Exercises: sheet 1

1. Insert the full amount of parentheses in the following abbreviated terms:
(a) $u x(y z)(\lambda v . v y)$.
(b) $(\lambda x y z \cdot x z(y z)) u v w$.
(c) $w(\lambda x y z \cdot x z(y z)) u v$.
2. (a) Evaluate (up to α-conversion) the substitutions
i. $(\lambda y \cdot x(\lambda x \cdot x))[(\lambda y \cdot x y) / x]$;
ii. $(y(\lambda v . x v))[(\lambda y . v y) / x]$.
(b) Under what conditions does the equality $M[N / x][L / y] \equiv{ }_{\alpha} M[L / y][N / x]$ hold?
3. Reduce the following λ-terms to normal form, or indicate that a normal form does not exist:
(a) $P \equiv(\lambda x \cdot x(x y)) I$ where $I \equiv \lambda u . u$.
(b) $Y \equiv \lambda f \cdot Q Q$ where $Q \equiv(\lambda x \cdot f(x x))$.
(c) $L \equiv(\lambda x \cdot x x y)(\lambda x \cdot x x y)$.
(d) $(\lambda x . x L) M$ where $M \equiv \lambda x . y$ and L is defined in 3 c.
4. Find all possible reduction paths to normal form for the following λ-terms, where $I \equiv$ $\lambda u . u$:
(a) $(\lambda x \cdot x x)((\lambda x \cdot x y) I)$.
(b) $I((\lambda y \cdot I x) z)$.
(c) $(\lambda u \cdot v) L$ where $L \equiv(\lambda x \cdot x x y)(\lambda x \cdot x x y)$.

State and comment on which reduction paths are shortest.
5. Consider the λ-terms given in part 3. Show that the following pairs of λ-terms are equal or prove otherwise:
(a) P and $(\lambda x . x L) M$.
(b) L and I;
(c) $Y f$ and $f(Y f)$.
6. For the λ-terms in part 4 , identify which reduction paths satisfy the call-by-name and call-by-value reduction strategies.

