2 1 INTRODUCTION AND LEARNING GUIDE

Melvin Fitting, First-Order Logic and Automated Theorem Proving
(Springer, 1996)

The following book provides a different perspective on modal logic, and it
develops propositional logic carefully. However, you may be reluctant to spend
£50 (!) for a book that covers only a few course lectures.

Sally Popkorn, First Steps in Modal Logic (CUP, 1994)

Other useful books are out of print but may be found in College libraries:

C.-L. Chang and R. C.-T. Lee, Symbolic Logic and Mechanical
Theorem Proving (Academic Press, 1973)

Antony Galton, Logic for Information Technology (Wiley, 1990)

Steve Reeves and Michael Clarke, Logic for Computer Science
(Addison-Wesley, 1990)

There are numerous exercises in these notes, and they are suitable for supervi-
sion purposes. Old examination questions for Foundations of Logic Programming
(the former name of this course) are still relevant:

• 2006 Paper 5 Question 9: proof and disproof in FOL and modal logic

• 2006 Paper 6 Question 9: BDDs, Herbrand models, resolution (Lect. 7–10)

• 2005 Paper 5 Question 9: resolution (Lect. 6, 8, 9)

• 2005 Paper 6 Question 9: DPLL, BDDs, tableaux (Lect. 6, 10, 12)

• 2004 Paper 5 Question 9: semantics and proof in FOL (Lect. 4, 5)

• 2004 Paper 6 Question 9: ten true or false questions

• 2003 Paper 5 Question 9: BDDs; clause-based proof methods (Lect. 6, 10)

• 2003 Paper 6 Question 9: sequent calculus (Lect. 5)

• 2002 Paper 5 Question 11: semantics of propositional and first-order logic
(Lect. 2, 4)

• 2002 Paper 6 Question 11: resolution; proof systems (Lect. 5, 6, 9, 11)

• 2001 Paper 5 Question 11: satisfaction relation; logical equivalences

• 2001 Paper 6 Question 11: clause-based proof methods; ordered ternary
decision diagrams (Lect. 6, 10)

3

• 2000 Paper 5 Question 11: tautology checking; propositional sequent cal-
culus (Lect. 2, 3, 10)

• 2000 Paper 6 Question 11: unification and resolution (Lect. 8, 9)

• 1999 Paper 5 Question 10: Prolog resolution versus general resolution

• 1999 Paper 6 Question 10: Herbrand models and clause form

• 1998 Paper 5 Question 10: BDDs, sequent calculus, etc. (Lect. 3, 10)

• 1998 Paper 6 Question 10: modal logic (Lect. 11); resolution (Lect. 9)

• 1997 Paper 5 Question 10: first-order logic (Lect. 4)

• 1997 Paper 6 Question 10: sequent rules for quantifiers (Lect. 5)

• 1996 Paper 5 Question 10: sequent calculus (Lect. 3, 5, 10)

• 1996 Paper 6 Question 10: DPLL versus Resolution (Lect. 9)

• 1995 Paper 5 Question 9: BBDs (Lect. 10)

• 1995 Paper 6 Question 9: outline logics; sequent calculus (Lect. 3, 5, 11)

• 1994 Paper 5 Question 9: Resolution versus Prolog (Lect. 9)

• 1994 Paper 6 Question 9: Herbrand models (Lect. 7)

• 1994 Paper 6 Question 9: Most general unifiers and resolution (Lect. 9)

• 1993 Paper 3 Question 3: Resolution and Prolog (Lect. 9)

Acknowledgements. Jonathan Davies and Reuben Thomas pointed out numer-
ous errors in these notes. David Richerby and Ross Younger made detailed sug-
gestions. Thanks also to Thomas Forster, Simon Frankau, Adam Hall, Steve
Payne, Tom Puverle and John Wickerson.

2 Propositional Logic
Propositional logic deals with truth values and the logical connectives ‘and,’ ‘or,’
‘not,’ etc. It has no variables of any kind and is unable to express anything but the
simplest mathematical statements. It is studied because it is simple and because
it is the basis of more powerful logics. Most of the concepts in propositional
logic have counterparts in first-order logic. Here are the most important concepts,
which are the basis of logic.

4 2 PROPOSITIONAL LOGIC

Syntax refers to the formal notation for writing assertions. It also refers to the
data structures that represent assertions in a computer. At the level of syn-
tax, 1 + 2 is a string of three symbols, or a tree with a node labelled + and
having two children labelled 1 and 2.

Semantics expresses the meaning of a formula in terms of mathematical or real-
world entities. While 1 + 2 and 2 + 1 are syntactically distinct, they have
the same semantics, namely 3. The semantics of a logical statement will
typically be true or false.

Proof theory concerns ways of proving statements, at least the true ones. Typ-
ically we begin with axioms and arrive at other true statements using in-
ference rules. Formal proofs are typically finite and mechanical: their cor-
rectness can be checked without understanding anything about the subject
matter.

Syntax can be represented in a computer. Proof methods are syntactic, so they
can be performed by computer. On the other hand, as semantics is concerned
with meaning, it exists only inside people’s heads. This is analogous to the way
computers handle digital photos: the computer has no conception of what your
photos mean to you, and internally they are nothing but bits.

2.1 Syntax of propositional logic
We take for granted a set of propositional symbols P , Q, R, . . ., including the
truth values t and f. A formula consisting of a propositional symbol is called
atomic.

Formulæ are constructed from atomic formulæ using the logical connectives

¬ (not)
∧ (and)
∨ (or)
→ (implies)
↔ (if and only if)

These are listed in order of precedence; ¬ is highest. We shall suppress need-
less parentheses, writing, for example,

(((¬P) ∧ Q) ∨ R)→ ((¬P) ∨ Q) as ¬P ∧ Q ∨ R→ ¬P ∨ Q.

In the ‘metalanguage’ (these notes), the letters A, B, C , . . . stand for arbitrary
formulæ. The letters P , Q, R, . . . stand for atomic formulæ.

Some authors use ⊃ for the implies symbol and ≡ for if-and-only-if.

2.2 Semantics 5

2.2 Semantics
Propositional Logic is a formal language. Each formula has a meaning (or se-
mantics) — either t or f — relative to the meaning of the propositional symbols it
contains. The meaning can be calculated using the standard truth tables.

A B ¬A A ∧ B A ∨ B A→ B A↔ B
t t f t t t t
t f f f t f f
f t t f t t f
f f t f f t t

By inspecting the table, we can see that A→ B is equivalent to ¬A ∨ B and that
A ↔ B is equivalent to (A → B) ∧ (B → A). (The latter is also equivalent to
¬(A ⊕ B), where ⊕ is exclusive or.)

Note that we are using t and f in two distinct ways: as symbols on the printed
page, and as the truth values themselves. In this simple case, there should be no
confusion. When it comes to first-order logic, we shall spend some time on the
distinction between symbols and their meanings.

We now make some definitions that will be needed throughout the course.

Definition 1 An interpretation, or truth assignment, for a set of formulæ is a
function from its set of propositional symbols to {t, f}.

An interpretation satisfies a formula if the formula evaluates to t under the
interpretation.

A set S of formulæ is valid (or a tautology) if every interpretation for S satisfies
every formula in S.

A set S of formulæ is satisfiable (or consistent) if there is some interpretation
for S that satisfies every formula in S.

A set S of formulæ is unsatisfiable (or inconsistent) if it is not satisfiable.
A set S of formulæ entails A if every interpretation that satisfies all elements

of S, also satisfies A. Write S |H A.
Formulæ A and B are equivalent, A ' B, provided A |H B and B |H A.

It is usual to write A |H B instead of {A} |H B. We may similarly identify a
one-element set with a formula in the other definitions.

Note that |H and ' are not logical connectives but relations between formulæ.
They belong not to the logic but to the metalanguage: they are symbols we use to
discuss the logic. They therefore have lower precedence than the logical connec-
tives. No parentheses are needed in A∧ A ' A because the only possible reading
is (A∧ A) ' A. We may not write A∧ (A ' A) because A ' A is not a formula.

In propositional logic, a valid formula is also called a tautology. Here are
some examples of these definitions.

6 2 PROPOSITIONAL LOGIC

• The formulæ A→ A and ¬(A ∧ ¬A) are valid for every formula A.

• The formulæ P and P ∧ (P → Q) are satisfiable: they are both true under
the interpretation that maps P and Q to t. But they are not valid: they are
both false under the interpretation that maps P and Q to f.

• The formula ¬A is unsatisfiable for every valid formula A. This set of
formulæ is unsatisfiable: {P, Q,¬P ∨ ¬Q}

Exercise 1 Is the formula P → ¬P satisfiable? Is it valid?

2.3 Applications of propositional logic

Hardware design is the obvious example. Propositional logic is used to minimize
the number of gates in a circuit, and to show the equivalence of combinational
circuits. There now exist highly efficient tautology checkers, such as BDDs (Or-
dered Binary Decision Diagrams), which have been used to verify complex com-
binational circuits. This is an important branch of hardware verification.

Chemical synthesis is a more offbeat example.1 Under suitable conditions, the
following chemical reactions are possible:

HCl+ NaOH→ NaCl+ H2O
C+ O2→ CO2

CO2 + H2O→ H2CO3

Show we can make H2CO3 given supplies of HCl, NaOH, O2, and C.
Chang and Lee formalize the supplies of chemicals as four axioms and prove

that H2CO3 logically follows. The idea is to formalize each compound as a propo-
sitional symbol and express the reactions as implications:

HCl ∧ NaOH→ NaCl ∧ H2O
C ∧ O2→ CO2

CO2 ∧ H2O→ H2CO3

Note that this involves an ideal model of chemistry. What if the reactions
can be inhibited by the presence of other chemicals? Proofs about the real world
always depend upon general assumptions. It is essential to bear these in mind
when relying on such a proof.

1Chang and Lee, page 21, as amended by Ross Younger, who knew more about Chemistry!

2.4 Equivalences 7

2.4 Equivalences
Note that A ↔ B and A ' B are different kinds of assertions. The formula
A ↔ B refers to some fixed interpretation, while the metalanguage statement
A ' B refers to all interpretations. On the other hand, |H A↔ B means the same
thing as A ' B. Both are metalanguage statements, and A ' B is equivalent to
saying that the formula A↔ B is a tautology.

Similarly, A→ B and A |H B are different kinds of assertions, while |H A→
B and A |H B mean the same thing. The formula A → B is a tautology if and
only if A |H B.

Here is a listing of some of the more basic equivalences of propositional logic.
They provide one means of reasoning about propositions, namely by transforming
one proposition into an equivalent one. They are also needed to convert proposi-
tions into various normal forms.

idempotency laws

A ∧ A ' A
A ∨ A ' A

commutative laws

A ∧ B ' B ∧ A
A ∨ B ' B ∨ A

associative laws

(A ∧ B) ∧ C ' A ∧ (B ∧ C)
(A ∨ B) ∨ C ' A ∨ (B ∨ C)

distributive laws

A ∨ (B ∧ C) ' (A ∨ B) ∧ (A ∨ C)
A ∧ (B ∨ C) ' (A ∧ B) ∨ (A ∧ C)

de Morgan laws

¬(A ∧ B) ' ¬A ∨ ¬B
¬(A ∨ B) ' ¬A ∧ ¬B

other negation laws

¬(A→ B) ' A ∧ ¬B
¬(A↔ B) ' (¬A)↔ B ' A↔ (¬B)

8 2 PROPOSITIONAL LOGIC

laws for eliminating certain connectives

A↔ B ' (A→ B) ∧ (B → A)
¬A ' A→ f

A→ B ' ¬A ∨ B

simplification laws

A ∧ f ' f
A ∧ t ' A
A ∨ f ' A
A ∨ t ' t
¬¬A ' A

A ∨ ¬A ' t
A ∧ ¬A ' f

Propositional logic enjoys a principle of duality: for every equivalence A ' B
there is another equivalence A′ ' B ′, where A′, B ′ are derived from A, B by ex-
changing ∧ with ∨ and t with f. Before applying this rule, remove all occurrences
of→ and↔, since they implicitly involve ∧ and ∨.

Exercise 2 Verify some of the equivalences using truth tables.

2.5 Normal forms
The language of propositional logic is redundant: many of the connectives can
be defined in terms of others. By repeatedly applying certain equivalences, we
can transform a formula into a normal form. A typical normal form eliminates
certain connectives entirely, and uses others in a restricted manner. The restricted
structure makes the formula easy to process, although the normal form may be
exponentially larger than the original formula. Most normal forms are unreadable,
although Negation Normal Form is not too bad.

Definition 2 A literal is an atomic formula or its negation. Let K , L , L ′, . . . stand
for literals.

A maxterm is a literal or a disjunction of literals.
A minterm is a literal or a conjunction of literals.
A formula is in Negation Normal Form (NNF) if the only connectives in it are

∧, ∨, and ¬, where ¬ is only applied to atomic formulæ.

2.6 Translation to normal form 9

A formula is in Conjunctive Normal Form (CNF) if it has the form A1 ∧ · · · ∧

Am , where each Ai is maxterm.
A formula is in Disjunctive Normal Form (DNF) if it has the form A1 ∨ · · · ∨

Am , where each Ai is a minterm.

An atomic formula like P is in all the normal forms NNF, CNF, and DNF. The
formula

(P ∨ Q) ∧ (¬P ∨ S) ∧ (R ∨ P)

is in CNF. Unlike in some hardware applications, the disjuncts in a CNF formula
do not have to mention all the variables. On the contrary, they should be as simple
as possible. Simplifying the formula

(P ∨ Q) ∧ (¬P ∨ Q) ∧ (R ∨ S)

to Q ∧ (R ∨ S) counts as an improvement, because it will make our proof pro-
cedures run faster. For examples of DNF formulæ, exchange ∧ and ∨ in the
examples above. As with CNF, there is no need to mention all combinations of
variables.

NNF can reveal the underlying nature of a formula. For example, converting
¬(A → B) to NNF yields A ∧ ¬B. This reveals that the original formula was
effectively a conjunction. Every formula in CNF or DNF is also in NNF, but the
NNF formula

((¬P ∧ Q) ∨ R) ∧ P

is in neither CNF nor DNF.

2.6 Translation to normal form
Every formula can be translated into an equivalent formula in NNF, CNF, or DNF
by means of the following steps.

Step 1. Eliminate↔ and→ by repeatedly applying the following equivalences:

A↔ B ' (A→ B) ∧ (B → A)
A→ B ' ¬A ∨ B

Step 2. Push negations in until they apply only to atoms, repeatedly replacing
by the equivalences

¬¬A ' A
¬(A ∧ B) ' ¬A ∨ ¬B
¬(A ∨ B) ' ¬A ∧ ¬B

At this point, the formula is in Negation Normal Form.

10 2 PROPOSITIONAL LOGIC

Step 3. To obtain CNF, push disjunctions in until they apply only to literals.
Repeatedly replace by the equivalences

A ∨ (B ∧ C) ' (A ∨ B) ∧ (A ∨ C)
(B ∧ C) ∨ A ' (B ∨ A) ∧ (C ∨ A)

These two equivalences obviously say the same thing, since disjunction is com-
mutative. In fact, we have

(A ∧ B) ∨ (C ∧ D) ' (A ∨ C) ∧ (A ∨ D) ∧ (B ∨ C) ∧ (B ∨ D).

Use this equivalence when you can, to save writing.

Step 4. Simplify the resulting CNF by deleting any maxterm that contains both
P and ¬P , since it is equivalent to t. Also delete any maxterm that includes
another maxterm (meaning, every literal in the latter is also present in the former).
This is correct because A ∧ (A ∨ B) ' A. Finally, two maxterms of the form
P ∨ A and ¬P ∨ A can be replaced by A, thanks to the equivalence

(P ∨ A) ∧ (¬P ∨ A) ' A.

This simplification is related to the resolution rule, which we shall study later.
Since ∨ is commutative, saying ‘a maxterm of the form A ∨ B’ refers to any

possible way of arranging the literals into two parts. This includes A ∨ f, since
one of those parts may be empty and the empty disjunction is false. So in the last
simplification above, two maxterms of the form P and ¬P can be replaced by f.

Steps 3’ and 4’. To obtain DNF, apply instead the other distributive law:

A ∧ (B ∨ C) ' (A ∧ B) ∨ (A ∧ C)
(B ∨ C) ∧ A ' (B ∧ A) ∨ (C ∧ A)

Exactly the same simplifications can be performed for DNF as for CNF, exchang-
ing the roles of ∧ and ∨.

2.7 Tautology checking using CNF
Here is a method of proving theorems in propositional logic. To prove A, reduce
it to CNF. If the simplified CNF formula is t then A is valid because each trans-
formation preserves logical equivalence. And if the CNF formula is not t, then A
is not valid.

2.7 Tautology checking using CNF 11

To see why, suppose the CNF formula is A1 ∧ · · · ∧ Am . If A is valid then
each Ai must also be valid. Write Ai as L1 ∨ · · · ∨ Ln , where the L j are literals.
We can make an interpretation I that falsifies every L j , and therefore falsifies Ai .
Define I such that, for every propositional letter P ,

I (P) =

{
f if L j is P for some j
t if L j is ¬P for some j

This definition is legitimate because there cannot exist literals L j and Lk such that
L j is ¬Lk ; if there did, then simplification would have deleted the disjunction Ai .

The powerful BDD method is related to this CNF method. It uses an if-then-
else data structure, an ordering on the propositional letters, and some standard
algorithmic techniques (such as hashing) to gain efficiency.

