Foundations of functional programming

Matthew Parkinson
12 Lectures (Lent 2009)

Overview

Materials

Previous lecturers notes are still relevant.
Caveat: What's in the slides is what's examinable.

Motivation

Understanding:

- simple notion of computation

Encoding:

- Representing complex features in terms of simpler features

Functional programming in the wild:

- Visual Basic and C\# have functional programming features.

(Pure) λ-calculus

$$
M::=x|(M)|(\lambda x . M)
$$

Syntax:

- x variable
- (M M) (function) application
- ($\lambda \times . M$) (lambda) abstraction

World smallest programming language:

- α, β, η reductions
- when are two programs equal?
- choice of evaluation strategies

Pure λ-calculus is universal

Can encode:

- Booleans
- Integers
- Pairs
- Disjoint sums
- Lists
- Recursion
within the λ-calculus.
Can simulate a Turing or Register machine (Computation Theory), so is universal.

Applied λ-calculus

$$
\mathrm{M}::=x|\lambda x . M| M M \mid c
$$

Syntax:

- x variables
- $\lambda x . M$ (lambda) abstraction
- M M (function) application
- c (constants)

Elements of c used to represent integers, and also functions such as addition

- δ reductions are added to deal with constants

Combinators

$$
\mathrm{M}::=\mathrm{M} M \mid c \quad \text { (omit } x \text { and } \lambda x . M \text {) }
$$

We just have $c \in\{S, K\}$ regains power of λ-calculus.
Translation to/from lambda calculus including almost equivalent reduction rules.

Evaluation mechanisms/facts

Eager evaluation (Call-by-value)
Lazy evaluation (Call-by-need)
Confluence "There's always a meeting place downstream"

Implementation Techniques

Real implementations

- "Functional Languages"
- Don't do substitution, use environments instead.
- Haskell, ML, F\# (, Visual Basic, C\#)

SECD

Abstract machine for executing the λ-calculus.
4 registers Stack, Environment, Control and Dump.

Continuations

- λ-expressions restricted to always return "()" [continuations] can implement all λ expressions
- Continuations can also represent many forms of non-standard control flow, including exceptions
- call/cc

State

How can we use state and effects in a purely functional language?

Types

This course is primarily untyped.
We will mention types only where it aids understanding.

Pure λ-calculus

Syntax

Variables: x, y, z, \ldots
Terms:

$$
M, N, L, \ldots::=\lambda x . M|M N| x
$$

We write $M \equiv N$ to say M and N are syntactically equal.

Syntax trees

Free variables and permutation

We define free variables of a λ-term as

- $F V(M N)=F V(M) \cup F V(N)$
- $F V(\lambda x . M)=F V(M) \backslash\{x\}$
- $\mathrm{FV}(\mathrm{x})=\{\mathrm{x}\}$

We define variable permutation as

- $\mathrm{X}<\mathrm{x} \cdot \mathrm{Z}>=\mathrm{X}<\mathrm{Z} \cdot \mathrm{x}>=\mathrm{Z}$
- $x<y \cdot z>=x \quad($ provided $x \neq y$ and $x \neq z)$
- $(\lambda x . M)<y \cdot z>=\lambda(x<y \cdot z>) .(M<y \cdot z>)$
- $(\mathrm{M} \mathrm{N})<\mathrm{y} \cdot \mathrm{z>}=(\mathrm{M}<\mathrm{y} \cdot \mathrm{z>})(\mathrm{N}<\mathrm{y} \cdot \mathrm{z>})$

Recap: Equivalence relations

An equivalence relation is a reflexive, symmetric and transitive relation.
R is an equivalence relation if

- Reflexive

$$
\forall x . \times R x
$$

- Transitive

$$
\forall x y z . x R y \wedge y R z \Rightarrow x R z
$$

- Symmetric

$$
\forall x y . x R y \Rightarrow y R x
$$

Contexts

Context (term with a single hole (\cdot)):

$$
C::=\lambda x . C|C M| M C \mid \bullet
$$

Context application/filling

Context application C[M] fills hole (\cdot) with M .

- $(\lambda \times \mathrm{C})[\mathrm{N}]=\lambda \times .(\mathrm{C}[\mathrm{N}])$
- (C M) $[\mathrm{N}]=(\mathrm{C}[\mathrm{N}]) \mathrm{M}$
- (M C) $[\mathrm{N}]=\mathrm{M}(\mathrm{C}[\mathrm{N}])$
- $\cdot[\mathrm{N}]=\mathrm{N}$

C[M]

Congruence

A congruence relation is an equivalence relation, that is preserved by placing terms under contexts.
R is a compatible relation if

- $\forall M N C . M R N \Rightarrow C[M] R C[N]$
R is a congruence relation if it is both an equivalence and a compatible relation.

α-equivalence

Two terms are α-equivalent if they can be made syntactically equal (\equiv) by renaming bound variables
α-equivalence ($=\alpha$) is the least congruence relation satisfying

- $\lambda x . M={ }_{\alpha} \lambda y . M<x \cdot y>$ where $y \notin F V(\lambda x . M)$

Intuition of α-equivalence

Consider

$$
\lambda x . \lambda y . x y z x
$$

We can see this as

and hence the bound names are irrelevant

We only treat terms up to α-equivalence.

Are these alpha-equivalent?

$$
\begin{aligned}
& \lambda \mathrm{x} \cdot \mathrm{x}={ }_{\alpha} \lambda \mathrm{y} \cdot \mathrm{y} \\
& \lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \mathrm{x}={ }_{\alpha} \lambda \mathrm{y} \cdot \lambda \mathrm{x} \cdot \mathrm{y} \\
& \lambda \mathrm{x} \cdot \mathrm{y}={ }_{\alpha} \lambda \mathrm{y} \cdot \mathrm{y} \\
& (\lambda \mathrm{x} \cdot \mathrm{x})(\lambda \mathrm{y} \cdot \mathrm{y})=_{\alpha}(\lambda \mathrm{y} \cdot \mathrm{y})(\lambda \mathrm{x} \cdot \mathrm{x}) \\
& \lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot(\mathrm{xz} \mathrm{y})=_{\alpha} \lambda z \cdot \lambda \mathrm{y} \cdot(\mathrm{zzy})
\end{aligned}
$$

\square

\square

α-equivalence (alternative defn)

Use $\lambda \times s . M$ as a shorthand, where

- xs ::= xs,x | []
- $\lambda[] . \mathrm{M} \equiv \mathrm{M}$
- $\lambda x s, x . M \equiv \lambda x s . \lambda x . M$

Definition

- $\lambda[] \cdot x={ }_{\alpha} \lambda[] \cdot x$
- $\lambda \mathrm{xs}, \mathrm{x}_{1} \cdot \mathrm{x}_{2}={ }_{\alpha} \lambda \mathrm{ys}, \mathrm{y}_{1} \cdot \mathrm{y}_{2}$
if $\left(x_{1} \equiv x_{2}\right.$ and $\left.y_{1} \equiv y_{2}\right)$
or ($\mathrm{x}_{1} \neq \mathrm{X}_{2}$ and $\mathrm{y}_{1} \neq \mathrm{y}_{2}$ and $\left.\lambda \mathrm{xs} . \mathrm{x}_{2}={ }_{\alpha} \lambda \mathrm{ys} . \mathrm{y}_{2}\right)$
- $\lambda x s . M_{1} M_{2}=\alpha$ ys. $N_{1} N_{2}$ iff $\lambda x s . M_{1}={ }_{\alpha} \lambda y s . \mathrm{N}_{1}$ and $\lambda x s . \mathrm{M}_{2}={ }_{\alpha} \lambda y s . \mathrm{N}_{2}$

Capture avoiding substitution

If $x \notin F V(M)$,

- $M[L / X]=M$
otherwise:
- (M N) $[\mathrm{L} / \mathrm{x}]=(\mathrm{M}[\mathrm{L} / \mathrm{x}] \mathrm{N}[\mathrm{L} / \mathrm{x}])$
- $(\lambda y . M)[L / x]=(\lambda z . M<z \cdot y>[L / x])$ where $z \notin \mathrm{FV}(x, L, \lambda y . m)$
- $x[L / X]=L$

Note: In the ($\lambda y . M$) case, we use a permutation to pick an α-equivalent term that does not capture variables in L.
$(x y)[L / y]=x L$
$(\lambda x . y)[x / w]=\lambda x . y$
$(\lambda x .(x y))[L / x]=(\lambda x .(x y))$
$(\lambda x . y)[x / y]=(\lambda z . x)$
$(\lambda y .(\lambda x . z))[x w / z]=(\lambda y .(\lambda x .(x w)))$

\square

Extra brackets

To simplify terms we will drop some brackets:

$$
\begin{gathered}
\lambda x y \cdot M \equiv \lambda x \cdot(\lambda y \cdot M) \\
L M N \equiv(L M) N \\
\lambda x \cdot M N \equiv \lambda x \cdot(M N)
\end{gathered}
$$

Some examples

$$
\begin{gathered}
(\lambda x . x x)(\lambda x . x x) y z \equiv(((\lambda x \cdot(x x))(\lambda x .(x x))) y) z \\
\lambda x y z \cdot x y z \equiv \lambda x \cdot(\lambda y \cdot(\lambda z \cdot((x y) z)))
\end{gathered}
$$

Extra brackets - again

L M N $\equiv(\mathrm{L} M) \mathrm{N}$

$\beta \eta$-reduction

We define β-reduction as:

$$
(\lambda x . M) N \rightarrow_{\beta} M[N / x]
$$

This is the workhorse of the λ-calculus.
We define η-reduction as: If $x \notin F V(M)$, then

$$
\lambda x .(M x) \rightarrow \eta M
$$

This collapses trivial functions.
Consider $(f n x=>\sin x)$ is this the same as \sin in ML?

