Exercises: sheet 3

1. Use the SECD machine to evaluate the λ-terms:
(a) $(\lambda x \cdot(\lambda y . y x) I) I$;
(b) $(\lambda x \cdot x x)((\lambda x \cdot \lambda y \cdot x y) I)$;
(c) $Y I \equiv(\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))) I$.

In part 1c, the SECD evaluation will not terminate. Do enough steps to convince yourself of this.
2. Give de Bruijn terms corresponding to the λ-terms given in part 1.
3. (optional) Given de Bruijn terms s and t corresponding to λ-terms M and N respectively, find an algorithm which directly computes the de Bruijn term for $\mathrm{M}[\mathrm{N} / \mathrm{x}]$ from the de Bruijn terms s and t.
4. Give translations of the λ-terms given in part 1 to combinators, using the operators λ^{*} and λ^{T}. For the translations using λ^{T}, give the graph of the resulting combinators and do some of the reduction steps.
5. Define $\mathbf{B} \equiv \mathbf{S}(\mathbf{K S}) \mathbf{K}$ and $\mathbf{C} \equiv \mathbf{S}(\mathbf{B B S})(\mathbf{K K})$. Show that $\mathbf{B} P Q R \rightarrow_{w}$ $P(Q R)$ and $\mathbf{C} P Q R \rightarrow_{w} P Q R$. Define a combinator \mathbf{W} in terms of \mathbf{S} and \mathbf{K} such that $\mathbf{W} P Q \rightarrow_{w} P Q Q$.
6. Prove that $\left(\lambda^{T} x . P\right) Q \rightarrow w P[Q / x]$.