Example 1 Start with
P ∨ Q → Q ∨ R

Step 1, eliminate→, gives

¬(P ∨ Q) ∨ (Q ∨ R)

Step 2, push negations in, gives

(¬P ∧ ¬Q) ∨ (Q ∨ R)

Step 3, push disjunctions in, gives

(¬P ∨ Q ∨ R) ∧ (¬Q ∨ Q ∨ R)

Simplifying yields
(¬P ∨ Q ∨ R) ∧ t

¬P ∨ Q ∨ R

The interpretation P 7→ t, Q 7→ f, R 7→ f falsifies this formula, which is equiv-
alent to the original formula. So the original formula is not valid.

Example 2 Start with
P ∧ Q → Q ∧ P

Step 1, eliminate→, gives

¬(P ∧ Q) ∨ Q ∧ P

12 2 PROPOSITIONAL LOGIC

Step 2, push negations in, gives

(¬P ∨ ¬Q) ∨ (Q ∧ P)

Step 3, push disjunctions in, gives

(¬P ∨ ¬Q ∨ Q) ∧ (¬P ∨ ¬Q ∨ P)

Simplifying yields t ∧ t, which is t. Both conjuncts are valid since they contain a
formula and its negation. Thus P ∧ Q → Q ∧ P is valid.

Example 3 Peirce’s law is another example. Start with

((P → Q)→ P)→ P

Step 1, eliminate→, gives

¬(¬(¬P ∨ Q) ∨ P) ∨ P

Step 2, push negations in, gives

(¬¬(¬P ∨ Q) ∧ ¬P) ∨ P

((¬P ∨ Q) ∧ ¬P) ∨ P

Step 3, push disjunctions in, gives

(¬P ∨ Q ∨ P) ∧ (¬P ∨ P)

Simplifying again yields t. Thus Peirce’s law is valid.
There is a dual method of refuting A (proving inconsistency). To refute A,

reduce it to DNF, say A1 ∨ · · · ∨ Am . If A is inconsistent then so is each Ai .
Suppose Ai is L1 ∧ · · · ∧ Ln , where the L j are literals. If there is some literal L ′

such that the L j include both L ′ and ¬L ′, then Ai is inconsistent. If not then there
is an interpretation that verifies every L j , and therefore Ai .

To prove A, we can use the DNF method to refute ¬A. The steps are ex-
actly the same as the CNF method because the extra negation swaps every ∨ and
∧. Gilmore implemented a theorem prover based upon this method in 1960 (see
Chang and Lee, page 62).

Exercise 3 Each of the following formulæ is satisfiable but not valid. Exhibit an
interpretation that makes the formula true and another interpretation that makes
the formula false.

P → Q
¬(P ∨ Q ∨ R)

P ∨ Q → P ∧ Q
¬(P ∧ Q) ∧ ¬(Q ∨ R) ∧ (P ∨ R)

13

Exercise 4 Convert each of the following propositional formulæ into Conjunc-
tive Normal Form and also into Disjunctive Normal Form. For each formula, state
whether it is valid, satisfiable, or unsatisfiable; justify each answer.

(P → Q) ∧ (Q → P)
((P ∧ Q) ∨ R) ∧ (¬((P ∨ R) ∧ (Q ∨ R)))
¬(P ∨ Q ∨ R) ∨ ((P ∧ Q) ∨ R)

Exercise 5 Using ML, define datatypes for representing propositions and inter-
pretations. Write a function to test whether or not a proposition holds under an
interpretation (both supplied as arguments). Write a function to convert a propo-
sition to Negation Normal Form.

3 Proof Systems for Propositional Logic
We can verify any tautology by checking all possible interpretations, using the
truth tables. This is a semantic approach, since it appeals to the meanings of the
connectives.

The syntactic approach is formal proof: generating theorems, or reducing a
conjecture to a known theorem, by applying syntactic transformations of some
sort. We have already seen a proof method based on CNF. Most proof methods
are based on axioms and inference rules.

What about efficiency? Deciding whether a propositional formula is satisfiable
is an NP-complete problem (Aho, Hopcroft and Ullman 1974, pages 377–383).
Thus all approaches are likely to be exponential in the length of the formula.

3.1 A Hilbert-style proof system
Here is a simple proof system for propositional logic. There are countless similar
systems. They are often called Hilbert systems after the logician David Hilbert,
although they existed before him.

This proof system provides rules for implication only. The other logical con-
nectives are not taken as primitive. They are instead defined in terms of implica-
tion:

¬A def
= A→ f

A ∨ B def
= ¬A→ B

A ∧ B def
= ¬(¬A ∨ ¬B)

14 3 PROOF SYSTEMS FOR PROPOSITIONAL LOGIC

Obviously, these definitions apply when we are discussing this proof system!
Note that A→ (B → A) is a tautology. Call it Axiom K. Also,

(A→ (B → C))→ ((A→ B)→ (A→ C))

is a tautology. Call it Axiom S. The Double-Negation Law ¬¬A → A, is a
tautology. Call it Axiom DN.

These axioms are more properly called axiom schemes, since we assume all
instances of them that can be obtained by substituting formulæ for A, B and C .
For example, Axiom K is really an infinite set of formulæ.

Whenever A → B and A are both valid, it follows that B is valid. We write
this as the inference rule

A→ B A
B.

This rule is traditionally called Modus Ponens. Together with Axioms K, S,
and DN and the definitions, it suffices to prove all tautologies of (classical) propo-
sitional logic.2 However, this formalization of propositional logic is inconvenient
to use. For example, try proving A→ A!

A variant of this proof system replaces the Double-Negation Law by the Con-
trapositive Law:

(¬B → ¬A)→ (A→ B)

Another formalization of propositional logic consists of the Modus Ponens
rule plus the following axioms:

A ∨ A→ A
B → A ∨ B

A ∨ B → B ∨ A
(B → C)→ (A ∨ B → A ∨ C)

Here A ∧ B and A→ B are defined in terms of ¬ and ∨.
Where do truth tables fit into all this? Truth tables define the semantics, while

proof systems define what is sometimes called the proof theory. A proof system
must respect the truth tables. Above all, we expect the proof system to be sound:
every theorem it generates must be a tautology. For this to hold, every axiom must
be a tautology and every inference rule must yield a tautology when it is applied
to tautologies.

The converse property is completeness: the proof system can generate every
tautology. Completeness is harder to achieve and to demonstrate. There are com-
plete proof systems even for first-order logic. Gödel’s incompleteness theorem

2If the Double-Negation Law is omitted, only the intuitionistic tautologies are provable. This
axiom system is connected with the combinators S and K and the λ-calculus.

3.2 Gentzen’s Natural Deduction Systems 15

says that there are no “interesting” complete proof systems for logical theories
strong enough to define the properties of the natural numbers.

3.2 Gentzen’s Natural Deduction Systems
Natural proof systems do exist. Natural deduction, devised by Gerhard Gentzen,
is based upon three principles:

1. Proof takes place within a varying context of assumptions.

2. Each logical connective is defined independently of the others. (This is
possible because item 1 eliminates the need for tricky uses of implication.)

3. Each connective is defined by introduction and elimination rules.

For example, the introduction rule for ∧ describes how to deduce A ∧ B:

A B
A ∧ B

(∧i)

The elimination rules for ∧ describe what to deduce from A ∧ B:

A ∧ B
A

(∧e1) A ∧ B
B

(∧e2)

The elimination rule for→ says what to deduce from A → B. It is just Modus
Ponens:

A→ B A
B

(→e)

The introduction rule for → says that A → B is proved by assuming A and
deriving B:

[A]....
B

A→ B
(→i)

For simple proofs, this notion of assumption is pretty intuitive. Here is a proof of
the formula A ∧ B → A:

[A ∧ B]
A

(∧e1)

A ∧ B → A
(→i)

The key point is that rule (→i) discharges its assumption: the assumption could
be used to prove A from A ∧ B, but is no longer available once we conclude
A ∧ B → A.

16 3 PROOF SYSTEMS FOR PROPOSITIONAL LOGIC

The introduction rules for ∨ are straightforward:

A
A ∨ B

(∨i1) B
A ∨ B

(∨i2)

The elimination rule says that to show some C from A ∨ B there are two cases to
consider, one assuming A and one assuming B:

A ∨ B

[A]....
C

[B]....
C

C
(∨e)

The scope of assumptions can get confusing in complex proofs. Let us switch
attention to the sequent calculus, which is similar in spirit but easier to use.

3.3 The sequent calculus
The sequent calculus resembles natural deduction, but it makes the set of assump-
tions explicit. Thus, it is more concrete.

A sequent has the form 0⇒1, where 0 and 1 are finite sets of formulæ.3

These sets may be empty. The sequent

A1, . . . , Am⇒ B1, . . . , Bn

is true (in a particular interpretation) if A1 ∧ . . . ∧ Am implies B1 ∨ . . . ∨ Bn . In
other words, if each of A1, . . . , Am are true, then at least one of B1, . . . , Bn must
be true. The sequent is valid if it is true in all interpretations.

A basic sequent is one in which the same formula appears on both sides, as in
P, B⇒ B, R. This sequent is valid because, if all the formulæ on the left side are
true, then in particular B is; so, at least one right-side formula (B again) is true.
Our calculus therefore regards all basic sequents as proved.

Every basic sequent might be written in the form {A} ∪ 0⇒{A} ∪1, where
A is the common formula and 0 and 1 are the other left- and right-side formulæ,
respectively. The sequent calculus identifies the one-element set {A} with its ele-
ment A and denotes union by a comma. Thus, the correct notation for the general
form of a basic sequent is A, 0⇒ A,1.

Sequent rules are almost always used backward. We start with the sequent
that we would like to prove. We view the sequent as saying that A1, . . . , Am are
true, and we try to show that one of B1, . . . , Bn is true. Working backwards, we
use sequent rules to reduce it to simpler sequents, stopping when those sequents

3With minor changes, sequents can instead be lists or multisets.

3.4 Examples of Sequent Calculus Proofs 17

become trivial. The forward direction would be to start with known facts and
derive new facts, but this approach tends to generate random theorems rather than
ones we want.

Sequent rules are classified as right or left, indicating which side of the
⇒ symbol they operate on. Rules that operate on the right side are analogous
to natural deduction’s introduction rules, and left rules are analogous to elimina-
tion rules.

The sequent calculus analogue of (→i) is the rule

A, 0⇒1, B
0⇒1, A→ B

(→r)

Working backwards, this rule breaks down some implication on the right side
of a sequent; 0 and 1 stand for the sets of formulæ that are unaffected by the
inference. The analogue of the pair (∨i1) and (∨i2) is the single rule

0⇒1, A, B
0⇒1, A ∨ B

(∨r)

This breaks down some disjunction on the right side, replacing it by both dis-
juncts. Thus, the sequent calculus is a kind of multiple-conclusion logic. Figure 1
summarises the rules.

Let us prove that the rule (∨l) is sound. We must show that if both premises
are valid, then so is the conclusion. For contradiction, assume that the conclusion,
A ∨ B, 0⇒1, is not valid. Then there exists an interpretation I under which the
left side is true while the right side is false; in particular, A ∨ B and 0 are true
while 1 is false. Since A ∨ B is true under interpretation I , either A is true or
B is. In the former case, A, 0⇒1 is false; in the latter case, B, 0⇒1 is false.
Either case contradicts the assumption that the premises are valid.

3.4 Examples of Sequent Calculus Proofs
To illustrate the use of multiple formulæ on the right, let us prove the classical
theorem (A→ B)∨ (B → A). Working backwards (or upwards), we reduce this
formula to a basic sequent:

A, B⇒ B, A
A⇒ B, B → A

(→r)

⇒ A→ B, B → A
(→r)

⇒ (A→ B) ∨ (B → A)
(∨r)

The basic sequent has a line over it to emphasize that it is provable.

18 3 PROOF SYSTEMS FOR PROPOSITIONAL LOGIC

basic sequent: A, 0⇒ A,1
Negation rules:

0⇒1, A
¬A, 0⇒1

(¬l)
A, 0⇒1

0⇒1,¬A
(¬r)

Conjunction rules:

A, B, 0⇒1

A ∧ B, 0⇒1
(∧l)

0⇒1, A 0⇒1, B
0⇒1, A ∧ B

(∧r)

Disjunction rules:

A, 0⇒1 B, 0⇒1

A ∨ B, 0⇒1
(∨l)

0⇒1, A, B
0⇒1, A ∨ B

(∨r)

Implication rules:

0⇒1, A B, 0⇒1

A→ B, 0⇒1
(→l)

A, 0⇒1, B
0⇒1, A→ B

(→r)

Figure 1: Sequent Rules for Propositional Logic

This example is typical of the sequent calculus: start with the desired theorem
and work upward. Notice that inference rules still have the same logical mean-
ing, namely that the premises (above the line) imply the conclusion (below the
line). Instead of matching a rule’s premises with facts that we know, we match its
conclusion with the formula we want to prove. That way, the form of the desired
theorem controls the proof search.

Here is part of a proof of the distributive law A∨(B∧C) ' (A∨B)∧(A∨C):

A⇒ A, B
B,C⇒ A, B

B ∧ C⇒ A, B
(∧l)

A ∨ (B ∧ C)⇒ A, B
(∨l)

A ∨ (B ∧ C)⇒ A ∨ B
(∨r)

similar
A ∨ (B ∧ C)⇒ (A ∨ B) ∧ (A ∨ C)

(∧r)

The second, omitted proof tree proves A ∨ (B ∧ C)⇒ A ∨ C similarly.

3.5 Further Sequent Calculus Rules 19

Finally, here is a failed proof of the invalid formula A ∨ B → B ∨ C .

A⇒ B,C B⇒ B,C
A ∨ B⇒ B,C

(∨l)

A ∨ B⇒ B ∨ C
(∨r)

⇒ A ∨ B → B ∨ C
(→r)

The sequent A⇒ B,C has no line over it because it is not valid! The interpreta-
tion A 7→ t, B 7→ f, C 7→ f falsifies it. We have already seen this as Example 1
(page 11).

3.5 Further Sequent Calculus Rules

Structural rules concern sequents in general rather than particular connectives.
They are little used in this course, because they are not useful for proof procedures.
However, a brief mention is essential in any introduction to the sequent calculus.

The weakening rules allow additional formulæ to be inserted on the left or
right side. Obviously, if 0⇒1 holds then the sequent continues to hold after
further assumptions or goals are added:

0⇒1

A, 0⇒1
(weaken:l)

0⇒1

0⇒1, A
(weaken:r)

Exchange rules allow formulæ in a sequent to be re-ordered. We do not need them
because our sequents are sets rather than lists. Contraction rules allow formulæ to
be used more than once:

A, A, 0⇒1

A, 0⇒1
(contract :l)

0⇒1, A, A
0⇒1, A

(contract :r)

Because the sets {A} and {A, A} are identical, we don’t need contraction rules
either. Moreover, it turns out that we almost never need to use a formula more
than once. Exceptions are ∀x A (when it appears on the left) and ∃x A (when it
appears on the right).

The cut rule allows the use of lemmas. Some formula A is proved in the first
premise, and assumed in the second premise. A famous result, the cut-elimination
theorem, states that this rule is not required. All uses of it can be removed from
any proof, but the proof could get exponentially larger.

0⇒1, A A, 0⇒1

0⇒1
(cut)

20 4 FIRST-ORDER LOGIC

This special case of cut may be easier to understand. We prove lemma A from 0
and use A and 0 together to reach the conclusion B.

0⇒ B, A A, 0⇒ B
0⇒ B

Since 0 contains as much information as A, it is natural to expect that such lem-
mas should not be necessary, but the cut-elimination theorem is hard to prove.

Note On the course website,4 there is a simple theorem prover called
folderol.ML. It can prove easy first-order theorems using the sequent calculus,
and outputs a summary of each proof. The file begins with very basic instructions
describing how to run it. The file testsuite.ML contains further instructions
and numerous examples.

Exercise 6 Prove the following sequents:

¬¬A⇒ A
A ∧ B⇒ B ∧ A
A ∨ B⇒ B ∨ A

Exercise 7 Prove the following sequents:

(A ∧ B) ∧ C⇒ A ∧ (B ∧ C)
(A ∨ B) ∧ (A ∨ C)⇒ A ∨ (B ∧ C)

¬(A ∨ B)⇒¬A ∧ ¬B

4 First-order Logic

First-order logic (FOL) extends propositional logic to allow reasoning about the
members (such as numbers) of some non-empty universe. It uses the quantifiers
∀ (‘for all’) and ∃ (‘there exists’). First-order logic has variables ranging over
‘individuals,’ but not over functions or predicates; such variables are found in
second- or higher-order logic.

4http://www.cl.cam.ac.uk/users/lcp/papers/#Courses

4.1 Syntax of first-order Logic 21

4.1 Syntax of first-order Logic
Terms stand for individuals while formulæ stand for truth values. We assume there
is an infinite supply of variables x , y, . . . that range over individuals. A first-order
language specifies symbols that may appear in terms and formulæ. A first-order
language L contains, for all n ≥ 0, a set of n-place function symbols f , g, . . .
and n-place predicate symbols P , Q, These sets may be empty, finite, or
infinite.

Constant symbols a, b, . . . are simply 0-place function symbols. Intuitively,
they are names for fixed elements of the universe. It is not required to have a
constant for each element; conversely, two constants are allowed to have the same
meaning.

Predicate symbols are also called relation symbols. Prolog programmers refer
to function symbols as functors.

Definition 3 The terms t , u, . . . of a first-order language are defined recursively
as follows:

• A variable is a term.

• A constant symbol is a term.

• If t1, . . ., tn are terms and f is an n-place function symbol then f (t1, . . . , tn)
is a term.

Definition 4 The formulæ A, B, . . . of a first-order language are defined recur-
sively as follows:

• If t1, . . ., tn are terms and P is an n-place predicate symbol then
P(t1, . . . , tn) is a formula (called an atomic formula).

• If A and B are formulæ then ¬A, A ∧ B, A ∨ B, A→ B, A↔ B are also
formulæ.

• If x is a variable and A is a formula then ∀x A and ∃x A are also formulæ.