$\beta \eta$ examples

$(\lambda x . \mathrm{xy})(\lambda z . z) \rightarrow_{\beta} \lambda z . \mathrm{zy}$
$(\lambda x . x y)(\lambda z . z) \rightarrow_{\beta}(\lambda z . z) y$
$\lambda x . M N x \rightarrow{ }_{\eta}(M N)$
$(\lambda x . x x)(\lambda x . x x) \rightarrow_{\beta}(\lambda x . x x)(\lambda x . x x)$
$(\lambda x y . x)(\lambda x . y) \rightarrow_{\beta}(\lambda y x . y)$

Reduction in a context

We actually define β-reduction as:

$$
C[(\lambda x . M) N] \rightarrow_{\beta} C[M[N / x]]
$$

and η-reduction as:

$$
C[(\lambda x .(M x))] \rightarrow \eta C[M](\text { where } x \notin F V(M))
$$

where $C::=\lambda x . C|C M| M C \mid \cdot$ (from "Context and
Congruence" slide)
Note: to control evaluation order we can consider different contexts.

Contexts

C[M]

How many reductions?

$(\lambda x . x)((\lambda x . x)(\lambda x . x))$
($\lambda \mathrm{x} . \mathrm{x}$) ($\lambda \mathrm{x} . \mathrm{x}$) ($\lambda \mathrm{x} . \mathrm{x})$
(($\lambda x y . x) z) w$
$(\lambda x y . z)((\lambda x . x)(\lambda x . x))(\lambda x . x)$
$\lambda x y . z$

Reduction and normal forms

Normal-form (NF)

A term is in normal form if it there are no β or η reductions that apply.

Examples in NF:

- x ; $\lambda \mathrm{x} . \mathrm{y}$; and $\lambda \mathrm{xy} . \mathrm{x}(\lambda \mathrm{x} . \mathrm{y})$
and not in NF:
- $(\lambda \mathrm{x} . \mathrm{x}) \mathrm{y}$; $(\lambda \mathrm{x} . \mathrm{x} \mathrm{x})(\lambda \mathrm{x} . \mathrm{xx})$; and ($\lambda \mathrm{x} . \mathrm{y} \mathrm{x})$
normal-form:
Correction
- NF ::= x . NF
(if $\forall M . N F \neq M \times$ or $x \in F V(M)$)
$\mid \mathrm{NF}_{1} \mathrm{NF}_{2}$ (if $\forall \mathrm{M} . \mathrm{NF}_{1} \neq \lambda \mathrm{x} . \mathrm{M}$)
X

Normal-forms

A term has a normal form, if it can be reduced to a normal form:

- $(\lambda x . x) y$ has normal form y
- ($\lambda x . y x)$ has a normal form y
- $(\lambda x . x \times)(\lambda x . x \times)$ does not have a normal form

Note: $(\lambda \mathrm{X} . \mathrm{XX})(\lambda \mathrm{X} . \mathrm{Xx})$ is sometimes denoted Ω.
Note: Some terms have normal forms and infinite reduction sequences, e.g. ($\lambda \times$ y) Ω.

Weak head normal form

A term is in WHNF if it cannot reduce when we restrict the context to

$$
C::=C M|M C| \cdot
$$

That is, we don't reduce under a λ.
$\lambda \times . \Omega$ is a WHNF, but not a NF.

Multi-step reduction

$M \rightarrow{ }^{*} N$ iff

- $M \rightarrow{ }_{\beta} N$
- $M \rightarrow{ }_{\eta} N$
- $\mathrm{M} \equiv \mathrm{N}$ (reflexive)
- $\exists \mathrm{L} . \mathrm{M} \rightarrow{ }^{*} \mathrm{~L}$ and $\mathrm{L} \rightarrow^{*} \mathrm{~N}$ (transitive)

The transitive and reflexive closure of β and η reduction.

Equality

We define equality on terms, =, as the least congruence relation, that additionally contains

- α-equivalence (implicitly)
- β-reduction
- η-reduction

Sometimes expressed as $\mathrm{M}=\mathrm{M}^{\prime}$ iff there exists a sequence of forwards and backwards reductions from M to M':

- $M \rightarrow{ }^{*} N_{1}{ }^{*} \leftarrow M_{1} \rightarrow{ }^{*} N_{2}{ }^{*} \leftarrow \ldots \rightarrow{ }^{*} N_{k}{ }^{*} \leftarrow M^{\prime}$

Exercise: Show these are equivalent.

Equality properties

If $\left(M \rightarrow{ }^{*} N\right.$ or $\left.N \rightarrow * M\right)$, then $M=N$.
The converse is not true (Exercise: why?)
If $L \rightarrow{ }^{*} M$ and $L \rightarrow * N$, then $M=N$.
If $M \rightarrow{ }^{*} L$ and $N \rightarrow * L$, then $M=N$.

Church-Rosser Theorem

Theorem: If $M=N$, then there exists L such that $M \rightarrow T L$ and $\mathrm{N} \rightarrow \mathrm{TL}$.

Consider ($\lambda x . a x)((\lambda y . b y) c)$:

- $(\lambda x . a x)((\lambda y . b y) c) \rightarrow_{\beta} a((\lambda y . b y) c) \rightarrow_{\beta} a(b c)$
- $(\lambda x . a x)((\lambda y . b y) c) \rightarrow_{\beta}(\lambda x . a x)(b c) \rightarrow_{\beta} a(b c)$

Note: Underlined term is reduced.

Consequences

If $\mathrm{M}=\mathrm{N}$ and N is in normal form, then $\mathrm{M} \rightarrow \mathrm{T} N$.
If $\mathrm{M}=\mathrm{N}$ and M and N are in normal forms, then $\mathrm{M}={ }_{\alpha} \mathrm{N}$.
Conversely, if M and N are in normal forms and are distinct, then $M \neq N$. For example, $\lambda x y . x \neq \lambda x y . y$.

Diamond property

Key to proving Church-Rosser Theorem is demonstrating the diamond property:

- If $M \rightarrow{ }^{*} N_{1}$ and $M \rightarrow{ }^{*} N_{2}$, then there exists L such that $\mathrm{N}_{1} \rightarrow^{*} \mathrm{~L}$ and $\mathrm{N}_{2} \rightarrow^{*} \mathrm{~L}$.

Exercise: Show how this property implies the Church-Rosser Theorem.

Proving diamond property

The diamond property does not hold for the single step reduction:

- If $M \rightarrow_{\beta} \mathrm{N}_{1}$ and $\mathrm{M} \rightarrow_{\beta} \mathrm{N}_{2}$, then there exists L such that $N_{1} \rightarrow_{\beta} L$ and $N_{2} \rightarrow_{\beta} L$.

Proving diamond property

Consider ($\lambda \mathrm{x} . \mathrm{xx}$) (I a) where $\mathrm{I}=\lambda \mathrm{x} . \mathrm{x}$. This has two initial reductions:

- $(\lambda x . x x)(\mid a) \rightarrow_{\beta}(\lambda x . x x) a \rightarrow_{\beta}$ a a
- ($\lambda \mathrm{x} . \mathrm{xx}$) (I a) \rightarrow_{β} (I a) (I a)

Now, the second has two possible reduction sequences:

- (I a) (I a) \rightarrow_{β} a (I a) \rightarrow_{β} a a
- (Ia) (Ia) $\rightarrow_{\beta}(I a) a \rightarrow_{\beta} a \mathrm{a}$

Proving diamond property

Strip lemma:

- If $M \rightarrow{ }_{\beta} N_{1}$ and $M \rightarrow{ }^{*} N_{2}$, then there exists L such that $\mathrm{N}_{1} \rightarrow^{*} \mathrm{~L}$ and $\mathrm{N}_{2} \rightarrow^{*} \mathrm{~L}$

Proof: Tedious case analysis on reductions.
Note: The proof is beyond the scope of this course.

Reduction order

$$
(\lambda x . a)((\lambda x . x x)(\lambda x . x x)) \rightleftharpoons(\lambda x . a)^{\bullet}
$$

Consider ($\lambda \times . a) \Omega$ this has two initial reductions:

- $(\lambda \times . a) \Omega \rightarrow \beta$ a
- $(\lambda x . a) \underline{\Omega} \rightarrow_{\beta}(\lambda x . a) \Omega$

Following first path, we have reached normal-form, while second is potentially infinite.

Normal order reduction

Perform leftmost, outermost β-reduction. (leave η-reduction until the end)

Reduction context

- $C:=\lambda x$. C

$$
\begin{aligned}
& \text { C M (if } \left.\forall C^{\prime} x . C \neq \lambda x . C^{\prime}\right) \\
& \text { NF C (if } \forall M \times \text {. } N F \neq \lambda x . M \text {) } \\
& \text { - }
\end{aligned}
$$

where NF is from normal-form definition.
This definition is guaranteed to reach normalform if one exists.

