Exercises: sheet 3

- 1. Use the SECD machine to evaluate the λ -terms:
 - (a) $(\lambda x.(\lambda y.yx)I)I;$
 - (b) $(\lambda x.xx)((\lambda x.\lambda y.xy)I);$
 - (c) $YI \equiv (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))I.$

In part 1c, the SECD evaluation will not terminate. Do enough steps to convince yourself of this.

- 2. Give de Bruijn terms corresponding to the λ -terms given in part 1.
- 3. (optional) Given de Bruijn terms s and t corresponding to λ -terms M and N respectively, find an algorithm which directly computes the de Bruijn term for M[N/x] from the de Bruijn terms s and t.
- 4. Give translations of the λ -terms given in part 1 to combinators, using the operators λ^* and λ^T . For the translations using λ^T , give the graph of the resulting combinators and do some of the reduction steps.
- 5. Define $\mathbf{B} \equiv \mathbf{S}(\mathbf{KS})\mathbf{K}$ and $\mathbf{C} \equiv \mathbf{S}(\mathbf{BBS})(\mathbf{KK})$. Show that $\mathbf{B}PQR \rightarrow_w P(QR)$ and $\mathbf{C}PQR \rightarrow_w PQR$. Define a combinator \mathbf{W} in terms of \mathbf{S} and \mathbf{K} such that $\mathbf{W}PQ \rightarrow_w PQQ$.
- 6. Prove that $(\lambda^T x. P)Q \twoheadrightarrow_w P[Q/x]$.