Brackets are used in the conventional way for grouping. Terms and formulæ are
tree-like data structures, not strings.

The quantifiers ∀x A and ∃x A bind tighter than the binary connectives; thus
∀x A ∧ B is equivalent to (∀x A) ∧ B. Frequently, you will see an alternative
quantifier syntax, ∀x . A and ∃x . B, which binds more weakly than the binary
connectives: ∀x . A ∧ B is equivalent to ∀x (A ∧ B). The dot is the give-away;
look out for it!

Nested quantifications such as ∀x ∀y A are abbreviated to ∀xy A.

22 4 FIRST-ORDER LOGIC

Example 4 A language for arithmetic might have the constant symbols 0, 1, 2,
. . ., and function symbols +, −, ×, /, and the predicate symbols =, <, >,
We informally may adopt an infix notation for the function and predicate symbols.
Terms include 0 and (x + 3)− y; formulæ include y = 0 and x + y < y + z.

4.2 Examples of statements in first-order logic
Here are some sample formulæ with a rough English translation. English is easier
to understand but is too ambiguous for long derivations.

All professors are brilliant:

∀x (professor(x)→ brilliant(x))

The income of any banker is greater than the income of any bedder:

∀xy (banker(x) ∧ bedder(y)→ income(x) > income(y))

Note that> is a 2-place relation symbol. The infix notation is simply a convention.
Every student has a supervisor:

∀x (student(x)→ ∃y supervises(y, x))

This does not preclude a student having several supervisors.
Every student’s tutor is a member of the student’s College:

∀xy (student(x) ∧ college(y) ∧member(x, y)→ member(tutor(x), y))

The use of a function ‘tutor’ incorporates the assumption that every student has
exactly one tutor.

A mathematical example: there exist infinitely many Pythagorean triples:

∀n ∃i jk (i > n ∧ i2
+ j2

= k2)

Here the superscript 2 refers to the squaring function. Equality (=) is just another
relation symbol (satisfying suitable axioms) but there are many special techniques
for it.

First-order logic assumes a non-empty domain: thus ∀x P(x) implies ∃x P(x).
If the domain could be empty, even ∃x t could fail to hold. Note also that
∀x ∃y y2

= x is true if the domain is the complex numbers, and is false if the
domain is the integers or reals. We determine properties of the domain by assert-
ing the set of statements it must satisfy.

There are many other forms of logic. Many-sorted first-order logic assigns
types to each variable, function symbol and predicate symbol, with straight-
forward type checking; types are called sorts and denote non-empty domains.

4.3 Formal semantics of first-order logic 23

Second-order logic allows quantification over functions and predicates. It can
express mathematical induction by

∀P [P(0) ∧ ∀k (P(k)→ P(k + 1))→ ∀n P(n)],

using quantification over the unary predicate P . In second-order logic, these func-
tions and predicates must themselves be first-order, taking no functions or pred-
icates as arguments. Higher-order logic allows unrestricted quantification over
functions and predicates of any order. The list of logics could be continued indef-
initely.

4.3 Formal semantics of first-order logic
Let us rigorously define the meaning of formulæ. An interpretation of a language
maps its function symbols to actual functions, and its relation symbols to actual
relations. For example, the predicate symbol ‘student’ could be mapped to the set
of all students currently enrolled at the University.

Definition 5 Let L be a first-order language. An interpretation I of L is a pair
(D, I). Here D is a nonempty set, the domain or universe. The operation I maps
symbols to individuals, functions or sets:

• if c is a constant symbol (of L) then I [c] ∈ D

• if f is an n-place function symbol then I [f] ∈ Dn
→ D (which means

I [f] is an n-place function on D)

• if P is an n-place relation symbol then I [P] ∈ Dn
→ {t, f} (equivalently,

I [P] ⊆ Dn , which means I [P] is an n-place relation on D)

Relations cannot be regarded as functions (as they are in ML, for example) be-
cause in first-order logic, the truth values t and f may not belong to the domain D.

An interpretation does not say anything about variables. There are various
ways of talking about the values of variables under an interpretation. One way is
to ‘invent’ a constant symbol for every element of D. More natural is to represent
the values of variables using an environment, known as a valuation.

Definition 6 A valuation V of L over D is a function from the variables of L
into D. Write IV [t] for the value of t with respect to I and V , defined by

IV [x] def
= V (x) if x is a variable

IV [c] def
= I [c]

IV [f (t1, . . . , tn)]
def
= I [f](IV [t1], . . . , IV [tn])

24 4 FIRST-ORDER LOGIC

Write V {a/x} for the valuation that maps x to a and is otherwise the same
as V . Typically, we modify a valuation one variable at a time. This is a semantic
analogue of substitution for the variable x .

4.4 What is truth?
We now can define truth itself. (First-order truth, that is!) This formidable defi-
nition formalizes the intuitive meanings of the connectives. Thus it almost looks
like a tautology. It effectively specifies each connective by English descriptions.
Valuations help specify the meanings of quantifiers. Alfred Tarski first defined
truth in this manner.

Definition 7 Let A be a formula. Then for an interpretation I = (D, I) write
|HI,V A to mean ‘A is true in I under V .’ This is defined by cases on the con-
struction of the formula A:

|HI,V P(t1, . . . , tn) if (IV [t1], . . . , IV [tn]) ∈ I [P] holds (that is, the
actual relation I [P] holds of the values of the arguments)

|HI,V t = u if IV [t] equals IV [u] (if = is a predicate symbol of the
language, then we insist that it really denotes equality)

|HI,V ¬B if |HI,V B does not hold

|HI,V B ∧ C if |HI,V B and |HI,V C

|HI,V B ∨ C if |HI,V B or |HI,V C

|HI,V B → C if |HI,V B does not hold or |HI,V C

|HI,V B ↔ C if |HI,V B and |HI,V C both hold or neither hold

|HI,V ∃x B if there exists m ∈ D such that |HI,V {m/x} B holds (that
is, B holds when x has the value m)

|HI,V ∀x B if for all m ∈ D we have that |HI,V {m/x} B holds

The cases for ∧, ∨,→ and↔ follow the propositional truth tables.
Write |HI A provided |HI,V A for all V . Clearly, if A is closed (contains no

free variables) then its truth is independent of the valuation.
The definitions of valid, satisfiable, etc. carry over almost verbatim from

Sect. 2.2.

Definition 8 Let A be a formula having no free variables.

• An interpretation I satisfies a formula if |HI A holds.

4.4 What is truth? 25

• A set S of formulæ is valid if every interpretation of S satisfies every for-
mula in S.

• A set S of formulæ is satisfiable (or consistent) if there is some interpreta-
tion of S that satisfies every formula in S.

• A set S of formulæ is unsatisfiable (or inconsistent) if it is not satisfiable.
(Each interpretation falsifies some formula of S.)

• A model of a set S of formulæ is an interpretation that satisfies every formula
in S. We also consider models that satisfy a single formula.

Unlike in propositional logic, models can be infinite and there can be an in-
finite number of models. There is no chance of proving validity by checking all
models. We must rely on proof.

Example 5 The formula P(a)∧¬P(b) is satisfiable. Consider the interpretation
with D = {0, 1} and I defined by

I [a] = 0
I [b] = 1

I [P] = {0}

On the other hand, ∀xy (P(x) ∧ ¬P(y)) is unsatisfiable because it requires P(x)
to be both true and false for all x . Also unsatisfiable is P(x) ∧ ¬P(y): its free
variables are taken to be universally quantified, so it is equivalent to ∀xy (P(x) ∧
¬P(y)).

The formula (∃x P(x))→ P(c) holds in the interpretation (D, I) where D =
{0, 1}, I [P] = {0}, and I [c] = 0. (Thus P(x) means ‘x equals 0’ and c denotes
0.) If we modify this interpretation by making I [c] = 1 then the formula no longer
holds. Thus it is satisfiable but not valid.

The formula (∀x P(x)) → (∀x P(f (x))) is valid, for let (D, I) be an inter-
pretation. If ∀x P(x) holds in this interpretation then P(x) holds for all x ∈ D,
thus I [P] = D. The symbol f denotes some actual function I [f] ∈ D → D.
Since I [P] = D and I [f](x) ∈ D for all x ∈ D, formula ∀x P(f (x)) holds.

The formula ∀xy x = y is satisfiable but not valid; it is true in every domain
that consists of exactly one element. (The empty domain is not allowed in first-
order logic.)

Example 6 Let L be the first-order language consisting of the constant 0 and
the (infix) 2-place function symbol +. An interpretation I of this language is any

26 4 FIRST-ORDER LOGIC

non-empty domain D together with values I [0] and I [+], with I [0] ∈ D and
I [+] ∈ D × D→ D. In the language L we may express the following axioms:

x + 0 = x
0+ x = x

(x + y)+ z = x + (y + z)

(Remember, free variables in effect are universally quantified, by the definition of
|HI A.) One model of these axioms is the set of natural numbers, provided we
give 0 and + the obvious meanings. But the axioms have many other models.5

Below, let A be some set.

1. The set of all strings (in ML say) letting 0 denote the empty string and +
string concatenation.

2. The set of all subsets of A, letting 0 denote the empty set and + union.

3. The set of functions in A→ A, letting 0 denote the identity function and +
composition.

Exercise 8 To test your understanding of quantifiers, consider the following for-
mulæ: everybody loves somebody vs there is somebody that everybody loves:

∀x ∃y loves(x, y) (1)
∃y ∀x loves(x, y) (2)

Does (1) imply (2)? Does (2) imply (1)? Consider both the informal meaning and
the formal semantics defined above.

Exercise 9 Describe a formula that is true in precisely those domains that con-
tain at least m elements. (We say it characterises those domains.) Describe a
formula that characterises the domains containing at most m elements.

Exercise 10 Let ≈ be a 2-place predicate symbol, which we write using infix
notation as x ≈ y instead of ≈ (x, y). Consider the axioms

∀x x ≈ x (1)
∀xy (x ≈ y → y ≈ x) (2)
∀xyz (x ≈ y ∧ y ≈ z→ x ≈ z) (3)

Let the universe be the set of natural numbers, N = {0, 1, 2, . . .}. Which axioms
hold if I [≈] is

5Models of these axioms are called monoids.

27

• the empty relation, ∅?

• the universal relation, {(x, y) | x, y ∈ N }?

• the equality relation, {(x, x) | x ∈ N }?

• the relation {(x, y) | x, y ∈ N ∧ x + y is even}?

• the relation {(x, y) | x, y ∈ N ∧ x + y = 100}?

• the relation {(x, y) | x, y ∈ N ∧ x ≡ y (mod 16)}?

Exercise 11 Taking= and R as 2-place relation symbols, consider the following
axioms:

∀x ¬R(x, x) (1)
∀xy ¬(R(x, y) ∧ R(y, x)) (2)
∀xyz (R(x, y) ∧ R(y, z)→ R(x, z)) (3)
∀xy (R(x, y) ∨ (x = y) ∨ R(y, x)) (4)
∀xz (R(x, z)→ ∃y (R(x, y) ∧ R(y, z))) (5)

Exhibit two interpretations that satisfy axioms 1–5. Exhibit two interpretations
that satisfy axioms 1–4 and falsify axiom 5. Exhibit two interpretations that satisfy
axioms 1–3 and falsify axioms 4 and 5. Consider only interpretations that make
= denote the equality relation. (This exercise asks whether you can make the
connection between the axioms and typical mathematical objects satisfying them.
A start is to say that R(x, y) means x < y, but on what domain?)

5 Formal Reasoning in First-Order Logic
This section reviews some syntactic notations: free variables versus bound vari-
ables and substitution. It lists some of the main equivalences for quantifiers. Fi-
nally it describes and illustrates the quantifier rules of the sequent calculus.

5.1 Free vs bound variables
The notion of bound variable occurs widely in mathematics: consider the role
of x in

∫
f (x)dx and the role of k in lim∞k=0 ak . Similar concepts occur in the

λ-calculus. In first-order logic, variables are bound by quantifiers (rather than
by λ).

Definition 9 An occurrence of a variable x in a formula is bound if it is contained
within a subformula of the form ∀x A or ∃x A.

28 5 FORMAL REASONING IN FIRST-ORDER LOGIC

An occurrence of the form ∀x or ∃x is called the binding occurrence of x .
An occurrence of a variable is free if it is not bound.
A closed formula is one that contains no free variables.
A ground term, formula, etc. is one that contains no variables at all.

In ∀x ∃y R(x, y, z), the variables x and y are bound while z is free.
In (∃x P(x))∧ Q(x), the occurrence of x just after P is bound, while that just

after Q is free. Thus x has both free and bound occurrences. Such situations can
be avoided by renaming bound variables, for example obtaining (∃y P(y))∧Q(x).
Renaming can also ensure that all bound variables in a formula are distinct. The
renaming of bound variables is sometimes called α-conversion.

Example 7 Renaming bound variables in a formula preserves its meaning, pro-
vided no name clashes are introduced. Consider the following renamings of
∀x ∃y R(x, y, z):

∀u ∃y R(u, y, z) OK
∀x ∃w R(x, w, z) OK
∀u ∃y R(x, y, z) not done consistently
∀y ∃y R(y, y, z) clash with bound variable y
∀z ∃y R(z, y, z) clash with free variable z

5.2 Substitution
If A is a formula, t is a term, and x is a variable, then A[t/x] is the formula
obtained by substituting t for x throughout A. The substitution only affects the
free occurrences of x . Pronounce A[t/x] as ‘A with t for x .’ We also use u[t/x]
for substitution in a term u and C[t/x] for substitution in a clause C (clauses are
described in Sect. 6 below).

Substitution is only sensible provided all bound variables in A are distinct from
all variables in t . This can be achieved by renaming the bound variables in A. For
example, if ∀x A then A[t/x] is true for all t ; the formula holds when we drop
the ∀x and replace x by any term. But ∀x ∃y x = y is true in all models, while
∃y y+1 = y is not. We may not replace x by y+1, since the free occurrence of y
in y + 1 gets captured by the ∃y . First we must rename the bound y, getting say
∀x ∃z x = z; now we may replace x by y + 1, getting ∃z y + 1 = z. This formula
is true in all models, regardless of the meaning of the symbols + and 1.

5.3 Equivalences involving quantifiers
These equivalences are useful for transforming and simplifying quantified for-
mulæ. Later, we shall use them to convert formulæ into prenex normal form,

5.3 Equivalences involving quantifiers 29

where all quantifiers are at the front.

pulling quantifiers through negation
(infinitary de Morgan laws)

¬(∀x A) ' ∃x ¬A
¬(∃x A) ' ∀x ¬A

pulling quantifiers through conjunction and disjunction
(provided x is not free in B)

(∀x A) ∧ B ' ∀x (A ∧ B)
(∀x A) ∨ B ' ∀x (A ∨ B)
(∃x A) ∧ B ' ∃x (A ∧ B)
(∃x A) ∨ B ' ∃x (A ∨ B)

distributive laws

(∀x A) ∧ (∀x B) ' ∀x (A ∧ B)
(∃x A) ∨ (∃x B) ' ∃x (A ∨ B)

implication: A→ B as ¬A ∨ B
(provided x is not free in B)

(∀x A)→ B ' ∃x (A→ B)
(∃x A)→ B ' ∀x (A→ B)

expansion: ∀ and ∃ as infinitary conjunction and disjunction

∀x A ' (∀x A) ∧ A[t/x]
∃x A ' (∃x A) ∨ A[t/x]

With the help of the associative and commutative laws for∧ and∨, a quantifier
can be pulled out of any conjunct or disjunct.

The distributive laws differ from pulling: they replace two quantifiers by one.
(Note that the quantified variables will probably have different names, so one of
them will have be renamed.) Depending upon the situation, using distributive laws
can be either better or worse than pulling. There are no distributive laws for ∀ over
∨ and ∃ over ∧. If in doubt, do not use distributive laws!

Two substitution laws do not involve quantifiers explicitly, but let us use x = t
to replace x by t in a restricted context:

(x = t ∧ A) ' (x = t ∧ A[t/x])
(x = t → A) ' (x = t → A[t/x])

30 5 FORMAL REASONING IN FIRST-ORDER LOGIC

Many first-order formulæ have easy proofs using equivalences:

∃x (x = a ∧ P(x)) ' ∃x (x = a ∧ P(a))
' ∃x (x = a) ∧ P(a)
' P(a)

The following formula is quite hard to prove using the sequent calculus, but
using equivalences it is simple:

∃z (P(z)→ P(a) ∧ P(b)) ' ∀z P(z)→ P(a) ∧ P(b)
' ∀z P(z) ∧ P(a) ∧ P(b)→ P(a) ∧ P(b)
' t

If you are asked to prove a formula, but no particular formal system (such as the
sequent calculus) has been specified, then you may use any convincing argument.
Using equivalences as above can shorten the proof considerably. Also, take ad-
vantage of symmetries; in proving A ∧ B ' B ∧ A, it obviously suffices to prove
A ∧ B |H B ∧ A.

Exercise 12 Verify these equivalences by appealing to the truth definition for
first-order logic:

¬(∃x P(x)) ' ∀x ¬P(x)
(∀x P(x)) ∧ R ' ∀x (P(x) ∧ R)

(∃x P(x)) ∨ (∃x (Qx)) ' ∃x (P(x) ∨ Q(x))

Exercise 13 Explain why the following are not equivalences. Are they implica-
tions? In which direction?