Example reduction: normalorder

$$
\begin{aligned}
& (\lambda x . x(\lambda y \cdot y))(\lambda y \cdot(\lambda z . z z z z)(y \mathrm{t})) \\
& \rightarrow(\lambda y \cdot(\lambda z \cdot z z z z)(y \mathrm{t}))(\lambda y \cdot y) \\
& \rightarrow(\lambda z \cdot z z z z)((\lambda y \cdot y) t) \\
& \rightarrow(\lambda y \cdot y) t((\lambda y \cdot y) \mathrm{t})((\lambda y \cdot y) \mathrm{t})((\lambda y \cdot y) \mathrm{t}) \\
& \rightarrow \mathrm{t}((\lambda y \cdot y) \mathrm{t})((\lambda y \cdot y) \mathrm{t})((\lambda y \cdot y) \mathrm{t}) \\
& \rightarrow \mathrm{tt}((\lambda y \cdot y) \mathrm{t})((\lambda y \cdot y) \mathrm{t}) \\
& \rightarrow \mathrm{tt} \mathrm{t}((\lambda y \cdot y) \mathrm{t}) \\
& \rightarrow \mathrm{ttt}
\end{aligned}
$$

Call-by-name

Do not reduce under λ and do not reduce argument

- C ::= CM|•

Example reduction: CBN

$$
\begin{aligned}
& (\lambda x . x(\lambda y \cdot y))(\lambda y \cdot(\lambda z . z z z z)(y t)) \\
& \rightarrow(\lambda y \cdot(\lambda z \cdot z z z z)(y t))(\lambda y \cdot y) \\
& \rightarrow(\lambda z \cdot z z z z)((\lambda y \cdot y) t) \\
& \rightarrow(\lambda y \cdot y) t((\lambda y \cdot y) t)((\lambda y \cdot y) t)((\lambda y \cdot y) t) \\
& \rightarrow t((\lambda y \cdot y) t)((\lambda y \cdot y) t)((\lambda y \cdot y) t)
\end{aligned}
$$

Call-by-value

- $\mathrm{V}::=\mathrm{x} \mid \lambda \mathrm{x} . \mathrm{M}$ (values)
- C ::= C M | • $\mid(\lambda x . M) \mathrm{C}$
- $C[(\lambda x . M) V] \rightarrow_{\beta} C[M[V / x]]$

Do no reduce under λ, and only apply function when its argument is a value.

Example reduction: CBV

$$
\begin{aligned}
& \text { (} \lambda x . x(\lambda y . y))(\lambda y .(\lambda z . z z z z)(y t)) \\
& \rightarrow(\lambda y .(\lambda z . z z z z)(y t))(\lambda y . y) \\
& \rightarrow(\lambda z . z \operatorname{zzz})((\lambda y . y) t) \\
& \rightarrow(\lambda z . \mathrm{Z} \mathrm{Z} \mathrm{Z} \mathrm{z}) \mathrm{t} \\
& \rightarrow \mathrm{ttt}
\end{aligned}
$$

Call-by-normal-form

- $\mathrm{V}::=\mathrm{x} \mid \lambda \mathrm{x} . \mathrm{M}$ (values)
- $C::=C M \quad$ (if $\left.\forall C^{\prime} x . C \neq \lambda x . C^{\prime}\right)$
($\lambda x . \mathrm{M}$) C
$\lambda \times . C$
- C[($\lambda x . M) N F] \rightarrow{ }_{\beta} C[M[N F / x]]$

Only apply function when its argument is a normalform.

Example reduction: CB-NF

$$
\begin{aligned}
& (\lambda x . x(\lambda y \cdot y))(\lambda y \cdot(\lambda z . z z z z)(y t)) \\
& \rightarrow(\lambda x \cdot x(\lambda y \cdot y))(\lambda y \cdot y t(y t)(y t)(y t)) \\
& \rightarrow(\lambda y \cdot y t(y t)(y t)(y t))(\lambda y \cdot y) \\
& \rightarrow(\lambda y \cdot y) t((\lambda y \cdot y) t)((\lambda y \cdot y) t)((\lambda y \cdot y) t) \\
& \rightarrow t((\lambda y \cdot y) t)((\lambda y \cdot y) t)((\lambda y \cdot y) t) \\
& \rightarrow t t((\lambda y \cdot y) t)((\lambda y \cdot y) t) \\
& \rightarrow t t t((\lambda y \cdot y) t) \\
& \rightarrow t t t
\end{aligned}
$$

All possible reductions

The complicated bit

Encoding Data

Motivation

We want to use different datatypes in the λ calculus.

Two possibilities:

- Add new datatypes to the language
- Encode datatypes into the language

Encoding makes program language simpler, but less efficient.

Encoding booleans

To encode booleans we require IF, TRUE, and FALSE such that:

$$
\begin{aligned}
& \text { IF TRUE } M N=M \\
& \text { IF FALSE } M N=N
\end{aligned}
$$

Here, we are using = as defined earlier.

Encoding booleans

Definitions:

- TRUE $\equiv \lambda \mathrm{m} \mathrm{n} . \mathrm{m}$
- FALSE $\equiv \lambda \mathrm{m} n . \mathrm{n}$
- $\mathrm{IF} \equiv \lambda \mathrm{b} \mathrm{m} \mathrm{n} . \mathrm{b} \mathrm{m} \mathrm{n}$

TRUE and FALSE are both in normal-form, so by Church-Rosser, we know TRUE \neq FALSE.

Note that, IF is not strictly necessary as

- $\forall P$. IF $P=P$ (Exercise: show this).

Encoding booleans

Exercise: Show

- If $L=T R U E$ then IF LM N = M.
- If $L=F A L S E$ then IF LM N = N .

Logical operators

We can give AND, OR and NOT operators as well:

- AND $\equiv \lambda \times y$. IF x y FALSE
- OR $\equiv \lambda x y$. IF x TRUE y
- NOT $\equiv \lambda x$. IF x FALSE TRUE

Encoding pairs

Constructor:

- PAIR $\equiv \lambda x y f . ~ f x y ~$

Destructors:

- FST $\equiv \lambda$ p.p TRUE
- SND $\equiv \lambda$ p.p FALSE

Properties: $\forall \mathrm{pq}$.

- FST (PAIR p q) $=p$
- $\operatorname{SND}($ PAIR $p q)=q$

Encoding sums

Constructors:

- INL $\equiv \lambda x$. PAIR TRUE x
- $\operatorname{INR} \equiv \lambda x$. PAIR FALSE x

Destructor:

- CASE = $\lambda \mathrm{s}$ f g. IF (FST s) (f (SND s)) ($\mathrm{g}(\mathrm{SND} \mathrm{s}))$

Properties:

- CASE (INL x) $\mathrm{fg}=\mathrm{fx}$
- CASE (INR $x) f g=g x$

Encoding sums (alternative defn)

Constructors:

- $\operatorname{INL} \equiv \lambda x f \mathrm{~g} . \mathrm{fx}$
- $\operatorname{INR} \equiv \lambda \times \mathrm{fg} . \mathrm{gx}$

Destructors:

- CASE $\equiv \lambda \mathrm{sfg} . \mathrm{sfg}$

As with booleans destructor unnecessary.

- $\forall \mathrm{p}$. CASE $\mathrm{p}=\mathrm{p}$

Church Numerals

Define:

- $\underline{0} \equiv \lambda f \times . x$
- $\underline{1} \equiv \lambda \mathrm{fx} . \mathrm{fx}$
- $2 \equiv \lambda f x . f(f x)$
- $\underline{3} \equiv \lambda f \times . f(f(f x))$
- $\underline{n} \equiv \lambda f \times . f(\ldots(f x) . .$.

That is, \underline{n} takes a function and applies it n times to its argument: $\underline{n} f$ is $f n$.

Arithmetic

Definitions

- ADD $\equiv \lambda m n f x . m f(n f x)$
- MULT $\equiv \lambda m n f x$. m ($n f$ f) $x=\lambda m n f . m(n f)$
- $\mathrm{EXP} \equiv \lambda \mathrm{mnfx} . \mathrm{nmfx}=\lambda \mathrm{mn} . \mathrm{nm}$

Example:
ADD $\underline{m} \underline{n} \rightarrow T \lambda f x . \underline{m} f(\underline{n} f x) \rightarrow T f^{m}\left(f^{n} x\right) \equiv f^{m+n} x$

More arithmetic

Definitions

- $S U C \equiv \lambda n f x . f(n f x)$
- $\operatorname{ISZERO} \equiv \lambda n . n(\lambda x . F A L S E)$ TRUE

Properties

- SUC $\underline{n}=\underline{n+1}$
- ISZERO $\underline{0}=$ TRUE
- ISZERO $(\underline{n+1})=$ FALSE

We also require decrement/predecessor!

Building decrement

n	PFN(n)
0	$(0,0)$
	suc
I	$(1,0)$
	suc 1
2	(2,1)
	suc 1
3	$(3,2)$
	suc 1
4	$(4,3)$

Decrement and subtraction

Definitions:

- $\operatorname{PRE} \equiv \lambda n$. SND (PFN n)
- $\operatorname{SUB} \equiv \lambda \mathrm{mn}$. n PRE m

Exercise: Evaluate

- PFN 5
- PRE $\underline{0}$

- SUB $\underline{4} \underline{6}$

Lists

Constructors:

- NIL \equiv PAIR TRUE ($\lambda z . z)$
- CONS $\equiv \lambda x y$. PAIR FALSE (PAIR $x y$)

Destructors:

- NULL \equiv FST
- HD $\equiv \lambda \mathrm{l}$. FST (SND I)
- $\mathrm{TL} \equiv \lambda \mathrm{l}$. SND (SND I)

Properties:

- NULL NIL = TRUE
- HD $($ CONS M N $)=$ M

Recursion

How do we actually iterate over a list?

Recursion

Fixed point combinator (Y)

We use a fixed point combinator Y to allow recursion.

