Exercises: sheet 1

- 1. Insert the full amount of parentheses in the following abbreviated terms:
 - (a) $ux(yz)(\lambda v.vy)$.
 - (b) $(\lambda xyz.xz(yz))uvw.$
 - (c) $w(\lambda xyz.xz(yz))uv.$
- 2. (a) Evaluate (up to α -conversion) the substitutions
 - i. $(\lambda y.x(\lambda x.x))[(\lambda y.xy)/x];$
 - ii. $(y(\lambda v.xv))[(\lambda y.vy)/x].$
 - (b) Under what conditions does the equality $M[N/x][L/y] \equiv_{\alpha} M[L/y][N/x]$ hold?
- 3. Reduce the following λ -terms to normal form, or indicate that a normal form does not exist:
 - (a) $P \equiv (\lambda x. x(xy))I$ where $I \equiv \lambda u. u$.
 - (b) $Y \equiv \lambda f.QQ$ where $Q \equiv (\lambda x.f(xx))$.
 - (c) $L \equiv (\lambda x.xxy)(\lambda x.xxy)$.
 - (d) $(\lambda x.xL)M$ where $M \equiv \lambda x.y$ and L is defined in 3c.
- 4. Find all possible reduction paths to normal form for the following λ -terms, where $I \equiv \lambda u.u$:
 - (a) $(\lambda x.xx)((\lambda x.xy)I)$.
 - (b) $I((\lambda y.Ix)z)$.
 - (c) $(\lambda u.v)L$ where $L \equiv (\lambda x.xxy)(\lambda x.xxy)$.

State and comment on which reduction paths are shortest.

- 5. Consider the λ -terms given in part 3. Show that the following pairs of λ -terms are equal or prove otherwise:
 - (a) P and $(\lambda x.xL)M$.
 - (b) L and I;
 - (c) Yf and f(Yf).
- 6. For the λ -terms in part 4, identify which reduction paths satisfy the call-by-name and call-by-value reduction strategies.