(∀x A) ∨ (∀x B)
?
' ∀x (A ∨ B)

(∃x A) ∧ (∃x B)
?
' ∃x (A ∧ B)

5.4 Sequent rules for the universal quantifier
Here are the sequent rules for ∀:

A[t/x], 0⇒1

∀x A, 0⇒1
(∀l)

0⇒1, A
0⇒1,∀x A

(∀r)

Rule (∀r) holds provided x is not free in the conclusion! Note that if x were
indeed free somewhere in 0 or 1, then the sequent would be assuming properties

5.4 Sequent rules for the universal quantifier 31

of x . This restriction ensures that x is a fresh variable, which therefore can denote
an arbitrary value. Contrast the proof of the theorem ∀x [P(x) → P(x)] with
an attempted proof of the invalid formula P(x) → ∀x P(x). Since x is a bound
variable, you may rename it to get around the restriction, and obviously P(x)→
∀y P(y) should have no proof.

Rule (∀l) lets us create many instances of ∀x A. The exercises below include
some examples that require more than one copy of the quantified formula. Since
we regard sequents as consisting of sets, we may regard them as containing unlim-
ited quantities of each of their elements. But except for the two rules (∀l) and (∃r)

(see below), we only need one copy of each formula.

Example 8 In this elementary proof, rule (∀l) is applied to instantiate the bound
variable x with the term f (y). The application of (∀r) is permitted because y is
not free in the conclusion (which, in fact, is closed).

P(f (y))⇒ P(f (y))
∀x P(x)⇒ P(f (y))

(∀l)

∀x P(x)⇒∀y P(f (y))
(∀r)

Example 9 This proof concerns part of the law for pulling universal quantifiers
out of conjunctions. Rule (∀l) just discards the quantifier, since it instantiates the
bound variable x with the free variable x .

A, B⇒ A
A ∧ B⇒ A

(∧l)

∀x (A ∧ B)⇒ A
(∀l)

∀x (A ∧ B)⇒∀x A
(∀r)

Example 10 The sequent ∀x (A→ B)⇒ A→ ∀x B is valid provided x is not
free in A. That condition is required for the application of (∀r) below:

A⇒ A, B A, B⇒ B
A, A→ B⇒ B

(→l)

A, ∀x (A→ B)⇒ B
(∀l)

A, ∀x (A→ B)⇒∀x B
(∀r)

∀x (A→ B)⇒ A→ ∀x B
(→r)

What if the condition fails to hold? Let A and B both be the formula x = 0. Then
∀x (x = 0→ x = 0) is valid, but x = 0→ ∀x (x = 0) is not valid (it fails under
any valuation that sets x to 0).

32 5 FORMAL REASONING IN FIRST-ORDER LOGIC

Note. The proof on the slides of ∀x (P → Q(x))⇒ P → ∀y Q(y) is essen-
tially the same as the proof above. The version on the slides uses different variable
names so that you can see how a quantified formula like ∀x (P → Q(x)) is in-
stantiated to produce P → Q(y). The proof given above is also valid; because the
variable names are identical, the instantiation is trivial and ∀x (A → B) simply
produces A→ B. Here B may be any formula possibly containing the variable x ;
the proof on the slides uses the specific formula Q(x).

Exercise 14 Prove ¬∀y [(Q(a)∨ Q(b))∧¬Q(y)] using equivalences, and then
formally using the sequent calculus.

Exercise 15 Prove the following using the sequent calculus. Note that the last
one requires two uses of (∀l)!

(∀x P(x)) ∧ (∀x Q(x))⇒∀y (P(y) ∧ Q(y))
∀x (P(x) ∧ Q(x))⇒ (∀y P(y)) ∧ (∀y Q(y))

∀x [P(x)→ P(f (x))]⇒∀x [P(x)→ P(f (f (x)))]

Exercise 16 Prove the equivalence ∀x [P(x) ∨ P(a)] ' P(a).

5.5 Sequent rules for the existential quantifier

Here are the sequent rules for ∃:

A, 0⇒1

∃x A, 0⇒1
(∃l)

0⇒1, A[t/x]
0⇒1, ∃x A

(∃r)

Rule (∃l) holds provided x is not free in the conclusion—that is, not free in the
formulas of 0 or 1. These rules are strictly dual to the ∀-rules; any example
involving ∀ can easily be transformed into one involving ∃ and having a proof of
precisely the same form. For example, the sequent ∀x P(x)⇒∀y P(f (y)) can
be transformed into ∃y P(f (y))⇒∃x P(x).

If you have a choice, apply rules that have provisos — namely (∃l) and (∀r) —
before applying the other quantifier rules as you work upwards. The other rules
introduce terms and therefore new variables to the sequent, which could prevent
you from applying (∃l) and (∀r) later.

Example 11 Here is half of the ∃ distributive law. Rule (∃r) just discards the
quantifier, instantiating the bound variable x with the free variable x . In the gen-

33

eral case, it can instantiate the bound variable with any term.

A⇒ A, B
A⇒ A ∨ B

(∨r)

A⇒∃x (A ∨ B)
(∃r)

∃x A⇒∃x (A ∨ B)
(∃l) similar

∃x B⇒∃x (A ∨ B)
(∃l)

∃x A ∨ ∃x B⇒∃x (A ∨ B)
(∨l)

Example 12 The sequent ∃x A ∧ ∃x B⇒∃x (A ∧ B) is not valid, because the
value of x that makes A true could differ from the value of x that makes B true.
This comes out clearly in the proof attempt, where we are not allowed to apply
(∃l) twice with the same variable name, x . As soon as we are forced to rename the
second variable to y, it becomes obvious that the two values could differ. Turning
to the right side of the sequent, no application of (∃r) can lead to a proof. We have
nothing to instantiate x with:

A, B[y/x]⇒ A ∧ B
A, B[y/x]⇒∃x (A ∧ B)

(∃r)

A, ∃x B⇒∃x (A ∧ B)
(∃l)

∃x A, ∃x B⇒∃x (A ∧ B)
(∃l)

∃x A ∧ ∃x B⇒∃x (A ∧ B)
(∧l)

The proof on the slides looks different but is essentially the same. See the note
at the end of Example 10.

Exercise 17 Prove the following using the sequent calculus. The last one is
difficult and requires two uses of (∃r).

P(a) ∨ ∃x P(f (x))⇒∃y P(y)
∃x (P(x) ∨ Q(x))⇒ (∃y P(y)) ∨ (∃y Q(y))

⇒∃z (P(z)→ P(a) ∧ P(b))

6 Clause Methods for Propositional Logic
This section discusses two proof methods in the context of propositional logic.

• The Davis-Putnam-Logeman-Loveland procedure dates from 1960, and its
application to first-order logic has been regarded as obsolete for decades.
However, the procedure has been rediscovered and high-performance im-
plementations built. In the 1990s, these “SAT solvers” were applied to ob-
scure problems in combinatorial mathematics, such as the existence of Latin
squares. Recently, there has been an explosion of serious applications.

34 6 CLAUSE METHODS FOR PROPOSITIONAL LOGIC

• Resolution is a powerful proof method for first-order logic. We first con-
sider ground resolution, which works for propositional logic. Though of
little practical use, ground resolution introduces some of the main concepts.
The resolution method is not natural for hand proofs, but it is easy to auto-
mate: it has only one inference rule and no axioms.

Both methods require the original formula to be negated, then converted into
CNF. Recall that CNF is a conjunction of disjunction of literals. A disjunction of
literals is called a clause, and written as a set of literals. Converting the negated
formula to CNF yields a set of such clauses. Both methods seek a contradiction in
the set of clauses; if the clauses are unsatisfiable, then so is the negated formula,
and therefore the original formula is valid.

To refute a set of clauses is to prove that they are inconsistent. The proof is
called a refutation.

6.1 Clausal notation

Definition 10 A clause is a disjunction of literals

¬K1 ∨ · · · ∨ ¬Km ∨ L1 ∨ · · · ∨ Ln,

written as a set

{¬K1, . . . ,¬Km, L1, . . . , Ln}.

A clause is true (in some interpretation) just when one of the literals is true.
Thus the empty clause, namely {}, indicates contradiction. It is normally writ-
ten �.

Since ∨ is commutative, associative, and idempotent, the order of literals in a
clause does not matter. The above clause is logically equivalent to the implication

(K1 ∧ · · · ∧ Km)→ (L1 ∨ · · · ∨ Ln)

Kowalski notation abbreviates this to

K1, · · · , Km → L1, · · · , Ln

and when n = 1 we have the familiar Prolog clauses, also known as definite or
Horn clauses.

6.2 The Davis-Putnam-Logeman-Loveland Method 35

6.2 The Davis-Putnam-Logeman-Loveland Method

The DPLL method is based upon some obvious identities:

t ∧ A ' A
A ∧ (A ∨ B) ' A

A ∧ (¬A ∨ B) ' A ∧ B
A ' (A ∧ B) ∨ (A ∧ ¬B)

Here is an outline of the algorithm:

1. Delete tautological clauses: {P,¬P, . . .}

2. For each unit clause {L},

• delete all clauses containing L

• delete ¬L from all clauses

3. Delete all clauses containing pure literals. A literal L is pure if there is no
clause containing ¬L .

4. If the empty clause is generated, then we have a refutation. Conversely, if
all clauses are deleted, then the original clause set is satisfiable.

5. Perform a case split on some literal L , and recursively apply the algorithm
to the L and ¬L subcases. The clause set is satisfiable if and only if one of
the subcases is satisfiable.

This is a decision procedure. It must terminate because each case split elimi-
nates a propositional symbol. Modern implementations such as zChaff add vari-
ous heuristics. They also rely on carefully designed data structures that improve
performance by reducing the number of cache misses, for example.

Historical note. Davis and Putnam introduced the first version of this proce-
dure. Logeman and Loveland introduced the splitting rule, and their version has
completely superseded the original Davis-Putnam method. When people refer to
the Davis-Putnam method, they are almost certainly referring to DPLL rather than
to the original David-Putnam method.

Tautological clauses are deleted because they are always true, and thus cannot
participate in a contradiction. A pure literal can always be assumed to be true;
deleting the clauses containing it can be regarded as a degenerate case split, in
which there is only one case.

36 6 CLAUSE METHODS FOR PROPOSITIONAL LOGIC

Example 13 The Davis-Putnam method can show that a formula is not a theo-
rem. Consider the formula P ∨ Q → Q ∨ R. After negating this and converting
to CNF, we obtain the three clauses {P, Q}, {¬Q} and {¬R}. The DPLL method
terminates rapidly:

{P, Q} {¬Q} {¬R} initial clauses
{P} {¬R} unit ¬Q

{¬R} unit P (also pure)
unit ¬R (also pure)

All clauses have been deleted, so execution terminates. The clauses are satisfiable
by P 7→ t, Q 7→ f, R 7→ f. This interpretation falsifies P ∨ Q → Q ∨ R.

Example 14 Here is an example of a case split. Consider the clause set

{¬Q, R} {¬R, P} {¬R, Q} {¬P, Q, R} {P, Q} {¬P,¬Q}.

There are no unit clauses or pure literals, so we arbitrarily select P for case
splitting:

{¬Q, R} {¬R, Q} {Q, R} {¬Q} if P is true
{¬R} {R} unit ¬Q
{} unit R

{¬Q, R} {¬R} {¬R, Q} {Q} if P is false
{¬Q} {Q} unit ¬R

{} unit ¬Q

The empty clause is written {} above to make the pattern of execution clearer;
traditionally, however, the empty clause is written �. When we encounter a con-
tradiction, we abandon the current case and consider any remaining cases. If all
cases are contradictory, then the original set of clauses is inconsistent. If they
arose from some negated formula ¬A, then A is a theorem.

Exercise 18 Apply the DPLL procedure to the clause set

{P, Q} {¬P, Q} {P,¬Q} {¬P,¬Q}.

6.3 Introduction to resolution
Resolution is essentially the following rule of inference:

B ∨ A ¬B ∨ C
A ∨ C

To convince yourself that this rule is sound, note that B must be either false or
true.

6.4 Examples of ground resolution 37

• if B is false, then B ∨ A is equivalent to A, so we get A ∨ C

• if B is true, then ¬B ∨ C is equivalent to C , so we get A ∨ C

You might also understand this rule via transitivity of→

¬A→ B B → C
¬A→ C

A special case of resolution is when A and C are empty:

B ¬B
f

This detects contradictions.
Resolution works with disjunctions. The aim is to prove a contradiction, re-

futing a formula. Here is the method for proving a formula A:

1. Translate ¬A into CNF as A1 ∧ · · · ∧ Am .

2. Break this into a set of clauses: A1, . . ., Am .

3. Repeatedly apply the resolution rule to the clauses, producing new clauses.
These are all consequences of ¬A.

4. If a contradiction is reached, we have refuted ¬A.

In set notation the resolution rule is

{B, A1, . . . , Am} {¬B,C1, . . . ,Cn}

{A1, . . . , Am,C1, . . . ,Cn}

Resolution takes two clauses and creates a new one. A collection of clauses is
maintained; the two clauses are chosen from the collection according to some
strategy, and the new clause is added to it. If m = 0 or n = 0 then the new clause
will be smaller than one of the parent clauses; if m = n = 0 then the new clause
will be empty. If the empty clause is generated, resolution terminates successfully:
we have found a contradiction!

6.4 Examples of ground resolution
Let us try to prove

P ∧ Q → Q ∧ P

Convert its negation to CNF:

¬(P ∧ Q → Q ∧ P)

38 6 CLAUSE METHODS FOR PROPOSITIONAL LOGIC

We can combine steps 1 (eliminate→) and 2 (push negations in) using the law
¬(A→ B) ' A ∧ ¬B:

(P ∧ Q) ∧ ¬(Q ∧ P)
(P ∧ Q) ∧ (¬Q ∨ ¬P)

Step 3, push disjunctions in, has nothing to do. The clauses are

{P} {Q} {¬Q,¬P}

We resolve {P} and {¬Q,¬P} as follows:

{P} {¬P,¬Q}
{¬Q}

The resolvent is {¬Q}. Resolving {Q} with this new clause gives

{Q} {¬Q}
{}

The resolvent is the empty clause, properly written as �. We have proved P ∧
Q → Q ∧ P by assuming its negation and deriving a contradiction.

It is nicer to draw a tree like this:

{P} {¬Q, ¬P}

{Q} {¬Q}

�

Another example is (P ↔ Q) ↔ (Q ↔ P). The steps of the conversion
to clauses is left as an exercise; remember to negate the formula first! The final
clauses are

{P, Q} {¬P, Q} {P,¬Q} {¬P,¬Q}

A tree for the resolution proof is

{P, Q} {¬P, Q} {P, ¬Q} {¬P, ¬Q}

{Q} {¬Q}

�

���� �

6.5 A proof using a set of assumptions 39

Note that the tree contains {Q} and {¬Q} rather than {Q, Q} and {¬Q,¬Q}.
If we forget to suppress repeated literals, we can get stuck. Resolving {Q, Q}
and {¬Q,¬Q} (keeping repetitions) gives {Q,¬Q}, a tautology. Tautologies are
useless. Resolving this one with the other clauses leads nowhere. Try it.

These examples could mislead. Must a proof use each clause exactly once?
No! A clause may be used repeatedly, and many problems contain redundant
clauses. Here is an example:

{¬P, R} {P} {¬Q, R} {¬R}

{R}

�

(unused)

Redundant clauses can make the theorem-prover flounder; this is a challenge fac-
ing the field.

Exercise 19 Prove (A→ B ∨ C)→ [(A→ B) ∨ (A→ C)] using resolution.

6.5 A proof using a set of assumptions

In this example we assume

H → M ∨ N M → K ∧ P N → L ∧ P

and prove H → P . It turns out that we can generate clauses separately from the
assumptions (taken positively) and the conclusion (negated).

If we call the assumptions A1, . . ., Ak and the conclusion B, then the desired
theorem is

(A1 ∧ · · · ∧ Ak)→ B

Try negating this and converting to CNF. Using the law ¬(A → B) ' A ∧ ¬B,
the negation converts in one step to

A1 ∧ · · · ∧ Ak ∧ ¬B

Since the entire formula is a conjunction, we can separately convert A1, . . ., Ak ,
and ¬B to clause form and pool the clauses together.

Assumption H → M ∨ N is essentially in clause form already:

{¬H,M, N }

40 6 CLAUSE METHODS FOR PROPOSITIONAL LOGIC

Assumption M → K ∧ P becomes two clauses:

{¬M, K } {¬M, P}

Assumption N → L ∧ P also becomes two clauses:

{¬N , L} {¬N , P}

The negated conclusion, ¬(H → P), becomes two clauses:

{H} {¬P}

A tree for the resolution proof is

���� �

{H} {¬H, M, N }

{M, N } {¬M, P}

{N , P} {¬N , P}

{P} {¬P}

�

The clauses were not tried at random. Here are some points of proof strategy.

Ignoring irrelevance. Clauses {¬M, K } and {¬N , L} lead nowhere, so they
were not tried. Resolving with one of these would make a clause containing K
or L . There is no way of getting rid of either literal, for no clause contains ¬K or
¬L . So this is not a way to obtain the empty clause.

Working from the goal. In each resolution step, at least one clause involves
the negated conclusion (possibly via earlier resolution steps). We do not blindly
derive facts from the assumptions — for, provided the assumptions are consistent,
any contradiction will have to involve the negated conclusion. This strategy is
called set of support.

Linear resolution. The proof has a linear structure: each resolvent becomes the
parent clause for the next resolution step. Furthermore, the other parent clause is
always one of the original set of clauses. This simple structure is very efficient
because only the last resolvent needs to be saved. It is similar to the execution
strategy of Prolog.

6.6 Deletion of redundant clauses 41

Exercise 20 Explain in more detail the conversion of this example into clauses.

Exercise 21 Prove Peirce’s law, ((P → Q)→ P)→ P , using resolution.

Exercise 22 Prove (Q → R) ∧ (R → P ∧ Q) ∧ (P → Q ∨ R)→ (P ↔ Q)
using resolution.

6.6 Deletion of redundant clauses

During resolution, the number of clauses builds up dramatically; it is important to
delete all redundant clauses.