In ML, we write:

$$
\text { letrec } f(x)=M \text { in } N
$$

this is really

$$
\text { let } f=Y(\lambda f . \lambda x . M) \text { in } N
$$

and hence

$$
(\lambda f . N)(Y \lambda f . \lambda x . M)
$$

Defining recursive function

Consider defining a factorial function with the following property:

```
FACT = \lambdan.(ISZERO n) 1 (MULT n (FACT (PRE n)))
```

We can define
PREFACT $=\lambda \mathrm{fn}$. (ISZERO $n) 1($ MULT $n(f($ PRE $n)))$ Properties

- Base case: $\forall F$. PREFACT F $0=1$
- Inductive case: $\forall F$. If F behaves like factorial up to n, then PREFACT F behaves like factorial up to $\mathrm{n}+1$;

Fixed points

Discrete Maths: x is a fixed point of f, iff $f x=x$
Assume, Y exists (we will define it shortly) such that

- $Y f=f(Y f)$

Hence, by using Y we can satisfy this property:

$$
\mathrm{FACT} \equiv \mathrm{Y}(\text { PREFACT })
$$

Exercise: Show FACT satisfies property on previous slide.

General approach

If you need a term, M, such that

- $\mathrm{M}=\mathrm{PM}$

Then $M \equiv Y P$ suffices
Example:

- ZEROES $=$ CONS $\underline{0}$ ZEROES $=(\lambda p . C O N S ~ \underline{p} p)$ ZEROES
- ZEROES \equiv Y (λ p.CONS $\underline{0} p)$

Mutual Recursion

Consider trying to find solutions M and N to:

- $M=P M N$
- $\mathrm{N}=\mathrm{Q} M \mathrm{~N}$

We can do this using pairs:

$$
\begin{gathered}
L \equiv \mathrm{Y}(\lambda \mathrm{p} . \operatorname{PAIR}(\mathrm{P}(\text { FST } p)(\text { SND } p))(\mathrm{Q}(\text { FST } p)(\text { SND } p))) \\
\mathrm{M} \equiv \mathrm{FST} \mathrm{~L} \\
\mathrm{~N} \equiv \mathrm{SND} \mathrm{~L}
\end{gathered}
$$

Exercise: Show this satisfies equations given above.

Definition (Discovered by Haskell B. Curry):

- $Y \equiv \lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$

Properties
$\mathrm{YF} \equiv(\lambda \mathrm{f} .(\lambda \mathrm{x} . \mathrm{f}(\mathrm{xx}))(\lambda \mathrm{x} . \mathrm{f}(\mathrm{xx}))) \mathrm{F}$
$\rightarrow(\lambda x . F(x x))(\lambda x . F(x x))$
$\rightarrow F((\lambda x . F(x x))(\lambda x . F(x x)))$
$\leftarrow F((\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))) F) \equiv F(Y F)$
There are other terms with this property:

- $(\lambda x y . x y x)(\lambda x y . x y x)$
(see wikipedia for more)

Y has no normal form

We assume:

- M has no normal form, iff M x has no normal form. (Exercise: prove this)
Proof of Y has no normal form:
- $Y f=f(Y f)$ (by Y property)
- Assume Y f has a normal form N.
- Hence $f(Y f)$ can reduce to $f N$, and $f N$ is also a normal form.
- Therefore, by Church Rosser, $\mathrm{fN} \equiv \mathrm{N}$, which is a contradiction, so Y f cannot have a normal form.
- Therefore, Y has no normal form.

Head normal form

How can we characterise well-behaved λ-terms?

- Terms with normal forms? (Too strong, FACT does not have normal form)
- Terms with weak head normal form (WHNF)? (Too weak, lots of bad terms have this, for example $\lambda \times . \Omega$).
- New concept: Head normal form.

HNF

A term is in head normal form, iff it looks like

$$
\lambda x_{1} \ldots x_{m} \cdot y M_{1} \ldots M_{k} \quad(m, k \geq 0)
$$

Examples:

- x, $\lambda x y . x, \lambda z . z((\lambda x . a) c)$,
- $\lambda \mathrm{f} . \mathrm{f}(\lambda \mathrm{x} . \mathrm{f}(\mathrm{xx}))(\lambda \mathrm{x} . \mathrm{f}(\mathrm{xx}))$

Non-examples:

- $\lambda y .(\lambda x . a) y \quad \rightarrow \lambda y . a$
- $\lambda \mathrm{f} .(\lambda x . f(x x))(\lambda x . f(x x))$

Properties

Head normal form can be reached by performing head reduction (leftmost)

- C' ::= C'M |•
- $C::=\lambda x . C \mid C ’$

Therefore, Ω has no HNF (Exercise: prove this.)
If $\mathrm{M} N$ has a HNF, then so does M . Therefore, if M has no HNF, then $M N_{1} \ldots N_{k}$ does not have a HNF. Hence, M is a "totally undefined function".

ISWIM

λ-calculus as a programming language (The next 700 programming languages [Landin 1966])

ISWIM: Syntax

From the λ-calculus

- x (variable)
- $\lambda x . M$ (abstraction)
- M N (application)

Local declarations

- let $x=M$ in N (simple declaration)
- let $f x_{1} \ldots x_{n}=M$ in N (function declaration)
- letrec $f x_{1} \ldots x_{n}=M$ in N (recursive declaration) and post-hoc declarations
- N where $\mathrm{x}=\mathrm{M}$
- ...

ISWIM: Syntactic sugar

N where $x=M$	\equiv let $x=M$ in N
let $x=M$ in N	\equiv ($\lambda x . N) M$
let $f x_{1} \ldots x_{n}=M$ in N	\equiv let $f=\lambda x_{1} \ldots x_{n} . M$ in N
letrec $f x_{1} \ldots x_{n}=M$ in $N \equiv$ let $f=Y\left(\lambda f . \lambda x_{1} \ldots x_{n} . M\right)$ in N	

Desugaring explains syntax purely in terms of λ calculus.

ISWIM: Constants

$$
\mathrm{M}::=\mathrm{x}|\mathrm{c}| \lambda x . \mathrm{M} \mid \mathrm{M} N
$$

Constants cinclude:

- 0 1-1 2 -2 ... (integers)
- + -x/ (arithmetic operators)
- $=\neq<>$ (relational operators)
- true false (booleans)
- and or not (boolean connectives)

Reduction rules for constants: e.g.

- + $00 \rightarrow_{\delta} 0$

Call-by-value and IF-THEN-ELSE

ISWIM uses the call-by-value λ-calculus.
Consider: IF TRUE 1Ω

IF E THEN M ELSE N $\equiv(\mathrm{IF} \mathrm{E}(\lambda x . M)(\lambda x . N))(\lambda z . z)$ where $x \notin F V(M)$

Pattern matching

Has

- (M,N) (pair constructor)
- $\lambda\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right) . \mathrm{M}$ (pattern matching pairs)

Desugaring

- $\lambda\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right) . \mathrm{M} \equiv \lambda \mathrm{z} .\left(\lambda \mathrm{p}_{1} \mathrm{p}_{2} . \mathrm{M}\right)(\mathrm{fst} \mathrm{z})(\mathrm{snd} \mathrm{z})$
where $z \notin F V(M)$

Real λ-evaluator

Don't use β and substitution
Do use environment of values, and delayed substitution.

Environments and Closures

Consider β-reduction sequence

$$
(\lambda x y \cdot x+y) 35 \rightarrow(\lambda y \cdot 3+y) 5 \rightarrow 3+5 \rightarrow 8 .
$$

Rather than produce $(\lambda y .3+y)$ build a closure:

$$
\operatorname{Clo}(y, x+y, x=3)
$$

The arguments are

- bound variable;
- function body; and
- environment.

SECD Machine

Virtual machine for ISWIM.
The SECD machine has a state consisting of four components S, E, C and D:

- S: The "stack" is a list of values typically operands or function arguments; it also returns result of a function call;
- E : The "environment" has the form $x_{1}=a_{1} ; \ldots ; x_{n}=a_{n}$, expressing that the variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ have values $a_{1} \ldots a_{n}$ respectively; and
- C: The "control" is a list of commands, that is λ terms or special tokens/instructions.

SECD Machine

- D: The "dump" is either empty (-) or is another machine state of the form (S,E,C,D). A typical state looks like

$$
\left(\mathrm{S}_{1}, \mathrm{E}_{1}, \mathrm{C}_{1},\left(\mathrm{~S}_{2}, \mathrm{E}_{2}, \mathrm{C}_{2}, \ldots\left(\mathrm{~S}_{\mathrm{n}}, \mathrm{E}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}},-\right) \ldots\right)\right)
$$

It is essentially a list of triples $\left(\mathrm{S}_{1}, \mathrm{E}_{1}, \mathrm{C}_{1}\right), \ldots,\left(\mathrm{S}_{\mathrm{n}}, \mathrm{E}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}\right)$ and serves as the function call stack.

State transitions: constant

State-transition: variable

State-transition: function

State-transition: application

State-transition: app primitive

State-transition: app closure

State-transition: return

Final configuration

Compiled SECD machine

Inefficient as requires construction of closures.
Perform some conversions in advance:

- $\mathbb{C} \mathbb{C} \equiv$ const c
- $\llbracket x \rrbracket \equiv \operatorname{var} \mathrm{x}$
- $\llbracket \mathrm{MN} \rrbracket \equiv \llbracket \mathrm{N} \rrbracket ; \mathbb{M} \rrbracket ;$ app
- $\llbracket \lambda \times . \mathrm{M} \rrbracket \equiv$ Closure($\mathrm{x}, \llbracket \mathrm{M} \rrbracket$)
- $\llbracket \mathrm{M}+\mathrm{N} \rrbracket \equiv \llbracket \mathrm{M} \rrbracket ; \mathbb{N} \rrbracket$; add

More intelligent compilations for "let" and tail recursive functions can also be constructed.

Example

We can see (($\lambda x y . x+y) 3) 5$ compiles to

- const 5; const 3; Closure(\times, C_{0}); app; app where
- $\mathrm{C}_{0} \equiv$ Closure $\left(\mathrm{y}, \mathrm{C}_{1}\right)$
- $\mathrm{C}_{1} \equiv \operatorname{var} \mathrm{x}$; var y ; add

Recursion

The usual fixpoint combinator fails under the SECD machine: it loops forever.

A modified one can be used:

- $\lambda \mathrm{fx} . \mathrm{f}(\lambda y . \mathrm{x} x \mathrm{y})(\lambda y . \mathrm{x} x \mathrm{y})$

This is very inefficient.
Better approach to have closure with pointer to itself.

Recursive functions ($\mathrm{Y}(\lambda \mathrm{ffx} . \mathrm{M})$)

Implementation in ML

SECD machine is a small-step machine.
Next we will see a big-step evaluator written in ML.

Implementation in ML

datatype Expr = Name of string
Numb of int Plus of Expr * Expr Fn of string * Expr
Apply of Expr * Expr
datatype $\mathrm{Val}=$
IntVal of val
FnVal of string * Expr * Env
and Env = Empty | Defn of string * Val * Env

Implementation in ML

fun lookup (n , Defn $(\mathrm{s}, \mathrm{v}, \mathrm{r}))=$
if $s=n$ then v else lookup(n, r)
| lookup(n, Empty) = raise oddity()

Implementation in ML

fun eval (Name(s), r) = lookup(s,r) eval(Fn(bv,body),r) = FnVal(bv,body,r) eval(Apply(e,e'), r) = case eval(e,r)
of IntVal(i) => raise oddity()
FnVal(bv,body,env) =>
let val arg = eval(e',r) in eval(body, Defn(bv,arg,env)

Exercises

How could we make it lazy?

Combinators

Combinator logic

Syntax:

$$
\mathrm{P}, \mathrm{Q}, \mathrm{R}::=\mathrm{S}|\mathrm{~K}| \mathrm{PQ}
$$

Reductions:

$$
\begin{gathered}
K P Q \rightarrow_{w} P \\
S P Q R \rightarrow_{w}(P R)(Q R)
\end{gathered}
$$

Note that the term S K does not reduce: it requires three arguments. Combinator reductions are called "weak reductions".

Identity combinator

Consider the reduction of, for any P

- SKKP $\rightarrow_{w} K P(K P) \rightarrow_{w} P$

Hence, we define $I \equiv S K K$, where I stands for identity.

Church-Rosser

Combinators also satisfy Church-Rosser:

- if $P=Q$, then exists R such that $P \rightarrow{ }_{w} T R$ and $\mathrm{Q} \rightarrow_{w} \mathrm{~T} R$

Encoding the λ-calculus

Use extended syntax with variables:

- $P:=S|K| P P \mid x$

Define meta-operator on combinators λ^{*} by

- $\lambda^{*} \mathrm{x} . \mathrm{x} \equiv \mathrm{I}$
- $\lambda^{*} x . P \equiv K P \quad($ where $x \notin F V(P))$
- $\lambda^{*} x . P \mathrm{Q} \equiv \mathrm{S}\left(\lambda^{*} \mathrm{x} . \mathrm{P}\right)\left(\lambda^{*} \mathrm{x} . \mathrm{Q}\right)$

Example translation

$$
\begin{aligned}
& (\lambda * x \cdot \lambda * y . y x) \\
& \equiv \lambda^{*} x . S\left(\lambda^{*} y . y\right)\left(\lambda^{*} y . x\right) \\
& \equiv \lambda^{*} \mathrm{x} \text {. (SI) (K x) } \\
& \equiv S\left(\lambda^{*} x .(S I)\right)\left(\lambda^{*} x . K x\right) \\
& \equiv S(K(S I))\left(S\left(\lambda^{*} x . K\right)\left(\lambda^{*} x . x\right)\right) \\
& \equiv S(K(S I))(S(K K) I)
\end{aligned}
$$

There and back again
λ-calculus to SK:

- $(\lambda x . M)_{\mathrm{CL}}=\left(\lambda \operatorname{Tx} .(\mathrm{M})_{\mathrm{CL}}\right)$
- $(\mathrm{x})_{\mathrm{CL}}=\mathrm{x}$
- $(\mathrm{M} \mathrm{N})_{C L}=(\mathrm{M})_{C L}(N)_{C L}$

SK to λ-calculus:

- $(\mathrm{x})_{\lambda}=\mathrm{x}$
- $(\mathrm{K})_{\lambda}=\lambda x y . x$
- $(\mathrm{S})_{\lambda}=\lambda x y z . x z(y z)$
- $(\mathrm{PQ})_{\lambda}=(\mathrm{P})_{\lambda}(\mathrm{Q})_{\lambda}$

Properties

Free variables are preserved by translation

- $F V(M)=F V\left((M)_{C L}\right)$
- $F V(P)=F V\left((P)_{\lambda}\right)$

Supports α and β reduction:

- $(\lambda T x . P) Q \rightarrow_{w} T P[Q / x]$
- $(\lambda T x . P) \equiv \lambda T y . P<y \cdot x>\quad($ where $y \notin F V(P))$

Equality on combinators

Combinators don't have an analogue of the η reduction rule.

- $(\mathrm{SK})_{\lambda}=(\mathrm{KI})_{\lambda}$, but SK and KI are both normal forms

To define equality on combinators, we take the least congruence relation satisfying:

- weak reductions, and
- functional extensionality: If $P x=Q x$, then $P=Q$ (where $x \notin \mathrm{FV}(\mathrm{PQ} \mathrm{Q})$).

$$
S K x y \rightarrow(K y)(K x) \rightarrow y \leftarrow I y \leftarrow K I x y
$$

Therefore, $\mathrm{SK}=\mathrm{KI}$.

Properties

We get the following properties of the translation:

- $\left((\mathrm{M})_{\mathrm{CL}}\right)_{\lambda}=\mathrm{M}$
- $\left.\left((\mathrm{P})_{\lambda}\right)_{\mathrm{CL}}\right)=\mathrm{P}$
- $M=N \Leftrightarrow(M)_{C L}=(N)_{C L}$
- $\mathrm{P}=\mathrm{Q} \Leftrightarrow(\mathrm{P})_{\lambda}=(\mathrm{Q})_{\lambda}$

Aside: Hilbert style proof

In Logic and Proof you covered Hilbert style proof:

- Axiom K: $\forall A B . A \rightarrow(B \rightarrow A)$
- Axiom S: $\forall \mathrm{ABC} .(\mathrm{A} \rightarrow(\mathrm{B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \rightarrow \mathrm{B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))$
- Modus Ponens: If $A \rightarrow B$ and A, then B

Hilbert style proofs correspond to "Typed" combinator terms:

- SK: $\forall A B .((A \rightarrow B) \rightarrow(A \rightarrow A))$
- SKK: $\forall \mathrm{A}$. $(\mathrm{A} \rightarrow \mathrm{A})$

Logic, Combinators and the λ-calculus are carefully intertwined. See Types course for more details.

Compiling with combinators

The translation given so far is exponential in the number of lambda abstractions.

Add two new combinators

- $B P Q R \rightarrow_{w} P(Q R)$
- CPQR \rightarrow_{w} PRQ

Exercise: Encode B and C into just S and K.

Advanced translation

- $\lambda^{\top} \mathrm{X} . \mathrm{X} \equiv \mathrm{I}$
- $\lambda^{\top} x . P \quad \equiv K P \quad(x \notin F V(P))$
- $\lambda^{\top} x . P x \equiv P \quad(x \notin F V(P))$
- $\lambda^{\top} x . P Q \equiv B P\left(\lambda^{\top} x . Q\right) \quad(x \notin F V(P)$ and $x \in F V(Q))$
- $\lambda^{\top} x . P Q \equiv C\left(\lambda^{\top} x . P\right) Q \quad(x \in F V(P)$ and $x \notin F V(Q))$
- $\lambda^{\top} x . P Q \equiv S\left(\lambda^{\top} x . P\right)\left(\lambda^{\top} x . Q\right) \quad(x \in F V(P), x \in F V(Q))$
(Invented by David Turner)

Example

$$
\begin{aligned}
& \left(\lambda^{\top} x . \lambda^{\top} y \cdot y x\right) \\
& \equiv\left(\lambda^{\top} x \cdot C\left(\lambda^{\top} y \cdot y\right) x\right) \\
& \equiv\left(\lambda^{\top} x \cdot C I x\right) \\
& \equiv C I
\end{aligned}
$$

Compared to ($\left.\lambda^{*} \mathrm{x} \cdot \lambda^{*} \mathrm{y} . \mathrm{y} \mathrm{x}\right) \equiv \mathrm{S}(\mathrm{K}(\mathrm{S} \mathrm{I}))(\mathrm{S}(\mathrm{K} \mathrm{K}) \mathrm{I})$
Translation with λ^{*} is exponential, while λ^{\top} is only quadratic.

Example

$$
\begin{aligned}
& \lambda^{\top} f . \lambda^{\top} x . f(x x) \\
& \equiv \lambda^{\top} f . B\left(f\left(\lambda^{\top} x . x x\right)\right) \\
& \equiv \lambda^{\top} f . B\left(f \left(S (\lambda ^ { \top } x . x) \left(\lambda^{\top} x .\right.\right.\right. \\
& \equiv \lambda^{\top} f . B(f(S I I)) \\
& \equiv B B\left(\lambda^{\top} f . f(S I I)\right) \\
& \equiv B B\left(C\left(\lambda^{\top} f . f\right)(S I I)\right) \\
& \equiv B B(C I(S I I))
\end{aligned}
$$

This is wrong!!!!