Each new clause is a consequence of the existing clauses. A contradiction
can only be derived if the original set of clauses is inconsistent. A clause can be
deleted if it does not affect the consistency of the set. Any tautology should be
deleted, since it is true in all interpretations.

Here is a subtler case. Consider the clauses

{S, R} {P,¬S} {P, Q, R}

Resolving the first two yields {P, R}. Since each clause is a disjunction, any
interpretation that satisfies {P, R} also satisfies {P, Q, R}. Thus {P, Q, R} cannot
cause inconsistency, and should be deleted.

Put another way, P ∨ R implies P ∨ Q ∨ R. Anything that could be derived
from P ∨ Q ∨ R could also be derived from P ∨ R. This sort of deletion is called
subsumption; clause {P, R} subsumes {P, Q, R}.

Exercise 23 Prove (P ∧ Q → R) ∧ (P ∨ Q ∨ R) → ((P ↔ Q) → R) by
resolution. Show the steps of converting the formula into clauses.

Exercise 24 Using linear resolution, prove that (P ∧ Q) → (R ∧ S) follows
from P → R and R ∧ P → S.

Exercise 25 Convert these axioms to clauses, showing all steps. Then prove
Winterstorm→ Miserable by resolution:

Rain ∧ (Windy ∨ ¬Umbrella)→ Wet Winterstorm→ Storm ∧ Cold
Wet ∧ Cold→ Miserable Storm→ Rain ∧Windy

42 7 SKOLEM FUNCTIONS AND HERBRAND’S THEOREM

7 Skolem Functions and Herbrand’s Theorem
Propositional logic is the basis of many proof methods for first-order logic. Elim-
inating the quantifiers from a first-order formula reduces it nearly to propositional
logic. This section describes how to do so.

7.1 Prenex normal form
The simplest method of eliminating quantifiers from a formula involves first mov-
ing them to the front.

Definition 11 A formula is in prenex normal form if and only if it has the form

Q1x1 Q2x2 · · · Qnxn︸ ︷︷ ︸
prefix

(A)︸︷︷︸
matrix

,

where A is quantifier-free, each Qi is either ∀ or ∃, and n ≥ 0. The string of
quantifiers is called the prefix and A is called the matrix.

Using the equivalences described above, any formula can be put into prenex
normal form.

Examples of translation.

The affected subformulæ will be underlined.

Example 15 Start with

¬(∃x P(x)) ∧ (∃y Q(y) ∨ ∀z P(z))

Pull out the ∃x :
∀x ¬P(x) ∧ (∃y Q(y) ∨ ∀z P(z))

Pull out the ∃y :
∀x ¬P(x) ∧ (∃y (Q(y) ∨ ∀z P(z)))

Pull out the ∃y again:

∃y (∀x ¬P(x) ∧ (Q(y) ∨ ∀z P(z)))

Pull out the ∀z :
∃y (∀x ¬P(x) ∧ ∀z (Q(y) ∨ P(z)))

Pull out the ∀z again:

∃y ∀z (∀x ¬P(x) ∧ (Q(y) ∨ P(z)))

Pull out the ∀x :
∃y ∀z ∀x (¬P(x) ∧ (Q(y) ∨ P(z)))

7.2 Removing quantifiers: Skolem form 43

Example 16 Start with

∀x P(x)→ ∃y ∀z R(y, z)

Remove the implication:

¬∀x P(x) ∨ ∃y ∀z R(y, z)

Pull out the ∀x :
∃x ¬P(x) ∨ ∃y ∀z R(y, z)

Distribute ∃ over ∨, renaming y to x :6

∃x (¬P(x) ∨ ∀z R(x, z))

Finally, pull out the ∀z :

∃x ∀z (¬P(x) ∨ R(x, z))

7.2 Removing quantifiers: Skolem form
Now that the quantifiers are at the front, let’s eliminate them! We replace every
existentially bound variable by a Skolem constant or function. This transformation
does not preserve the meaning of a formula; it does preserve inconsistency, which
is the critical property, since resolution works by detecting contradictions.

How to Skolemize a formula

Suppose the formula is in prenex normal form.7 Starting from the left, if the
formula contains an existential quantifier, then it must have the form

∀x1 ∀x2 · · · ∀xk ∃y A

where A is a prenex formula, k ≥ 0, and ∃y is the leftmost existential quantifier.
Choose a k-place function symbol f not present in A (that is, a new function sym-
bol). Delete the ∃y and replace all other occurrences of y by f (x1, x2, . . . , xk).
The result is another prenex formula:

∀x1 ∀x2 · · · ∀xk A[f (x1, x2, . . . , xk)/y]
6Or simply pull out the quantifiers separately. Using the distributive law is marginally better

here because it will result in only one Skolem constant instead of two; see the following section.
7Prenex normal form makes things easier to follow. However, some proof methods merely re-

quire the formula to be in negation normal form. The basic idea is the same: remove the outermost
existential quantifier, replacing its bound variable by a Skolem term. Pushing quantifiers in as far
as possible, instead of pulling them out, yields a better set of clauses.

44 7 SKOLEM FUNCTIONS AND HERBRAND’S THEOREM

If k = 0 above then the prenex formula is simply ∃y A, and other occurrences
of y are replaced by a new constant symbol c. The resulting formula is A[c/y].

The remaining existential quantifiers, if any, are in A. Repeatedly eliminate
all of them, as above. The new symbols are called Skolem functions (or Skolem
constants).

After Skolemization the formula is just ∀x1 ∀x2 · · · ∀xk A where A is
quantifier-free. The next step is to throw the remaining quantifiers away. This
step is correct because we are converting to clause form, and a clause implicitly
includes universal quantifiers over all of its free variables.

We are almost back to the propositional case, except the formula typically con-
tains terms. We shall have to handle constants, function symbols, and variables.

Examples of Skolemization

The affected expressions are underlined.

Example 17 Start with
∃x ∀y ∃z R(x, y, z)

Eliminate the ∃x using the Skolem constant a:

∀y ∃z R(a, y, z)

Eliminate the ∃z using the 1-place Skolem function f :

∀y R(a, y, f (y))

Finally, drop the ∀y and convert the remaining formula to a clause:

{R(a, y, f (y))}

Example 18 Start with

∃u ∀v ∃w ∃x ∀y ∃z ((P(h(u, v)) ∨ Q(w)) ∧ R(x, h(y, z)))

Eliminate the ∃u using the Skolem constant c:

∀v ∃w ∃x ∀y ∃z ((P(h(c, v)) ∨ Q(w)) ∧ R(x, h(y, z)))

Eliminate the ∃w using the 1-place Skolem function f :

∀v ∃x ∀y ∃z ((P(h(c, v)) ∨ Q(f (v))) ∧ R(x, h(y, z)))

7.2 Removing quantifiers: Skolem form 45

Eliminate the ∃x using the 1-place Skolem function g:

∀v ∀y ∃z ((P(h(c, v)) ∨ Q(f (v))) ∧ R(g(v), h(y, z)))

Eliminate the ∃z using the 2-place Skolem function j (note that function h is
already used!):

∀v ∀y ((P(h(c, v)) ∨ Q(f (v))) ∧ R(g(v), h(y, j (v, y))))

Finally drop the universal quantifiers, getting a set of clauses:

{P(h(c, v)), Q(f (v))} {R(g(v), h(y, j (v, y)))}

Recall that each clause is implicitly enclosed by universal quantifiers over each of
its variables. In this example, it follows that the occurrences of the variable v in
the two clauses are independent of each other.

Correctness of Skolemization

Skolemization does not preserve meaning. The version presented above does not
even preserve validity! For example,

∃x (P(a)→ P(x))

is valid. (Why? In any model, the required value of x exists — it is just the value
of a in that model.)

Replacing the ∃x by the Skolem constant b gives

P(a)→ P(b)

This has a different meaning since it refers to a constant b not previously men-
tioned. And it is not valid! For example, it is false in the interpretation where
P(x) means ‘x equals 0’ and a denotes 0 and b denotes 1.

Our version of Skolemization does preserve consistency — and therefore in-
consistency. Consider one Skolemization step.

• The formula ∀x ∃y A is consistent iff it holds in some interpretation I =
(D, I)

• iff for all x ∈ D there is some y ∈ D such that A holds

• iff there is some function on D, say f̂ ∈ D → D, such that for all x ∈ D,
if y = f̂ (x) then A holds

46 7 SKOLEM FUNCTIONS AND HERBRAND’S THEOREM

• iff there is an interpretation I ′ extending I so that the symbol f denotes the
function f̂ , and A[f (x)/y] holds for all x ∈ D.

• iff the formula ∀x A[f (x)/y] is consistent.

Note that I above does not interpret f because Skolem functions have to be new.
Thus I may be extended to I ′ by giving an interpretation for f .

This argument easily generalizes to the case ∀x1 ∀x2 · · · ∀xk ∃y A. Thus, if a
formula is consistent then so is the Skolemized version. If it is inconsistent then
so is the Skolemized version. That is what we need: resolution works by proving
that a formula is inconsistent.

There is a dual version of Skolemization that preserves validity rather than
consistency. It replaces universal quantifiers, rather than existential ones, by
Skolem functions.

Exercise 26 Describe this dual version of Skolemization and demonstrate that it
preserves validity. What might it be used for?

7.3 Herbrand interpretations
A Herbrand interpretation basically consists of all terms that can be written us-
ing just the constant and function symbols in a set of clauses S (or quantifier-free
formula). Why define Herbrand interpretations? A mathematical reason: for con-
sistency of S we need only consider Herbrand interpretations. A programming
reason: the data processed by a Prolog program S is simply its Herbrand universe.

To define the Herbrand universe for the set of clauses S we start with sets of
the constant and function symbols in S, including Skolem functions.

Definition 12 Let C be the set of all constants in S. If there are none, let C = {a}
for some constant symbol a of the first-order language. For n > 0 letFn be the set
of all n-place function symbols in S and let Pn be the set of all n-place predicate
symbols in S.

The Herbrand universe is the set H =
⋃

i≥0 Hi , where

H0 = C
Hi+1 = Hi ∪ { f (t1, . . . , tn) | t1, . . . , tn ∈ Hi and f ∈ Fn}

Thus, H consists of all the terms that can be written using only the constants and
function symbols present in S. There are no variables: the elements of H are
ground terms. Formally, H turns out to satisfy the recursive equation

H = { f (t1, . . . , tn) | t1, . . . , tn ∈ H and f ∈ Fn}

7.3 Herbrand interpretations 47

The definition above ensures that C is non-empty. It follows that H is also non-
empty, which is an essential requirement for a universe.

The elements of H are ground terms. An interpretation (H, I) is a Herbrand
interpretation provided I [t] = t for all ground terms t . In detail, every Herbrand
interpretation I assigns trivial meanings to the constants and function symbols
of S. Each constant, say a, is mapped to itself: I [a] = a. Each function symbol is
mapped to the function that creates symbolic applications of itself; for example,
if f is a 1-place function symbol, then I [f] is the function that maps x to f (x).
Note that if x ∈ H then f (x) ∈ H , so I [f] is a function from H into H . The
point of this peculiar exercise is that we can give meanings to the symbols of S
in a purely syntactic way, without needing other mathematical spaces such as the
Complex numbers.

The Herbrand base (or atom set) consists of all possible applications of pred-
icate symbols in S to terms of the Herbrand universe for S:

H B = {P(t1, . . . , tn) | t1, . . . , tn ∈ H and P ∈ Pn}

A Herbrand interpretation defines a predicate symbol to denote some subset of the
Herbrand base. The effect is to specify which predicate applications to specific
ground terms are true.

Example 19 Suppose we have the set (consisting of two clauses)

S = {{P(a)}, {Q(g(y, z)),¬P(f (x))}}

Then

C = {a}
F1 = { f }
F2 = {g}
Fn = ∅ (n > 2)
H = {a, f (a), g(a, a), f (f (a)), g(f (a), a), g(a, f (a)), g(f (a), f (a)), . . .}

H B = {P(a), Q(a), P(f (a)), Q(f (a)), P(g(a, a)), Q(g(a, a)),
P(f (f (a))), Q(f (f (a))), P(g(f (a), a)), Q(g(f (a), a)),
P(g(a, f (a))), Q(g(a, f (a))), P(g(f (a), f (a))), Q(g(f (a), f (a))), . . .}

Every interpretation I over an arbitrary universe can be mimicked by some Her-
brand interpretation: just take

{P(t1, . . . , tn) ∈ H B | P(t1, . . . , tn) holds in I}

48 7 SKOLEM FUNCTIONS AND HERBRAND’S THEOREM

This is a subset of H B. Each subset of H B specifies a Herbrand interpretation by
listing the values (in H) for which each predicate holds. To mimic the interpreta-
tion I we take exactly the set of ground atomic formulæ that hold in I; this is a
Herbrand interpretation.

Thus, we have informally proved the following two results (Chang and Lee,
page 55):

Lemma 13 Let S be a set of clauses. If an interpretation satisfies S, then an
Herbrand interpretation satisfies S.

Theorem 14 A set S of clauses is unsatisfiable if and only if no Herbrand inter-
pretation satisfies S.

Equality may behave strangely in Herbrand interpretations. Given an interpre-
tation I, the denotation of= is the set of all pairs of ground terms (t1, t2) such that
t1 = t2 according to I. In a context of the natural numbers, the denotation of =
could include pairs like (1 + 1, 2) — the two components need not be identical,
contrary to the normal situation with equality.

7.4 The Skolem-Gödel-Herbrand Theorem
Finally we have the Skolem-Gödel-Herbrand theorem. A version of the Com-
pleteness Theorem, it tells us that unsatisfiability can always be detected by a
finite process. It does not tell us how to detect satisfiability, for there is no general
method.8

Definition 15 An instance of a clause C is a clause that results by replacing vari-
ables in C by terms. A ground instance of a clause C is an instance of C that
contains no variables. (It can be obtained by replacing all variables in C by ele-
ments of a Herbrand universe, which are ground terms.)

Since the variables in a clause are taken to be universally quantified, every
instance of C is a logical consequence of C .

Example 20 This clause is valid in the obvious integer model:

C = {¬even(x),¬even(y), even(x + y)}

Replacing x by y + y in C results in the instance

C ′ = {¬even(y + y),¬even(y), even((y + y)+ y)}

Replacing y by 2 in C ′ results in the ground instance

C ′′ = {¬even(2+ 2),¬even(2), even((2+ 2)+ 2)}

8It is often confused with Herbrand’s Theorem, a stronger result.

7.4 The Skolem-Gödel-Herbrand Theorem 49

Example 21 Consider the clause

C = {Q(g(y, x)),¬P(f (x))}

Replacing x by f (z) in C results in the instance

C ′ = {Q(g(y, f (z))),¬P(f (f (z)))}

Replacing y by j (a) and z by b in C ′ results in the instance

C ′′ = {Q(g(j (a), f (b))),¬P(f (f (b)))}

Assuming that a and b are constants, C ′′ is a ground instance of C .

Theorem 16 A set S of clauses is unsatisfiable if and only if there is a finite un-
satisfiable set S′ of ground instances of clauses of S.

The proof is rather involved; see Chang and Lee, pages 56–61, for details. The
(H⇒) direction is the interesting one. It uses a non-constructive argument to show
that if there is no finite unsatisfiable set S′, then there must be a model of S.

The (⇐H) direction simply says that if S′ is unsatisfiable then so is S. This is
straightforward since every clause in S′ is a logical consequence of some clause
in S. Thus if S′ is inconsistent, the inconsistency is already present in S.

The theorem is valuable because the new set S′ expresses the inconsistency
in a finite way. However, it only tells us that S′ exists; it does not tell us how
to derive S′. (The general problem is undecidable, since the validity problem is
undecidable.) A key question is, how do we generate useful ground instances of
clauses? One answer, outlined in the next lecture, is unification.

Example 22 To demonstrate the Skolem-Gödel-Herbrand theorem, consider
proving the formula

∀x P(x) ∧ ∀y [P(y)→ Q(y)]→ Q(a) ∧ Q(b).

If we negate this formula, we trivially obtain the following set S of clauses:

{P(x)} {¬P(y), Q(y)} {¬Q(a),¬Q(b)}.

This set is inconsistent. Here is a finite set of ground instances of clauses in S:

{P(a)} {P(b)} {¬P(a), Q(a)} {¬P(b), Q(b)} {¬Q(a),¬Q(b)}.

This set reflects the intuitive proof of the theorem. We obviously have P(a) and
P(b); using ∀y [P(y) → Q(y)] with a and b, we obtain Q(a) and Q(b). If we
can automate this procedure, then we can generate such proofs automatically.

50 8 UNIFICATION

Exercise 27 Consider a first-order language with 0 and 1 as constant symbols,
with− as a 1-place function symbol and+ as a 2-place function symbol, and with
< as a 2-place predicate symbol.

(a) Describe the Herbrand Universe for this language.

(b) The language can be interpreted by taking the integers for the universe and
giving 0, 1, −, +, and < their usual meanings over the integers. What do
those symbols denote in the corresponding Herbrand model?

8 Unification
Unification is the operation of finding a common instance of two terms. Though
the concept is simple, it involves a complicated theory. Proving the unification
algorithm’s correctness (especially termination) is difficult.

To introduce the idea of unification, consider a few examples. The terms
f (x, b) and f (a, y) have the common instance f (a, b), replacing x by a and y
by b. The terms f (x, x) and f (a, b) have no common instance, assuming that a
and b are distinct constants. The terms f (x, x) and f (y, g(y)) have no common
instance, since there is no way that x can have the form y and g(y) at the same
time — unless we admit the infinite term g(g(g(· · ·))).

Only variables may be replaced by other terms. Constants are not affected
(they remain constant!). If a term has the form f (t, u) then instances of that term
must have the form f (t ′, u′), where t ′ is an instance of t and u′ is an instance of u.