Example

$$
\begin{aligned}
& \lambda^{\top} f .\left(\lambda^{\top} x . f(x x)\right) \\
& =\lambda^{\top} f . B f\left(\lambda^{\top} X . x x\right) \\
& =\lambda^{\top} f . B f\left(S\left(\lambda^{\top} x . x\right)\left(\lambda^{\top} x . x\right)\right) \\
& =\lambda^{\top} \mathrm{f} . \mathrm{Bf}\left(\mathrm{SI}\left(\lambda^{\top} \mathrm{X} . \mathrm{x}\right)\right) \\
& =\lambda^{\top} \mathrm{f} . \mathrm{Bf}(\mathrm{~S} I \mathrm{I}) \\
& =C\left(\lambda^{\top} f . B f\right)(S I I) \\
& =C B(S I I)
\end{aligned}
$$

Combinators as graphs

To enable lazy reduction, consider combinator terms as graphs.
S reduction creates two pointers to the same subterm.

Let's consider

- let sqr $x=$ mult $x x$ in sqr $5 \equiv(\lambda f . f 5)(\lambda m$. mult $m m)$ this translates to
- CI 5 (S mult I)

Exercise: Show this translation.

CI 5 (S mult I)

Reduction: I

Reduction: K

Reduction: S

Reduction: B

Reduction: C

Recursion

Evaluation

Comments

If 5 was actually a more complex calculation, would only have to perform it once.

Lazy languages such as Haskell, don't use this method.

Could we have done graphs of λ-terms? No. Substitution messes up sharing.

Example using recursion in Paulson's notes.

Types

Simply typed λ-calculus

Types

$$
\tau::=\operatorname{int} \mid \tau \rightarrow \tau
$$

Syntactic convention

$$
\tau_{1} \rightarrow \tau_{2} \rightarrow \tau_{3} \equiv \tau_{1} \rightarrow\left(\tau_{2} \rightarrow \tau_{3}\right)
$$

Simplifies types of curried functions.

Type checking

We check

- $M N: \tau$ iff $\exists \tau^{\prime} . M: \tau^{\prime} \rightarrow \tau$ and $N: \tau^{\prime}$
- λx. $M: \tau \rightarrow \tau^{\prime}$ iff $\exists \tau$. if $x: \tau$ then $M: \tau^{\prime}$
- n : int

Semantics course covers this more formally, and types course next year in considerably more detail.

Type checking

$$
\lambda x . x: \text { int } \rightarrow \text { int }
$$

$\lambda \times$ f. $\mathrm{fx}:$ int $\rightarrow($ int \rightarrow int $) \rightarrow$ int
λ fgx. fgx : $\left(\tau_{1} \rightarrow \tau_{2}\right) \rightarrow\left(\tau_{2} \rightarrow \tau_{3}\right) \rightarrow \tau_{1} \rightarrow \tau_{3}$
$\lambda f g x . f(\mathrm{gx}):\left(\tau_{1} \rightarrow \tau_{2}\right) \rightarrow\left(\tau_{2} \rightarrow \tau_{3}\right) \rightarrow \tau_{1} \rightarrow \tau_{3}$
$\lambda f x . f(f x):(\tau \rightarrow \tau) \rightarrow \tau \rightarrow \tau$

\square
\square

Types help find terms

Consider type ($\tau_{1} \rightarrow \tau_{2} \rightarrow \tau_{3}$) $\rightarrow \tau_{2} \rightarrow \tau_{1} \rightarrow \tau_{3}$
Term λ f.M where $\mathrm{f}:\left(\tau_{1} \rightarrow \tau_{2} \rightarrow \tau_{3}\right)$ and $\mathrm{M}: \tau_{2} \rightarrow \tau_{1} \rightarrow \tau_{3}$
Therefore $M \equiv \lambda x y . N$ where $x: \tau_{2}, \mathrm{y}: \tau_{1}$ and $N: \tau_{3}$.
Therefore $\mathrm{N} \equiv \mathrm{fyx}$
Therefore $\lambda \mathrm{fxy}$. fy $\mathrm{x}:\left(\tau_{1} \rightarrow \tau_{2} \rightarrow \tau_{3}\right) \rightarrow \tau_{2} \rightarrow \tau_{1} \rightarrow \tau_{3}$

Polymorphism and inference

ML type system supports polymorphism:

$$
\tau::=\alpha|\forall \alpha \cdot \tau| \ldots
$$

Types can be inferred using unification.

Recap: Call-by-name

Do not reduce under λ and do not reduce argument

- C ::= CM|•

Recap: Call-by-value

- $\mathrm{V}::=\mathrm{x} \mid \lambda \mathrm{x} . \mathrm{M}$ (values)
- C ::= C M | • $\mid(\lambda x . M) \mathrm{C}$
- $C[(\lambda x . M) V] \rightarrow_{\beta} C[M[V / x]]$

Do no reduce under λ, and only apply function when its argument is a value.

Continuations

Overview

Encode evaluation order.
Encode control flow commands: for example Exit, exceptions, and goto.

Enables backtracking algorithms easily.
Key concept:

- don't return, pass result to continuation. (This is what you did with the MIPS JAL (Jump And Link.) instruction.)

Call-by-value

Definition:

1. $\llbracket x \rrbracket_{v}(k) \equiv k x$
2. $\mathbb{C} \mathrm{C} \mathbb{l}_{\mathrm{v}}(\mathrm{k}) \equiv \mathrm{kc}$
3. $\llbracket \lambda x . M \rrbracket_{v}(k) \equiv k\left(\lambda\left(x, k^{\prime}\right) . \llbracket M \rrbracket_{v}\left(k^{\prime}\right)\right)$
4. $\llbracket M N \rrbracket_{v}(k) \equiv \llbracket M \rrbracket_{v}\left(\lambda m . \llbracket N \rrbracket_{v}(\lambda n . m(n, k))\right)$

Intuition:

- « $\mathrm{M} \rrbracket_{\mathrm{v}}(\mathrm{k})$ means evaluate M and then pass the result to k.
- k is what to do next.

Pairs not essential, but make the translation simpler.

Example: CBV

$$
\begin{aligned}
& \llbracket \lambda x \cdot y \mathbb{\rrbracket}_{v}(k) \\
& \equiv k\left(\lambda\left(x, k^{\prime}\right) \cdot \llbracket y \rrbracket_{v}\left(k^{\prime}\right)\right) \\
& \equiv k\left(\lambda\left(x, k^{\prime}\right) \cdot k^{\prime} y\right) \\
& \llbracket(\lambda x \cdot y) z \rrbracket_{v}(k) \\
& \equiv \llbracket \lambda x \cdot y \rrbracket_{v}\left(\lambda m \cdot \llbracket z \rrbracket_{v}(\lambda n \cdot m(n, k))\right) \\
& \equiv \llbracket \lambda x \cdot y \rrbracket_{v}(\lambda m \cdot(\lambda n \cdot m(n, k)) z) \\
& \equiv(\lambda m \cdot(\lambda n \cdot m(n, k)) z)\left(\lambda\left(x, k^{\prime}\right) \cdot k^{\prime} y\right) \\
& \left.\rightarrow\left(\lambda n \cdot\left(\lambda\left(x, k^{\prime}\right) \cdot k^{\prime} y\right)\right)(n, k)\right) z \\
& \left.\rightarrow\left(\lambda\left(x, k^{\prime}\right) \cdot k^{\prime} y\right)\right)(z, k) \\
& \rightarrow k y
\end{aligned}
$$

Call-by-name

Definition:

- $\llbracket x \rrbracket_{n}(k) \equiv x k$
- $\mathbb{C} \mathrm{C} \mathbb{1}_{\mathrm{n}}(\mathrm{k}) \equiv \mathrm{kc}$
- $\llbracket \lambda x . M \rrbracket_{n}(k) \equiv k\left(\lambda\left(x, k^{\prime}\right) . \llbracket M \rrbracket\left(k^{\prime}\right)\right)$
- $\mathbb{M} N \mathbb{n} n(k) \equiv \llbracket M \rrbracket\left(\lambda m . m\left(\lambda k^{\prime} . \llbracket N \rrbracket\left(k^{\prime}\right), k\right)\right)$

Only application and variable are different. Don't have to evaluate N before putting it into M .

CBN and CBV

For any closed term M (FV(M) = \{\})

- M terminates with value v in the CBV λ-calculus, iff $\llbracket M \rrbracket_{v}(\lambda x . x)$ terminates in both the CBV and CBN λ-calculus with value v.
- M terminates with value v in the $C B N \lambda$-calculus, iff $\llbracket \mathrm{M} \rrbracket_{\mathrm{n}}(\lambda x . x)$ terminates in both the CBV and CBN λ-calculus with value v.

Encoding control

Consider trying to add an Exit instruction to the λ calculus.

- Exit $\mathrm{M} \rightarrow$ Exit (CBN and CBV)
- ($\lambda x . M$) Exit \rightarrow Exit (Just CBV)

When we encounter Exit execution is stopped.