8.1 Substitutions
We have already seen substitutions informally. It is now time for a more detailed
treatment.

Definition 17 A substitution is a finite set of replacements

[t1/x1, . . . , tk/xk]

where x1, . . ., xk are distinct variables such that ti 6= xi for all i = 1, . . . , k. We
use Greek letters φ, θ , σ to stand for substitutions.

The finite set {x1, . . . , xk} is called the domain of the substitution. The domain
of a substitution θ is written dom(θ).

A substitution θ = [t1/x1, . . . , tk/xk] defines a function from the variables
{x1, . . . , xk} to terms. Postfix notation is usual for applying a substitution; thus,

8.2 Composition of substitutions 51

for example, xiθ = ti . Substitutions may be applied to terms, not just to variables.
Substitution on terms is defined recursively as follows:

f (t1, . . . , tn)θ = f (t1θ, . . . , tnθ)
xθ = x for all x 6∈ dom(θ)

Here f is an n-place function symbol. The operation substitutes in the arguments
of functions, and leaves unchanged any variables outside of the domain of θ .

Substitution may be extended to literals and clauses as follows:

P(t1, . . . , tn)θ = P(t1θ, . . . , tnθ)
{L1, . . . , Lm}θ = {L1θ, . . . , Lmθ}

Here P is an n-place predicate symbol (or its negation), while L1, . . . , Lm are the
literals in a clause.

Example 23 The substitution θ = [h(y)/x, b/y] says to replace x by h(y) and y
by b. The replacements occur simultaneously; it does not have the effect of re-
placing x by h(b). Its domain is dom(θ) = {x, y}. Applying this substitution
gives

f (x, g(u), y)θ = f (h(y), g(u), b)
R(h(x), z)θ = R(h(h(y)), z)

{P(x),¬Q(y)}θ = {P(h(y)),¬Q(b)}

8.2 Composition of substitutions
If φ and θ are substitutions then so is their composition φ ◦ θ , which satisfies

t (φ ◦ θ) = (tφ)θ for all terms t

Can we write φ ◦ θ as a set of replacements? It has to satisfy the above for all
relevant variables:

x(φ ◦ θ) = (xφ)θ for all x ∈ dom(φ) ∪ dom(θ)

Thus it must be the set consisting of the replacements

(xφ)θ / x for all x ∈ dom(φ) ∪ dom(θ)

Equality of substitutions φ and θ is defined as follows: φ = θ if xφ = xθ for
all variables x . Under these definitions composition enjoys an associative law. It
also has an identity element, namely [], the empty substitution.

(φ ◦ θ) ◦ σ = φ ◦ (θ ◦ σ)

φ ◦ [] = φ
[] ◦ φ = φ

52 8 UNIFICATION

Example 24 Let φ = [j (x)/u, 0/y] and θ = [h(z)/x, g(3)/y]. Then
dom(φ) = {u, y} and dom(θ) = {x, y}, so dom(φ) ∪ dom(θ) = {u, x, y}. Thus

φ ◦ θ = [j (h(z))/u, h(z)/x, 0/y]

Notice that y(φ ◦θ) = (yφ)θ = 0θ = 0; the replacement g(3)/y has disappeared.

Exercise 28 Verify that ◦ is associative and has [] for an identity.

8.3 Unifiers
Definition 18 A substitution θ is a unifier of terms t1 and t2 if t1θ = t2θ . More
generally, θ is a unifier of terms t1, t2, . . ., tm if t1θ = t2θ = · · · = tmθ . The term
t1θ is called the common instance of the unified terms. A unifier of two or more
literals is defined similarly.

Two terms can only be unified if they have similar structure apart from vari-
ables. The terms f (x) and h(y, z) are clearly non-unifiable since no substitution
can do anything about the differing function symbols. It is easy to see that θ
unifies f (t1, . . . , tn) and f (u1, . . . , un) if and only if θ unifies ti and ui for all
i = 1, . . . , n.

Example 25 The substitution [3/x, g(3)/y] unifies the terms g(g(x)) and g(y).
The common instance is g(g(3)). These terms have many other unifiers, including
the following:

unifying substitution common instance
[f (u)/x, g(f (u))/y] g(g(f (u)))
[z/x, g(z)/y] g(g(z))
[g(x)/y] g(g(x))

Note that g(g(3)) and g(g(f (u))) are instances of g(g(x)). Thus g(g(x))
is more general than g(g(3)) and g(g(f (u))); it admits many other instances.
Certainly g(g(3)) seems to be arbitrary — neither of the original terms mentions
3! A separate point worth noting is that g(g(x)) is equivalent to g(g(z)), apart
from the name of the variable. Let us formalize these intuitions.

8.4 Most general unifiers
Definition 19 The substitution θ is more general than φ if φ = θ ◦ σ for some
substitution σ .

8.5 A simple unification algorithm 53

Example 26 Recall the unifiers of g(g(x)) and g(y). The unifier [g(x)/y] is
more general than the others listed, for

[3/x, g(3)/y] = [g(x)/y] ◦ [3/x]
[f (u)/x, g(f (u))/y] = [g(x)/y] ◦ [f (u)/x]

[z/x, g(z)/y] = [g(x)/y] ◦ [z/x]
[g(x)/y] = [g(x)/y] ◦ []

The last line above illustrates that every substitution θ is more general than itself
because θ = θ ◦ []; ‘more general’ is a reflexive relation.

If two substitutions θ and φ are each more general than the other then they
differ at most by renaming of variables, and can be regarded as equivalent. For
instance, [y/x, f (y)/w] and [x/y, f (x)/w] are equivalent:

[y/x, f (y)/w] = [x/y, f (x)/w] ◦ [y/x]
[x/y, f (x)/w] = [y/x, f (y)/w] ◦ [x/y]

What does all this mean in practice? Suppose we would like to apply either
θ or φ, where φ = θ ◦ σ . If we apply θ then we can still get the effect of φ by
applying σ later. Furthermore, there is an algorithm to find a most general unifier
of two terms; by composition, this one unifier can generate all the unifiers of the
terms.

Definition 20 A substitution θ is a most general unifier (MGU) of terms t1, . . .,
tm if

• θ unifies t1, . . ., tm , and

• θ is more general than every other unifier of t1, . . ., tm .

A most general unifier of two or more literals is defined similarly.

Thus if θ is an MGU of terms t1 and t2 and t1φ = t2φ then φ = θ ◦σ for some
substitution σ .

8.5 A simple unification algorithm
In many books, the unification algorithm is presented as operating on the concrete
syntax of terms, scanning along character strings. But terms are really tree struc-
tures and are so represented in a computer. Unification should be presented as
operating on trees. In fact, we need consider only binary trees, since these can
represent n-ary branching trees. Unification is easily implemented in Lisp, where
the basic data structure (the S-expression) is a binary tree with labelled leaves.

Our trees have three kinds of nodes:

54 8 UNIFICATION

• A variable x , y, . . . — can be modified by substitution

• A constant a, b, . . . — handles function symbols also

• A pair (t, u) — where t and u are terms

Unification of two terms considers nine cases, most of which are trivial. It is
impossible to unify a constant with a pair; in this case the algorithm fails. When
trying to unify two constants a and b, if a = b then the most general unifier is []; if
a 6= b then unification is impossible. The interesting cases are variable-anything
and pair-pair.

Unification with a variable

When unifying a variable x with a term t , where x 6= t , we must perform the
occurs check. If x does not occur in t then the substitution [t/x] has no effect
on t , so it does the job trivially:

x[t/x] = t = t[t/x]

It is not hard to show that [t/x] is a most general unifier.
If x does occur in t then no unifier exists, for if xθ = tθ then the term xθ

would be a subterm of itself, which is impossible.

Example 27 The terms x and f (x) are not unifiable. If xθ = u then f (x)θ =
f (u). Thus xθ = f (x)θ would imply u = f (u). We could, perhaps, introduce
the infinite term

u = f (f (f (f (f (· · ·)))))

as a unifier, but this would require a rigorous definition of the syntax and semantics
of infinite terms.

Unification of two pairs

Unifying the pairs (t1, t2) with (u1, u2) requires two recursive calls of the unifica-
tion algorithm. If θ1 unifies t1 with u1 and θ2 unifies t2θ1 with u2θ1 then θ1 ◦ θ2
unifies (t1, t2) with (u1, u2):

(t1, t2)(θ1 ◦ θ2) = (t1, t2)θ1θ2

= (t1θ1θ2, t2θ1θ2)

= (u1θ1θ2, t2θ1θ2) since t1θ1 = u1θ1

= (u1θ1θ2, u2θ1θ2) since (t2θ1)θ2 = (u2θ1)θ2

= (u1, u2)θ1θ2

= (u1, u2)(θ1 ◦ θ2)

8.5 A simple unification algorithm 55

It is possible to prove that if θ1 and θ2 are most general unifiers then so is θ1 ◦ θ2.
If either recursive call fails then the pairs are not unifiable.

Note that the substitution θ1 is applied to t2 and u2 before the second recursive
call. Will this terminate, even if t2θ1 and u2θ1 are much bigger than t2 and u2?
One can show that either θ1 does not affect t2 and u2, or else θ1 reduces the number
of variables in the pair of terms. This is enough to show termination.

As given above, the algorithm works from left to right. An equally good alter-
native is to begin by unifying t2 and u2.

Examples of unification

These examples are given for terms rather than binary trees. The translation to
binary trees is left as an exercise.

In most of these examples, the two terms have no variables in common. Most
uses of unification (including resolution, see below) rename variables in one of
the terms to ensure this. However, such renaming is not part of unification itself.

Example 28 Unify f (x, b) with f (a, y). Steps:

Unify x and a getting [a/x].

Try to unify b[a/x] and y[a/x].

These are b and y, so unification succeeds with [b/y].

Result is [a/x] ◦ [b/y], which is [a/x, b/y].

Strictly speaking we also have to unify f with f , but this just gives [], the null
substitution.

Example 29 Unify f (x, x) with f (a, b). Steps:

Unify x and a getting [a/x].

Try to unify x[a/x] and b[a/x].

These are a and b, distinct constants. Fail.

Example 30 Unify f (x, g(y)) with f (y, x). Steps:

Unify x and y getting [y/x].

Try to unify g(y)[y/x] and x[y/x]. These are g(y) and y, violating
the occurs check. Fail.
If we had renamed the variables in one of the terms beforehand, uni-
fication would have succeeded. In the next example, the two terms
have no variables in common, but unification fails anyway.

56 8 UNIFICATION

Example 31 Unify f (x, x) with f (y, g(y)). Steps:

Unify x and y getting [y/x].

Try to unify x[y/x] and g(y)[y/x].

These are y and g(y), where y occurs in g(y). Fail.

Example 32 Unify j (w, a, h(w)) with j (f (x, y), x, z). Steps:

Unify w and f (x, y) getting [f (x, y)/w].

Unify a and x (the substitution has no effect) getting [a/x].

Unify (h(w)[f (x, y)/w])[a/x] and (z[f (x, y)/w])[a/x].

These are h(f (x, y))[a/x] and z[a/x].

These are h(f (a, y)) and z; unifier is [h(f (a, y))/z].

Result is [f (x, y)/w] ◦ [a/x] ◦ [h(f (a, y))/z]. Performing the com-
positions, this simplifies to [f (a, y)/w, a/x, h(f (a, y))/z].

Example 33 Unify j (w, a, h(w)) with j (f (x, y), x, y). This is the previous
example but with a y in place of a z.

Unify w and f (x, y) getting [f (x, y)/w].

Unify a and x getting [a/x].

Unify (h(w)[f (x, y)/w])[a/x] and (y[f (x, y)/w])[a/x].

These are h(f (a, y)) and y, but y occurs in h(f (a, y)). Fail.

Diagrams can be helpful. The lines indicate variable replacements:

j (w, a, h(w)) j (f (x, y), x, y)

a/x

f (a, y)/w

h(f (a, y))/y???

8.6 Examples of theorem proving 57

Implementation remarks

To unify terms t1, t2, . . ., tm for m > 2, compute a unifier θ of t1 and t2, then
recursively compute a unifier σ of the terms t2θ , . . ., tmθ . The overall unifier is
then θ ◦ σ . If any unification fails then the set is not unifiable.

A real implementation does not need to compose substitutions. Most represent
variables by pointers and effect the substitution [t/x] by updating pointer x to t .
The compositions are cumulative, so this works. However, if unification fails at
some point, the pointer assignments must be undone!

To avoid pointers you can store the updates as a list of pairs, called an envi-
ronment. For example, the environment a/x, f (x)/y represents the substitution
[a/x, f (a)/y]. The algorithm sketched here can take exponential time in unusual
cases. Faster algorithms exist, although they are more complex and are seldom
adopted.

Prolog systems, for the sake of efficiency, omit the occurs check. This can
result in circular data structures and looping. It is unsound for theorem proving.

8.6 Examples of theorem proving
These two examples are fundamental. They illustrate how the occurs check en-
forces correct quantifier reasoning.

Example 34 Consider a proof of

(∃y ∀x R(x, y))→ (∀x ∃y R(x, y)).

Produce clauses separately for the antecedent and for the negation of the conse-
quent; this is more efficient than producing clauses for the negation of the entire
formula.

• The antecedent is ∃y ∀x R(x, y); replacing y by the Skolem constant a
yields the clause {R(x, a)}.

• In ¬(∀x ∃y R(x, y)), pushing in the negation produces ∃x ∀y ¬R(x, y).
Replacing x by the Skolem constant b yields the clause {¬R(b, y)}.

Unifying R(x, a) with R(b, y) detects the contradiction R(b, a) ∧ ¬R(b, a).

Example 35 In a similar vein, let us try to prove

(∀x ∃y R(x, y))→ (∃y ∀x R(x, y)).

58 9 FIRST-ORDER RESOLUTION AND PROLOG

• Here the antecedent is ∀x ∃y R(x, y); replacing y by the Skolem function f
yields the clause {R(x, f (x))}.

• The negation of the consequent is ¬(∃y ∀x R(x, y)), which becomes
∀y ∃x ¬R(x, y). Replacing x by the Skolem function g yields the clause
{¬R(g(y), y)}.

Observe that R(x, f (x)) and R(g(y), y) are not unifiable because of the occurs
check. And so it should be, because the original formula is not a theorem!

Exercise 29 For each of the following pairs of terms, give a most general unifier
or explain why none exists. Do not rename variables prior to performing the
unification.

f (g(x), z) f (y, h(y))
j (x, y, z) j (f (y, y), f (z, z), f (a, a))
j (x, z, x) j (y, f (y), z)

j (f (x), y, a) j (y, z, z)
j (g(x), a, y) j (z, x, f (z, z))

9 First-Order Resolution and Prolog
By means of unification, we can extend resolution to first-order logic. As a special
case we obtain Prolog. Other theorem provers are also based on unification. Other
applications include polymorphic type checking for the language ML.

9.1 Binary resolution
We now define the binary resolution rule with unification:

{B, A1, . . . , Am} {¬D,C1, . . . ,Cn}

{A1, . . . , Am,C1, . . . ,Cn}σ provided Bσ = Dσ

As before, the first clause contains B and other literals, while the second clause
contains ¬D and other literals. The substitution σ is a unifier of B and D (al-
most always a most general unifier). This substitution is applied to all remaining
literals, producing the conclusion.

The variables in one clause are renamed before resolution to prevent clashes
with the variables in the other clause. Renaming is sound because the scope of
each variable is its clause. Resolution is sound because it takes an instance of
each clause — the instances are valid, because the clauses are universally valid —

9.2 Factoring 59

and then applies the propositional resolution rule, which is sound. For example,
the two clauses

{P(x)} and {¬P(g(x))}

yield the empty clause in a single resolution step. This works by renaming vari-
ables — say, x to y in the second clause — and unifying P(x) with P(g(y)). For-
getting to rename variables is fatal, because P(x) cannot be unified with P(g(x)).

9.2 Factoring
In general, resolution must be combined with another rule, factoring. Fac-
toring takes a clause and unifies some literals within it (which must all have
the same sign), yielding a new clause. For example, starting with the clause
{P(x, b), P(a, y)}, factoring can derive the clause {P(a, b)}, since P(a, b) is the
result of unifying P(x, b) with P(a, y). Compared with the original clause, the
new one may be weaker, but more useful in resolution because it is shorter.

Some resolution provers combine the factoring and resolution rules. In other
words, they perform the factoring unifications at the same time as the unification
of the complementary literals in the two clauses. The binary resolution rule with
factoring is

{B1, . . . , Bk, A1, . . . , Am} {¬D1, . . . ,¬Dl,C1, . . . ,Cn}

{A1, . . . , Am,C1, . . . ,Cn}σ

where σ is the most general substitution such that

B1σ = · · · = Bkσ = D1σ = · · · = Dlσ.

However, modern provers such as SPASS perform factoring steps independently
of resolution steps. Factoring is necessary for completeness, since resolution by
itself tends to make clauses longer and longer, when only short clauses are likely
to lead to a contradiction.

The search space is huge: resolution with factoring can be applied in many dif-
ferent ways, every time. Modern resolution systems use highly complex heuristics
to limit the search. Typically they only perform resolutions that can lead (perhaps
after several steps) to very short clauses, and they discard the intermediate clauses
produced along the way. Dozens of flags and parameters influence their operation.