- ($\lambda x . y)$ Exit $=$ Exit (CBV)
- ($\lambda x . y)$ Exit $=y \quad(C B N)$

Encode as

- \mathbb{E} Exit $\mathbb{d}(\mathrm{k})=() \quad($ Both CBV and CBN $)$

Example CBV

```
\llbracket(\lambdax.y) Exit \v(k)
\equiv\llbracket\lambdax.y\mp@subsup{\rrbracket}{v}{}(\lambdam.\llbracketExit\mp@subsup{\rrbracket}{v}{}(\lambdan.m(n,k)))
\equiv\llbracket\lambdax.y\rrbracketv (\lambdam.())
\equiv(\lambdam.())(\lambda(x,k'). k' y)
O()
```


Example CBN

```
\llbracket(\lambdax.y) Exit\rrbracketn(k)
\equiv\llbracket\lambdax.y\mp@subsup{\rrbracket}{n}{}(\lambdam.m(\lambda\mp@subsup{k}{}{\prime}.\llbracketExit \}\mp@subsup{\rrbracket}{n}{}(\mp@subsup{k}{}{\prime}),k)
\equiv(\lambdam.m(\lambdak'.[Exit \ \ (k'),k)) (\lambda(x,k').y k')
-> (\lambda(x,k').y k')(\lambdak'.[Exit|n(k'),k)
y yk
```


Order of evaluation

With CBV we can consider two orders of evaluation:
Function first:

$$
\llbracket M N \rrbracket_{\mathrm{v} 1}(k) \equiv \llbracket M \rrbracket(\lambda m . \llbracket N \rrbracket(\lambda n . m(n, k)))
$$

Argument first:

$$
\llbracket M N \mathbb{l}_{v 2}(k) \equiv \llbracket N \rrbracket(\lambda n . \mathbb{M} \mathbb{\rrbracket}(\lambda m . m(n, k)))
$$

Example

Consider having two Exit expressions

- $\llbracket \mathrm{Exit}_{1} \rrbracket(\mathrm{k})=1$
- $\llbracket \mathrm{Exit}_{2} \rrbracket(\mathrm{k})=2$

Now, we can observe the two different translations by considering Exit ${ }_{1}$ Exit $_{2}$:

- $\llbracket E^{2} \mathrm{Et}_{1} \mathrm{Exit}_{2} \mathbb{\rrbracket}_{\mathrm{v} 1}(\mathrm{k})=\llbracket \mathrm{Exit}_{1} \rrbracket_{\mathrm{v}_{1}}(\mathrm{k})$ (Function first)
- $\mathbb{E} \mathrm{Exit}_{1} \mathrm{Exit}_{2} \mathbb{\rrbracket}_{\mathrm{v}_{2}}(\mathrm{k})=\llbracket \mathrm{Exit}_{2} \mathbb{V}_{v 2}(\mathrm{k})($ (Argument first $)$

Example (continued)

```
[Exit Exit \(_{2} \rrbracket_{v 1}(\mathrm{k})\)
\(\equiv \llbracket \operatorname{Exit}_{1} \rrbracket\left(\lambda \mathrm{~m} . \llbracket \mathrm{Exit}_{2} \rrbracket(\lambda \mathrm{n} . \mathrm{m}(\mathrm{n}, \mathrm{k}))\right.\)
\(\equiv 1 \equiv \llbracket \operatorname{Exit}_{1} \rrbracket(\mathrm{k})\)
【Exit Exit \(_{2} \rrbracket_{\mathrm{v}_{2}}(\mathrm{k})\)
\(\equiv \llbracket E x i t_{2} \rrbracket\left(\lambda n . \llbracket E x i_{1} \rrbracket(\lambda m . m(n, k))\right)\)
\(\equiv 2 \equiv \llbracket \operatorname{Exit}_{2} \rrbracket(\mathrm{k})\)
```


Typed translation: CBV

Consider types:

$$
\tau::=b|\tau \rightarrow \tau| \perp
$$

Here b is for base types of constants, \perp for continuation return type.
We translate: Typo:T in notes should be x

- $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket_{v} \equiv\left(\llbracket \tau_{1} \rrbracket_{v} \times\left(\llbracket \tau_{2} \rrbracket_{v} \rightarrow \perp\right)\right) \rightarrow \perp$
- $\mathbb{I} b \mathbb{1}_{v} \equiv b$

If $\mathrm{M}: \tau$ then λk. $\mathbb{M} \mathbb{\rrbracket}_{\mathrm{v}}(\mathrm{k}):\left(\llbracket \tau \mathbb{l}_{v} \rightarrow \perp\right) \rightarrow \perp$
Sometimes, we write $T \tau$ for $(\tau \rightarrow \perp) \rightarrow \perp$

Types guide translation

For function translation: Assume

- k: $\left(\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket_{\mathrm{v}} \rightarrow \perp\right)$
- $\lambda x . M: \tau_{1} \rightarrow \tau_{2}$, hence $\llbracket M \rrbracket_{v}:\left(\llbracket \tau_{2} \rrbracket_{v} \rightarrow \perp\right) \rightarrow \perp$ if $x: \llbracket \tau_{1} \rrbracket_{v}$ Find N such that $\mathrm{k} \mathrm{N}: \perp$ therefore $\mathrm{N}: \llbracket \tau_{1} \rightarrow \tau_{2} \mathbb{l}_{\mathrm{v}}$ So, $\mathrm{N} \equiv \lambda(\mathrm{x}, \mathrm{k}$ '). L, where $\mathrm{L}: \perp$ if
- $\mathrm{x}: \llbracket \tau_{1} \rrbracket_{\mathrm{v}}$ and
- $\mathrm{k}^{\prime}: \mathbb{\pi} \tau_{2} \mathbb{1}_{\mathrm{v}} \rightarrow \perp$

Therefore $L \equiv \llbracket M \rrbracket_{v}\left(k^{\prime}\right)$

$$
\llbracket \lambda x . M \mathbb{l}_{v}(k) \equiv k\left(\lambda\left(x, k^{\prime}\right) . \llbracket M \mathbb{M}\left(k^{\prime}\right)\right)
$$

Types guide translation

Application translation (MN): Assume

- $\mathrm{k}:\left(\mathbb{} \tau_{2} \mathbb{1}_{\mathrm{v}} \rightarrow \perp\right)$
- $\mathrm{M}: \tau_{1} \rightarrow \tau_{2}$, hence $\mathbb{M} \mathbb{\rrbracket}_{v}:\left(\mathbb{I} \tau_{1} \rightarrow \tau_{2} \mathbb{\rrbracket}_{v} \rightarrow \perp\right) \rightarrow \perp$
- $N: \tau_{1}$, hence $\mathbb{K} \mathbb{N} \mathbb{l}_{v}:\left(\llbracket \tau_{1} \mathbb{l}_{v} \rightarrow \perp\right) \rightarrow \perp$

Find L such that $\mathbb{C M} \mathbb{1}_{v} L: \perp$ therefore $L: \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket_{v} \rightarrow \perp$
So, $L \equiv \lambda \mathrm{~m}$. L_{1}, where $\mathrm{L}_{1}: \perp$ if $\mathrm{m}: \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket_{\mathrm{v}} \equiv \llbracket \tau_{1} \rrbracket_{\mathrm{v}} \mathrm{T}\left(\llbracket \tau_{2} \rrbracket_{\mathrm{v}} \rightarrow\right.$ म) $\rightarrow \perp$
Find L_{2} such that $\llbracket N \rrbracket_{v} L_{2}: \perp$ therefore $L_{2}: \llbracket \tau_{1} \rrbracket_{v} \rightarrow \perp$
Therefore $L_{2} \equiv \lambda \mathrm{n}$. L_{3} where $\mathrm{L}_{3}: \perp$ if $\mathrm{n}: \llbracket \tau_{1} \rrbracket_{\mathrm{v}}$.
Therefore $\mathrm{L}_{3} \equiv \mathrm{~m}(\mathrm{n}, \mathrm{k})$
$\llbracket M N \rrbracket_{v}(k) \equiv \llbracket M \rrbracket(\lambda m . \llbracket N \rrbracket(\lambda n . m(n, k)))$

Other encodings

We can encode other control structures:

- Exceptions (2 continuations: normal and exception)
- Breaks and continues in loops (3 continuations: normal, break, and continue)
- Goto, jumps and labels
- call/cc (passing continuations into programs)
- backtracking

Exercises

- Find an example that evaluates differently for each of the three encodings, and demonstrate this.
- How would you perform a type call-by-name translation?

$$
\begin{gathered}
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket_{\mathrm{n}} \equiv\left(\left(\mathrm{~T} \llbracket \tau_{1} \rrbracket_{\mathrm{n}}\right) \times\left(\llbracket \tau_{2} \rrbracket_{\mathrm{n}} \rightarrow \perp\right)\right) \rightarrow \perp \\
\begin{array}{c}
\text { Typo Tin notes } \\
\text { should be } \times
\end{array}
\end{gathered}
$$

Aside: backtracking

Continuations can be a powerful way to implement backtracking algorithms. (The following is due to Olivier Danvy.)