Example 36 Let us prove ∀x ∃y ¬(P(y, x)↔ ¬P(y, y)).
Negate and expand the↔, getting

¬∀x ∃y ¬((¬P(y, x) ∨ ¬P(y, y)) ∧ (¬¬P(y, y) ∨ P(y, x)))

60 9 FIRST-ORDER RESOLUTION AND PROLOG

Its negation normal form is

∃x ∀y ((¬P(y, x) ∨ ¬P(y, y)) ∧ (P(y, y) ∨ P(y, x)))

Skolemization yields

(¬P(y, a) ∨ ¬P(y, y)) ∧ (P(y, y) ∨ P(y, a))

The clauses are

{¬P(y, a),¬P(y, y)} {P(y, y), P(y, a)}

We can apply the factoring rule to both of these clauses, obtaining two new
clauses:

{¬P(a, a)} {P(a, a)}

These are complementary unit clauses, so resolution yields the empty clause. This
proof is trivial! However, the use of factoring is essential, since the 2-literal
clauses must be reduced to unit clauses.

Observe what happens if we try to prove it without factoring. We can resolve
the two original clauses on the literal P(y, a). We obtain

{¬P(y, y), P(y, y)},

which is a tautology and therefore worthless.

Example 37 Let us prove ∃x [P → Q(x)] ∧ ∃x [Q(x) → P] → ∃x [P ↔
Q(x)]. The clauses are

{P,¬Q(b)} {P, Q(x)} {¬P,¬Q(x)} {¬P, Q(a)}

A short resolution proof follows. The complementary literals are underlined:

Resolve {P,¬Q(b)} with {P, Q(x)} getting {P}
Resolve {¬P,¬Q(x)} with {¬P, Q(a)} getting {¬P}
Resolve {P} with {¬P} getting �

Exercise 30 Show the steps of converting ∃x [P → Q(x)]∧∃x [Q(x)→ P]→
∃x [P ↔ Q(x)] into clauses. Then show two resolution proofs different from the
one shown above.

Exercise 31 Is the clause {P(x, b), P(a, y)} logically equivalent to the unit
clause {P(a, b)}? Is the clause {P(y, y), P(y, a)} logically equivalent to
{P(y, a)}? Explain both answers.

9.3 Prolog clauses 61

9.3 Prolog clauses
Prolog clauses, also called Horn clauses, have at most one positive literal. A
definite clause is one of the form

{¬A1, . . . ,¬Am, B}

It is logically equivalent to (A1 ∧ · · · ∧ Am)→ B. Prolog’s notation is

B ← A1, . . . , Am .

If m = 0 then the clause is simply written as B and is sometimes called a fact.
A negative or goal clause is one of the form

{¬A1, . . . ,¬Am}

Prolog permits just one of these; it represents the list of unsolved goals. Prolog’s
notation is

← A1, . . . , Am .

A Prolog database consists of definite clauses. Observe that definite clauses can-
not express negative assertions, since they must contain a positive literal. From a
mathematical point of view, they have little expressive power; every set of definite
clauses is consistent! Even so, definite clauses are a natural notation for many
problems.

Exercise 32 Show that every set of definite clauses is consistent. (Hint: first
consider propositional logic, then extend your argument to first order logic.)

9.4 Prolog computations
A Prolog computation takes a database of definite clauses together with one goal
clause. It repeatedly resolves the goal clause with some definite clause to produce
a new goal clause. If resolution produces the empty goal clause, then execution
succeeds.

Here is a diagram of a Prolog computation step:

���� �

definite clause goal clause
{¬A1, . . . , ¬An, B} {¬B1, . . . ,¬Bm}

σ = unify(B, ¬B1)

new goal clause
{¬A1σ, . . . , ¬Anσ, ¬B2σ, . . . , ¬Bmσ }

62 9 FIRST-ORDER RESOLUTION AND PROLOG

This is a linear resolution (§6). Two program clauses are never resolved with
each other. The result of each resolution step becomes the next goal clause; the
previous goal clause is discarded after use.

Prolog resolution is efficient, compared with general resolution, because it
involves less search and storage. General resolution must consider all possible
pairs of clauses; it adds their resolvents to the existing set of clauses; it spends
a great deal of effort getting rid of subsumed (redundant) clauses and probably
useless clauses. Prolog always resolves some program clause with the goal clause.
Because goal clauses do not accumulate, Prolog requires little storage. Prolog
never uses factoring and does not even remove repeated literals from a clause.

Prolog has a fixed, deterministic execution strategy. The program is regarded
as a list of clauses, not a set; the clauses are tried strictly in order. With a clause,
the literals are also regarded as a list. The literals in the goal clause are proved
strictly from left to right. The goal clause’s first literal is replaced by the literals
from the unifying program clause, preserving their order.

Prolog’s search strategy is depth-first. To illustrate what this means, suppose
that the goal clause is simply ← P and that the program clauses are P ← P and
P ← . Prolog will resolve P ← P with ← P to obtain a new goal clause, which
happens to be identical to the original one. Prolog never notices the repeated
goal clause, so it repeats the same useless resolution over and over again. Depth-
first search means that at every ‘choice point,’ such as between using P ← P
and P ← , Prolog will explore every avenue arising from its first choice before
considering the second choice. Obviously, the second choice would prove the goal
trivially, but Prolog never notices this.

9.5 Example of Prolog execution
Here are axioms about the English succession: how y can become King after x .

∀x ∀y (oldestson(y, x) ∧ king(x)→ king(y))

∀x ∀y (defeat(y, x) ∧ king(x)→ king(y))

king(richardIII)

defeat(henryVII, richardIII)

oldestson(henryVIII, henryVII)

The goal is to prove king(henryVIII).
These axioms correspond to the following definite clauses:

{¬oldestson(y, x),¬king(x), king(y)}

9.5 Example of Prolog execution 63

{¬defeat(y, x),¬king(x), king(y)}

{king(richardIII)}

{defeat(henryVII, richardIII)}

{oldestson(henryVIII, henryVII)}

The goal clause is
{¬king(henryVIII)}

Figure 2 shows the execution. The subscripts in the clauses are to rename the
variables.

Note how crude this formalization is. It says nothing about the passage of
time, about births and deaths, about not having two kings at once. Henry VIII
was the second son of Henry VII; the first son, Arthur, died in his youth. Logic is
clumsy for talking about situations in the real world.

The Frame Problem in Artificial Intelligence reveals another limitation of
logic. Consider writing an axiom system to describe a robot’s possible actions.
We might include an axiom to state that if the robot lifts an object at time t , then
it will be holding the object at time t + 1. But we also need to assert that the
positions of everything else remain the same as before. Then we must consider
the possibility that the object is a table and has other things on top of it . . .

Prolog is a powerful and useful language, but it is not necessarily logic. Most
Prolog programs rely on special predicates that affect execution but have no log-
ical meaning. There is a huge gap between the theory and practice of logic pro-
gramming.

Exercise 33 Convert these formulæ into clauses, showing each step: negating
the formula, eliminating→ and↔, pushing in negations, moving the quantifiers,
Skolemizing, dropping the universal quantifiers, and converting the resulting for-
mula into CNF.

(∀x ∃y R(x, y))→ (∃y ∀x R(x, y))
(∃y ∀x R(x, y))→ (∀x ∃y R(x, y))

∃x ∀yz ((P(y)→ Q(z))→ (P(x)→ Q(x)))
¬∃y ∀x (R(x, y)↔ ¬∃z (R(x, z) ∧ R(z, x)))

Exercise 34 Consider the Prolog program consisting of the definite clauses

P(f (x, y))← Q(x), R(y)
Q(g(z))← R(z)

R(a)←

64 9 FIRST-ORDER RESOLUTION AND PROLOG

���� �

definite clause goal clause

{¬os(y1, x1), ¬k(x1), k(y1)} {¬k(henryVIII)}

{os(henryVIII, henryVII)} {¬os(henryVIII, x1), ¬k(x1)}

{¬defeat(y2, x2), ¬k(x2), k(y2)} {¬k(henryVII)}

{defeat(henryVII, richardIII)} {¬defeat(henryVII, x2), ¬k(x2)}

{k(richardIII)} {¬k(richardIII)}

�

Figure 2: Execution of a Prolog program (os = oldestson, k = king)

65

Describe the Prolog computation starting from the goal clause ← P(v). Keep
track of the substitutions affecting v to determine what answer the Prolog system
would return.

Exercise 35 Find a refutation from the following set of clauses using resolution
with factoring.

{¬P(x, a),¬P(x, y),¬P(y, x)}
{P(x, f (x)), P(x, a)}
{P(f (x), x), P(x, a)}

Exercise 36 Prove the following formulæ by resolution, showing all steps of the
conversion into clauses. Remember to negate first!

∀x (P ∨ Q(x))→ (P ∨ ∀x Q(x))
∃xy (R(x, y)→ ∀zw R(z, w))

Note that P is just a predicate symbol, so in particular, x is not free in P .

10 BDDs, or Binary Decision Diagrams
A binary decision tree represents a propositional formula by binary decisions,
namely if-then-else expressions over the propositional letters. (In the relevant
literature, propositional letters are called variables.) A tree may contain much
redundancy; a binary decision diagram is a directed graph, sharing identical sub-
trees. An ordered binary decision diagram is based upon giving an ordering < to
the variables: they must be tested in order. Further refinements ensure that each
propositional formula is mapped to a unique diagram, for a given ordering.

The acronym BDD for binary decision diagram is well-established in the lit-
erature. However, many earlier papers use OBDD or even ROBDD (for “reduced
ordered binary decision diagram”) synonymously.

An BDD representation must satisfy the following conditions:

• ordering: if P is tested before Q, then P < Q
(thus in particular, P cannot be tested more than once on a single path)

• uniqueness: identical subgraphs are stored only once
(to do this efficiently, hash each node by its variable and pointer fields)

• irredundancy: no test leads to identical subgraphs in the t and f cases
(thanks to uniqueness, redundant tests can be detected by comparing point-
ers)

66 10 BDDS, OR BINARY DECISION DIAGRAMS

Because the BDD representation of each formula is unique, it is called a
canonical form. Canonical forms usually lead to good algorithms — for a start,
you can test whether two things are equivalent by comparing their canonical
forms.

The BDD form of any tautology is t. Similarly, that of any inconsistent for-
mula is f. To check whether two formulæ are logically equivalent, convert both to
BDD form and then — thanks to uniqueness — simply compare the pointers.

A recursive algorithm converts a formula to an BDD. All the logical connec-
tives can be handled directly, including→ and↔. (Exclusive ‘or’ is also used,
especially in hardware examples.) The expensive transformation of A ↔ B into
(A→ B) ∧ (B → A) is unnecessary.

Here is how to convert a conjunction A∧ A′ to an BDD. In this algorithm, XPY
is a decision node that tests the variable P , with a ‘true’ link to X and a ‘false’
link to Y . In other words, XPY is the BDD equivalent of the decision ‘if P then X
else Y .’

1. Recursively convert A and A′ to BDDs Z and Z ′.

2. Check for trivial cases. If Z = Z ′ (pointer comparison) then the result is
Z ; if either operand is f, then the result is f; if either operand is t, then the
result is the other operand.

3. In the general case, let Z = XPY and Z ′ = X ′P ′Y ′ . There are three possibil-
ities:

(a) If P = P ′ then recursively build the BDD X∧X ′PY∧Y ′ .
This means convert X ∧ X ′ and Y ∧ Y ′ to BDDs U and U ′, then
construct a new decision node from P to them. Do the usual sim-
plifications. If U = U ′ then the resulting BDD for the conjunction
is U . If an identical decision node from P to (U,U ′) has been created
previously, then that existing node is used instead of creating a new
one.

(b) If P < P ′ then recursively build the BDD X∧Z ′PY∧Z ′ . When building
BDDs on paper, it is easier to pretend that the second decision node
also starts with P: assume that it has the redundant decision Z ′PZ ′ and
proceed as in case (3a).

(c) If P > P ′ is treated analogously to the previous case.

Other connectives are treated similarly; they differ only in the base cases. The
negation of the BDD XPY is ¬XP¬Y . In essence we copy the BDD, and when we
reach the leaves, exchange t and f. The BDD of Z → f is the same as the BDD of
¬Z .

67

During this processing, the same input (consisting of a connective and two
BDDs) may be transformed into an BDD repeatedly. Efficient implementations
therefore have an additional hash table, which associates inputs to the correspond-
ing BDDs. The result of every transformation is stored in the hash table so that it
does not have to be computed again.

Example 38 We apply the BDD Canonicalisation Algorithm to P∨Q → Q∨R.
First, we make tiny BDDs for P and Q. Then, we combine them using ∨ to make
a small BDD for P ∨ Q:

P

0 1

Q

0 1

P

⁄

The BDD for Q∨R has a similar construction, so we omit it. We combine the two
small BDDs using→, then simplify (removing a redundant test on Q) to obtain
the final BDD.

Q

0 1

P Æ

R

0 1

Q Q

P

R

0 1

Q

P

The new construction is shown in grey. In both of these examples, it appears over
the rightmost formula because its variables come later in the ordering.

The final diagram indicates that the original formula is always true except if P
is true while Q and R are false. When you have such a simple BDD, you can easily
check that it is correct. For example, this BDD suggests the formula evaluates to t
when P is f, and indeed we find that the formula simplifies to Q → Q∨ R, which
simplifies further to t.

Huth and Ryan [2004] present a readable introduction to BDDs. A classic but
more formidable source of information is Bryant [1992].

68 11 MODAL LOGICS

Exercise 37 Compute the BDD for each of the following formulæ, taking the
variables as alphabetically ordered:

P ∧ Q → Q ∧ P
¬(P ∨ Q) ∨ P

P ∨ Q → P ∧ Q
¬(P ∧ Q)↔ (P ∨ R)

Exercise 38 Verify the following equivalences using BDDs:

(P ∧ Q) ∧ R ' P ∧ (Q ∧ R)
(P ∨ Q) ∨ R ' P ∨ (Q ∨ R)
P ∨ (Q ∧ R) ' (P ∨ Q) ∧ (P ∨ R)
P ∧ (Q ∨ R) ' (P ∧ Q) ∨ (P ∧ R)

Exercise 39 Verify the following equivalences using BDDs:

¬(P ∧ Q) ' ¬P ∨ ¬Q
(P ↔ Q)↔ R ' P ↔ (Q ↔ R)
(P ∨ Q)→ R ' (P → R) ∧ (Q → R)

11 Modal Logics
There are many forms of modal logic. Each one is based upon two parameters:

• W is the set of possible worlds (machine states, future times, . . .)

• R is the accessibility relation between worlds (state transitions, flow of time,
. . .)

The pair (W, R) is called a modal frame.
The two modal operators, or modalities, are 2 and 3:

• 2A means A is necessarily true

• 3A means A is possibly true

Here ‘necessarily true’ means ‘true in all worlds accessible from the present one’.
The modalities are related by the law ¬3A ' 2¬A; in words, ‘it is not possible
that A is true’ is equivalent to ‘A is necessarily false.’

Complex modalities are made up of strings of the modal operators, such as
22A, 23A, 32A, etc. Typically many of these are equivalent to others; in S4,
an important modal logic, 22A is equivalent to 2A.

11.1 Semantics of propositional modal logic 69

11.1 Semantics of propositional modal logic

Here are some basic definitions, with respect to a particular frame (W, R):
An interpretation I maps the propositional letters to subsets of W . For each

letter P , the set I (P) consists of those worlds in which P is regarded as true.
If w ∈ W and A is a modal formula, then w A means A is true in world w.

This relation is defined as follows:

w P ⇐⇒ w ∈ I (P)
w 2A ⇐⇒ v A for all v such that R(w, v)
w 3A ⇐⇒ v A for some v such that R(w, v)
w A ∨ B ⇐⇒ w A or w B
w A ∧ B ⇐⇒ w A and w B
w ¬A ⇐⇒ w A does not hold

This definition of truth is more complex than we have seen previously (§2.2),
because of the extra parameters W and R. We shall not consider quantifiers at all;
they really complicate matters, especially if the universe is allowed to vary from
one world to the next.

For a particular frame (W, R), further relations can be defined in terms of
w A:

|HW,R,I A means w A for all w under interpretation I
|HW,R A means w A for all w and all I

Now |H A means |HW,R A for all frames. We say that A is universally valid.
In particular, all tautologies of propositional logic are universally valid.

Typically we make further assumptions on the accessibility relation. We may
assume, for example, that R is transitive, and consider whether a formula holds
under all such frames. More formulæ become universally valid if we restrict the
accessibility relation, as they exclude some modal frames from consideration. The
purpose of such assumptions is to better model the task at hand. For instance, to
model the passage of time, we might want R to be reflexive and transitive; we
could even make it a linear ordering, though branching-time temporal logic is
popular.

11.2 Hilbert-style proof systems for the modal logics

Start with any proof system for propositional logic. Then add the distribution
axiom

2(A→ B)→ (2A→ 2B)

70 11 MODAL LOGICS

and the necessitation rule:
A

2A

There are no axioms or inference rules for 3. The modality is viewed simply
as an abbreviation:

3A def
= ¬2¬A

The distribution axiom clearly holds in our semantics. The propositional con-
nectives obey their usual truth tables in each world. If A holds in all worlds,
and A → B holds in all worlds, then B holds in all worlds. Thus if 2A and
2(A → B) hold then so does 2B, and that is the essence of the distribution
axiom.

The necessitation rule states that all theorems are necessarily true. In more
detail, if A can be proved, then it holds in all worlds; therefore 2A is also true.

The modal logic that results from adding the distribution axiom and necessi-
tation rule is called K . It is a pure modal logic, from which others are obtained
by adding further axioms. Each axiom corresponds to a property that is assumed
to hold of all accessibility relations. Here are just a few of the main ones:

T 2A→ A (reflexive)
4 2A→ 22A (transitive)
B A→ 23A (symmetric)

Logic T includes axiom T: reflexivity. Logic S4 includes axioms T and 4:
reflexivity and transitivity. Logic S5 includes axioms T, 4 and B: reflexivity, tran-
sitivity and symmetry; these imply that the accessibility relation is an equivalence
relation, which is a strong condition.

Other conditions on the accessibility relation concern forms of confluence.
One such condition might state that if w1 and w2 are both accessible from w then
there exists some v that is accessible from both w1 and w2.

11.3 Sequent Calculus Rules for S4

We shall mainly look at S4, which is one of the mainstream modal logics. As men-
tioned above, S4 assumes that the accessibility relation is reflexive and transitive.
If you want an intuition, think of the flow of time. Here are some S4 statements
with their intuitive meanings:

• 2A means “A will be true from now on.”

• 3A means “A will be true at some point in the future,” where the future
includes the present moment.

11.3 Sequent Calculus Rules for S4 71

• 23A means “3A will be true from now on.” At any future time, A must
become true some time afterwards. In short, A will be true infinitely often.

• 22A means “2A will be true from now on.” At any future time, A will
continue to be true. So 22A and 2A have the same meaning in S4.

The “time” described by S4 allows multiple futures, which can be confusing.
For example, 32A intuitively means “eventually A will be true forever.” You
might expect 32A and 32B to imply 32(A ∧ B), since eventually A and B
should both have become true. However, this property fails because time can
split, with A becoming true in one branch and B in the other. Note in particular
that 232A is stronger than 32A, and means “in all futures, eventually A will be
true forever.”

The sequent calculus for S4 extends the usual sequent rules for propositional
logic with additional ones for 2 and 3. Four rules are required because the modal-
ities may occur on either the left or right side of a sequent.

A, 0⇒1

2A, 0⇒1
(2l)

0∗⇒1∗, A
0⇒1,2A

(2r)

A, 0∗⇒1∗

3A, 0⇒1
(3l)

0⇒1, A
0⇒1,3A

(3r)

The (2r) rule is analogous to the necessitation rule. But now A may be proved
from other formulæ. This introduces complications. Modal logic is notorious for
requiring strange conditions in inference rules. The symbols 0∗ and 1∗ stand for
sets of formulæ, defined as follows:

0∗
def
= {2B | 2B ∈ 0}

1∗
def
= {3B | 3B ∈ 1}

In effect, applying rule (2r) in a backward proof throws away all left-hand formulæ
that do not begin with a 2 and all right-hand formulæ that do not begin with a 3.

If you consider why the (2r) rule actually holds, it is not hard to see why those
formulæ must be discarded. If we forgot about the restriction, then we could use
(2r) to infer A⇒2A from A⇒ A, which is ridiculous. The restriction ensures
that the proof of A in the premise is independent of any particular world.

The rule (3l) is an exact dual of (2r). The obligation to discard formulæ forces
us to plan proofs carefully. If rules are applied in the wrong order, vital informa-
tion may have to be discarded and the proof will fail.

72 11 MODAL LOGICS

11.4 Some sample proofs in S4

A few examples will illustrate how the S4 sequent calculus is used.
The distribution axiom is assumed in the Hilbert-style proof system. Using

the sequent calculus, we can prove it (I omit the (→r) steps):

A⇒ A B⇒ B
A→ B, A⇒ B

(→l)

A→ B,2A⇒ B
(2l)

2(A→ B),2A⇒ B
(2l)

2(A→ B),2A⇒2B
(2r)

Intuitively, why is this sequent true? We assume 2(A → B): from now on, if A
holds then so does B. We assume 2A: from now on, A holds. Obviously we can
conclude that B will hold from now on, which we write formally as 2B.

The order in which you apply rules is important. Working backwards, you
must first apply rule (2r). This rule discards non-2 formulæ, but there aren’t any.
If you first apply (2l), removing the boxes from the left side, then you will get
stuck:

now what?
⇒ B ?

A→ B, A⇒2B
(2r)

A→ B,2A⇒2B
(2l)

2(A→ B),2A⇒2B
(2l)

Applying (2r) before (2l) is analogous to applying (∀r) before (∀l). The analogy
because 2A has an implicit universal quantifier: for all accessible worlds.

The following two proofs establish the equivalence 2323A ' 23A. Strings
of modalities, like 2323 and 23, are called operator strings. So the pair of
results establish an operator string equivalence. The validity of this particular
equivalence is not hard to see. Recall that 23A means that A holds infinitely
often. So 2323A means that 23A holds infinitely often — but that can only
mean that A holds infinitely often, which is the meaning of 23A.

Now, let us prove the equivalence. Here is the first half of the proof. As usual
we apply (2r) before (2l). Dually, and analogously to the treatment of the ∃ rules,
we apply (3l) before (3r):

3A⇒3A
23A⇒3A

(2l)

323A⇒3A
(3l)

2323A⇒3A
(2l)

2323A⇒23A
(2r)

11.4 Some sample proofs in S4 73

The opposite entailment is easy to prove:

23A⇒23A
23A⇒323A

(3r)

23A⇒2323A
(2r)

Logic S4 enjoys many operator string equivalences, including 22A ' 2A.
And for every operator string equivalence, its dual (obtained by exchanging 2

with 3) also holds. In particular, 33A ' 3A and 3232A ' 32A hold.
So we only need to consider operator strings in which the boxes and diamonds
alternate, and whose length does not exceed three.

The distinct S4 operator strings are therefore 2, 3, 23, 32, 232 and 323.
Finally, here are two attempted proofs that fail — because their conclusions

are not theorems! The modal sequent A⇒23A states that if A holds now then it
necessarily holds again: from each accessible world, another world is accessible
in which A holds. This formula is valid if the accessibility relation is symmetric;
then one could simply return to the original world. The formula is therefore a
theorem of S5 modal logic, but not S4.

⇒ A
⇒3A

(3r)

A⇒23A
(2r)

Here, the modal sequent 3A,3B⇒3(A ∧ B) states that if A holds in some
accessible world, and B holds in some accessible world, then both A and B hold in
some accessible world. It is a fallacy because those two worlds need not coincide.
The (3l) rule prevents us from removing the diamonds from both 3A and 3B; if
we choose one we must discard the other:

B⇒ A ∧ B
B⇒3(A ∧ B)

(3r)

3A,3B⇒3(A ∧ B)
(3l)

The topmost sequent may give us a hint as to why the conclusion fails. Here we
are in a world in which B holds, and we are trying to show A ∧ B, but there is no
reason why A should hold in that world.

As mentioned previously, the sequent 32A,32B⇒32(A∧ B) is not valid
because A and B can become true in different futures. However, the sequents
32A,232B⇒32(A∧B) and 232A,232B⇒232(A∧B) are both valid.

Exercise 40 Why does the dual of an operator string equivalence also hold?

Exercise 41 Prove the sequent 3(A ∨ B)⇒3A,3B.

74 12 TABLEAUX-BASED METHODS

Exercise 42 Prove the sequent 3A ∨3B⇒3(A ∨ B). Together with the pre-
vious exercise, this yields 3(A ∨ B) ' 3A ∨3B.

Exercise 43 Prove the sequent 3(A→ B),2A⇒3B.

Exercise 44 Prove the equivalence 2(A ∧ B) ' 2A ∧2B.

Exercise 45 Prove the sequent 232A,232B⇒232(A ∧ B).

12 Tableaux-Based Methods

There is a lot of redundancy among the connectives ¬, ∧, ∨, →, ↔, ∀, ∃. We
could get away using only three of them (two if we allowed exclusive ‘or’), but
use the full set for readability. There is also a lot of redundancy in the sequent
calculus, because it was designed to model human reasoning, not to be as small
as possible.

One approach to removing redundancy results in the resolution method.
Clause notation replaces the connectives, and there is only one inference rule.
A less radical approach still removes much of the redundancy, while preserving
much of the natural structure of formulæ. This approach is often adopted by proof
theorists because of its logical simplicity; it is also amenable to implementation.

12.1 Simplifying the sequent calculus

The usual formalisation of first-order logic involves seven connectives, or nine in
the case of modal logic. For each connective the sequent calculus has a left and a
right rule. So, apart from the structural rules (basic sequent and cut) there are 14
rules, or 18 for modal logic.

Suppose we allow only formulæ in negation normal form. This immediately
disposes of the connectives→ and↔. Really ¬ is discarded also, as it is allowed
only on propositional letters. So only four connectives remain, six for modal logic.

The greatest simplicity gain comes in the sequent rules. The only sequent rules
that move formulæ from one side to the other (across the ⇒ symbol) are the rules
for the connectives that we have just discarded. Half of the sequent rules can be
discarded too. It makes little difference whether we discard the left-side rules or
the right-side rules.

Let us discard the right-side rules. The resulting system allows sequents of
the form A⇒ . It is a form of refutation system (proof by contradiction), since

12.2 Mechanising the technique 75

the formula A has the same meaning as the sequent ¬A⇒ . Moreover, a basic
sequent has the form of a contradiction.

¬A, A, 0⇒
(basic)

¬A, 0⇒ A, 0⇒
0⇒

(cut)

A, B, 0⇒
A ∧ B, 0⇒

(∧l)
A, 0⇒ B, 0⇒

A ∨ B, 0⇒
(∨l)

A[t/x], 0⇒
∀x A, 0⇒

(∀l)
A, 0⇒

∃x A, 0⇒
(∃l)

Rule (∃l) has the usual proviso: it holds provided x is not free in the conclusion!
We can extend the system to S4 modal logic by adding just two further rules,

one for 2 and one for 3:

A, 0⇒
2A, 0⇒

(2l)
A, 0∗⇒

3A, 0⇒
(3l)

As previously, 0∗ is defined to erase all non-2 formulæ:

0∗
def
= {2B | 2B ∈ 0}

We have gone from 14 rules to four, ignoring the structural rules. For modal
logic, we have gone from 18 rules to six.

A simple proof will illustrate how the simplified system works. Let us prove
∀x (A→ B)⇒ A→ ∀x B, where x is not free in A. We must negate the formula
and convert it to NNF; the resulting sequent is A ∧ ∃x ¬B, ∀x (¬A ∨ B)⇒ .
Elaborate explanations should not be necessary because this sequent calculus is
essentially a subset of the one described in §5.

A, ¬B, ¬A⇒ A, ¬B, B⇒
A, ¬B, ¬A ∨ B⇒

(∨l)

A, ¬B, ∀x (¬A ∨ B)⇒
(∀l)

A, ∃x ¬B, ∀x (¬A ∨ B)⇒
(∃l)

A ∧ ∃x ¬B, ∀x (¬A ∨ B)⇒
(∧l)

12.2 Mechanising the technique
Some proof theorists adopt the simplified sequent calculus as their formalisation
of first-order logic. It has most of the advantages of the usual sequent calculus,
without the redundancy. But can we use it as the basis for a theorem prover?

76 12 TABLEAUX-BASED METHODS

Implementing the calculus (or indeed, implementing the full sequent calculus)
requires a treatment of quantifiers. As with the resolution method, we can use
unification together with Skolemization.

First, consider how to add unification. The rule (∀l) substitutes some term for
the bound variable. Since we do not know in advance what the term ought to
be, instead substitute a free variable. The variable ought to be fresh, not used
elsewhere in the proof:

A[z/x], 0⇒
∀x A, 0⇒

(∀l)

Then allow unification to instantiate variables with terms. This should occur when
trying to solve any goal containing two formulæ, ¬A and B. Try to unify A
with B, producing a basic sequent. Of course, instantiating a variable updates the
entire proof tree.

Rule (∃l), used in backward proof, must create a fresh variable. That will no
longer do, in part because we now allow variables to become instantiated by terms.
We have a choice of techniques, but the simplest is to Skolemize the formula. All
existential quantifiers disappear, so we can discard rule (∃l).

Warning: if you wish to use unification, you absolutely must also use Skolem-
ization. If you use unification without Skolemization, your proofs will almost
certainly be wrong! This is because unification is likely to introduce variable
occurrences in places where they are forbidden by the side condition of the exis-
tential rule.

Previously (§7.2) we performed Skolemization on formulæ in prenex form: all
quantifiers at the front. The outermost existentially-bound variable was replaced
by a function, which took as many arguments as there were enclosing universal
quantifiers. But there is no need to pull quantifiers to the front. Precisely the same
approach works, although now the existential quantifiers are found in subformulæ
instead of being lined up in a row.

The Skolem form of ∀y ∃z Q(y, z) ∧ ∃x P(x) is ∀y Q(y, f (y)) ∧ P(a). The
subformula ∃x P(x) goes to P(a) and not to P(g(y)) because it is outside the
scope of the ∀y.

12.3 Sample proofs

To demonstrate the system, let us prove the formula ∃x ∀y [P(x)→ P(y)]. First
negate it and convert to NNF, getting ∀x ∃y [P(x) ∧ ¬P(y)]. The Skolemized
sequent to be proved is ∀x [P(x) ∧ ¬P(f (x))]⇒ . Unification completes the

12.3 Sample proofs 77

proof by creating a basic sequent; there are two distinct ways of doing so:

z 7→ f (y) or y 7→ f (z)
P(y), ¬P(f (y)), P(z), ¬P(f (z))⇒ basic

P(y), ¬P(f (y)), P(z) ∧ ¬P(f (z))⇒
(∧l)

P(y), ¬P(f (y)), ∀x [P(x) ∧ ¬P(f (x))]⇒
(∀l)

P(y) ∧ ¬P(f (y)), ∀x [P(x) ∧ ¬P(f (x))]⇒
(∧l)

∀x [P(x) ∧ ¬P(f (x))]⇒
(∀l)

In the first inference from the bottom, the universal formula is retained because it
must be used again. In principle, universally quantified formulæ ought always to
be retained, as they may be used any number of times. I normally erase them to
save space.

Pulling quantifiers to the front is not merely unnecessary; it can be harmful.
Skolem functions should have as few arguments as possible, as this leads to shorter
proofs. Attaining this requires that quantifiers should have the smallest possible
scopes; we ought to push quantifiers in, not pull them out. This is sometimes
called miniscope form.

For example, the formula ∃x ∀y [P(x)→ P(y)] is tricky to prove. But putting
it in miniscope form makes its proof trivial. Let us do this step by step:

Negate; convert to NNF: ∀x ∃y [P(x) ∧ ¬P(y)]
Push in the ∃y : ∀x [P(x) ∧ ∃y ¬P(y)]
Push in the ∀x : ∀x P(x) ∧ ∃y ¬P(y)

Skolemize: ∀x P(x) ∧ ¬P(a)

The formula ∀x P(x) ∧ ¬P(a) is obviously inconsistent. Here is its refutation in
the modified sequent calculus:

y 7→ a
P(y), ¬P(a)⇒ basic

∀x P(x), ¬P(a)⇒
(∀l)

∀x P(x) ∧ ¬P(a)⇒
(∧l)

A failed proof is always illuminating. Let us try to prove the invalid formula

∀x [P(x) ∨ Q(x)]⇒∀x P(x) ∨ ∀x Q(x).

Negation and conversion to NNF gives ∃x ¬P(x) ∧ ∃x ¬Q(x), ∀x [P(x) ∨
Q(x)].

Skolemization gives ¬P(a) ∧ ¬Q(b), ∀x [P(x) ∨ Q(x)].

78 12 TABLEAUX-BASED METHODS

The proof fails because a and b are distinct constants. It is impossible to
instantiate y to both simultaneously.

y 7→ a
¬P(a), ¬Q(b), P(y)⇒

y 7→ b???
¬P(a), ¬Q(b), Q(y)⇒

¬P(a), ¬Q(b), P(y) ∨ Q(y)⇒
(∨l)

¬P(a), ¬Q(b), ∀x [P(x) ∨ Q(x)]⇒
(∀l)

¬P(a) ∧ ¬Q(b), ∀x [P(x) ∨ Q(x)]⇒
(∧l)

12.4 Tableaux-based theorem provers
An analytic tableau represents a partial proof as a set of branches of formulæ.
Each formula on a branch is expanded until this is no longer possible (and the
proof fails) or until the proof succeeds.

Expanding a conjunction A ∧ B on a branch replaces it by the two conjuncts,
A and B. Expanding a disjunction A∨ B splits the branch in two, with one branch
containing A and the other branch B. Expanding the quantification ∀x A extends
the branch by a formula of the form A[t/x]. If a branch contains both A and ¬A
then it is said to be closed. When all branches are closed, the proof has succeeded.

A tableau is, in fact, nothing but a compact, graph-based representation of a
set of sequents. The branch operations described above correspond to our sequent
rules in an obvious way.

Quite a few theorem provers have been based upon the tableau method. The
simplest by far is due to Beckert and Posegga [1994] and is called leanTAP . The
entire program appears below! Its deductive system is similar to the reduced se-
quent calculus we have just studied. It relies on some Prolog tricks, and is cer-
tainly not pure Prolog code. It demonstrates just how simple a theorem prover can
be. leanTAP does not outperform big resolution systems. But it quickly proves
some fairly hard theorems.

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,
prove(A,[B|UnExp],Lits,FreeV,VarLim).

prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,
prove(A,UnExp,Lits,FreeV,VarLim),
prove(B,UnExp,Lits,FreeV,VarLim).

prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,
\+ length(FreeV,VarLim),
copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),
append(UnExp,[all(X,Fml)],UnExp1),
prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).

prove(Lit,_,[L|Lits],_,_) :-

REFERENCES 79

(Lit = -Neg; -Lit = Neg) ->
(unify(Neg,L); prove(Lit,[],Lits,_,_)).

prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-
prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).

The first clause handles conjunctions, the second disjunctions, the third uni-
versal quantification. The fourth line handles literals, including negation. The
fifth line brings in the next formula to be analyzed.

You are not expected to memorize this program or to understand how it works
in any detail.

Exercise 46 Use the tableau calculus to prove examples given in previous sec-
tions.

References
B. Beckert and J. Posegga. leanTAP: Lean, tableau-based theorem proving. In

A. Bundy, editor, Automated Deduction — CADE-12 International
Conference, LNAI 814, pages 793–797. Springer, 1994.

R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. Computing Surveys, 24(3):293–318, Sept. 1992.

M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, 2nd edition, 2004.