Consider implementing regular expression pattern matcher in ML:
datatype $\mathrm{re}=$
Char of char (* "c" *)
Seq of re *re (* re1; re2 *)
Alt of re *re (* re1|re2 *)
Star of re * (* re1 * *)

Implementation

Plan: use continuations to enable backtracking:

```
fun
    f("c") (a::xs)k = if a=c then (k xs) else false
f("c") []k = false
    f(re1; re2) xs k = fre1 xs (\lambdays.fre2 ys k)
    f(re1|re2) xs k = (f re1 xs k) orelse (fre2 xs k)
f(re1 *) xs k =
    (k xs) orelse (f (re1; re1*) xs k
```

Exercise: execute
f (("a"| "a"; "b"; "c"); "b") ["a", "b", "c"] (גxs. xs=[])

Example execution

$$
\begin{aligned}
& \text { f (("a"; "a"|"a"); "a") ["a","a"] (} \lambda x s . x s=[]) \\
& \rightarrow \mathrm{f} \text { ("a"; "a"|"a") ["a", "a"] (} \lambda \times s . \mathrm{f} \text { "a" xs (} \lambda \times \mathrm{xs} . x s=[]) \text {) } \\
& \rightarrow f(" a " ; \text { "a") ["a", "a"] (} \lambda x s . f \text { "a" xs (} \lambda \times s . x s=[])) \\
& \text { orelse f "a" ["a", "a"] (} \lambda x s . f \text { "a" xs (} \lambda \times s . x s=[]) \text {) } \\
& \rightarrow(\lambda x s . f \text { "a" xs (} \lambda x s . x s=[]) \text {) [] } \\
& \text { orelse f "a" ["a", "a"] (} \lambda x s . f \text { "a" xs (} \lambda x s . x s=[]) \text {) } \\
& \rightarrow \text { false } \\
& \text { orelse f "a" ["a", "a"] (} \lambda x s . f \text { "a" xs (} \lambda \times s . x s=[]) \text {) } \\
& \rightarrow f \text { "a" ["a", "a"] (} \lambda x \text {.f. "a" xs (} \lambda x s . x s=[]) \text {) } \\
& \rightarrow(\lambda x s . f \text { "a" xs (} \lambda \times s . x s=[])) \text { ["a"] } \\
& \rightarrow(\lambda x s . x s=[])[] \rightarrow \text { true }
\end{aligned}
$$

Exercise

How could you extend this to

- count the number of matches; and
- allow matches that don't consume the whole string?

Remove use of orelse by building a list of continuations for backtracking.

Comments

Not the most efficient regular expression pattern matching, but very concise code.

This style can implement efficient lazy pattern matchers or unification algorithms.

State

Encoding state

Now, we can consider extending the λ-calculus with

- Assignment $\mathrm{M}:=\mathrm{N}$
- Read !M

How can we do this by encoding?

ML Program

val $\mathrm{a}=$ ref 1 ;
fun $g(x)=(a:=(!a) * 2 ; x+1)$
fun $h(y)=\left(a:=(!a)+3 ; y^{*} 2\right)$
print $g(1)+h(3)+!a$
fun $g(x, w)=\left(x+1, w^{*} 2\right)$ fun $h(y, w)=(y * 2, w+3)$ val wo = 1
val $(\mathrm{g}, \mathrm{w} 1)=\mathrm{g}(1, \mathrm{w} 0)$
val (h',w2) $=\mathrm{h}(3, \mathrm{w} 1)$ print g' $+h^{\prime}+$ w 2

Comments

> Assume x, y and z are integers, so we have $=$. Could use Church numerals.

Evaluation order made explicit (CPS transform).
Parameter used to carry state around.
We use the following encoding of state functions,

- SET $s \times y=\lambda z$. IF $z=x$ THEN y ELSE s z Typo in printout
- GET s $x=s x$

Note that, we ignore allocation in this encoding.

CPS and State

Definition: (This is a CBV translation.)

- $\llbracket x \rrbracket_{v}(k, s) \equiv k(x, s)$
- $\llbracket \mathrm{c} \rrbracket_{\mathrm{v}}(\mathrm{k}, \mathrm{s}) \equiv \mathrm{k}(\mathrm{c}, \mathrm{s})$
- $\llbracket \lambda x . M \rrbracket v(k, s) \equiv k\left(\left(\lambda\left(x, k^{\prime}, s^{\prime}\right) . \llbracket M \rrbracket\left(k^{\prime}, s^{\prime}\right)\right), s\right)$
- $\mathbb{M} N \rrbracket_{\mathrm{v}}(\mathrm{k}, \mathrm{s}) \equiv$
$\llbracket M \rrbracket_{v}\left(\lambda\left(m, s^{\prime}\right) . \llbracket N \rrbracket_{v}\left(\lambda\left(n, s^{\prime \prime}\right) . m\left(n, k, s^{\prime \prime}\right), s^{\prime}\right), s\right)$
- $\llbracket!M \rrbracket_{v}(k, s) \equiv \llbracket M \rrbracket_{v}\left(\lambda\left(v, s^{\prime}\right) . k\left(G E T s^{\prime} v, s^{\prime}\right), s\right)$
- $\mathbb{[}[M]:=N \rrbracket_{v}(k, s) \equiv$
$\llbracket M \rrbracket_{v}\left(\lambda\left(v, s^{\prime}\right) . \llbracket N \rrbracket_{v}\left(\lambda\left(v^{\prime}, s^{\prime}\right) \cdot k\left((), S E T s^{\prime \prime} v v^{\prime}\right), s^{\prime}\right), s\right)$

CPS and State

Definition with

 state firstDefinition: (This is a CBV translation.)

- $\llbracket x \rrbracket_{v}(s, k) \equiv k(s, x)$
- $\llbracket \mathrm{c} \rrbracket_{\mathrm{v}}(\mathrm{s}, \mathrm{k}) \equiv \mathrm{k}(\mathrm{s}, \mathrm{c})$
- $\llbracket \lambda x . M \rrbracket_{\mathrm{v}}(\mathrm{s}, \mathrm{k}) \equiv \mathrm{k}\left(\mathrm{s},\left(\lambda\left(\mathrm{s}^{\prime}, \mathrm{x}, \mathrm{k}^{\prime}\right) . \mathbb{M} \mathbb{M}\left(\mathrm{s}^{\prime}, \mathrm{k}^{\prime}\right)\right)\right)$
- $\mathbb{M} \mathrm{N} \rrbracket_{\mathrm{v}}(\mathrm{s}, \mathrm{k}) \equiv$
$\llbracket M \rrbracket_{\mathrm{v}}\left(\mathrm{s}, \lambda\left(\mathrm{s}^{\prime}, \mathrm{m}\right) . \mathbb{I} \mathrm{N} \mathbb{1}_{\mathrm{v}}\left(\mathrm{s}^{\prime}, \lambda\left(\mathrm{s}^{\prime \prime}, n\right) . \mathrm{m}\left(\mathrm{s}^{\prime \prime}, \mathrm{n}, \mathrm{k}\right)\right)\right)$
- $\llbracket!M \rrbracket_{v}(s, k) \equiv \llbracket M \rrbracket_{v}\left(s, \lambda\left(s^{\prime}, v\right) . k\left(s^{\prime}, G E T s^{\prime} v\right)\right)$
- $\mathbb{[}[M]:=N \rrbracket_{v}(s, k) \equiv$
$\llbracket M \rrbracket_{\mathrm{v}}\left(\mathrm{s}, \lambda\left(\mathrm{s}^{\prime}, \mathrm{v}\right) . \llbracket \mathrm{N} \rrbracket_{\mathrm{v}}\left(\mathrm{s}^{\prime}, \lambda\left(\mathrm{s}^{\prime}, \mathrm{v}^{\prime}\right) . \mathrm{k}\left(\mathrm{SET} \mathrm{s}^{\prime \prime} \mathrm{v} \mathrm{v}^{\prime},()\right)\right), \mathrm{s}\right)$

Exercises

- Extend encoding with sequential composition M;N
- Translate: $[x]:=1 ;!x$
- Translate: $(\lambda y . z)([x]:=(!x+1))$
- Redo translations above.

It's getting complicated

Common theme, we are threading "stuff" through the evaluation:

- continuations
- state

If we add new things, for example IO and exceptions, we will need even more parameters.

Can we abstract the idea of threading "stuff" through evaluation?

Monad (Haskell)

Haskell provides a syntax and type system for threading "effects" through code.

Two required operations

- return : $\tau \rightarrow \mathrm{T} \tau$
- >>=: $\mathrm{T} \tau \rightarrow\left(\tau \rightarrow \mathrm{T} \tau^{\prime}\right) \rightarrow \mathrm{T} \tau^{\prime} \quad$ [bind]

Option/Maybe Monad

Types

- Option τ

Definition

- Option $\tau \equiv$ unit $+\tau$

Operations

- return : $\tau \rightarrow$ Option τ
return M \equiv Some M
- >>= : Option $\tau \rightarrow\left(\tau \rightarrow\right.$ Option $\left.\tau^{\prime}\right) \rightarrow$ Option τ^{\prime} $\lambda x y$. case x of None $=>$ None \mid Some $z=>y z$

Example

Imagine find x and findy are of type unit \rightarrow Option τ find $x() \gg=\lambda x$.
findy ()$\gg=\lambda y$.
return (x, y)
This code is of type Option ($\tau \mathrm{T} \tau$).
ML code:
case find $x()$ of
None => None
| Some $x=>$ case findy () of None $=>$ None Some y => Some (x,y)

Do notation

find $x() \gg=\lambda x$.
find $y() \gg=\lambda y$.
return (x, y)
Haskell has syntax to make this even cleaner:

```
do {
    x}\leftarrow\mathrm{ findx();
    y}\leftarrow\mathrm{ findy();
    return (x,y)
}
```


State monad

Types

- State τ

Definition

- State $\tau \equiv \mathrm{s} \rightarrow \mathrm{s}$ * $\tau \quad$ (s is some type for representing state, i.e. partial functions)

Operations

- return : $\tau \rightarrow$ State τ
- >>= : State $\tau \rightarrow\left(\tau \rightarrow\right.$ State $\left.\tau^{\prime}\right) \rightarrow$ State τ^{\prime} (infix)
- set : Loc \rightarrow Int \rightarrow State ()
- get : Loc \rightarrow State Int
- new : () \rightarrow State Loc

Haskell

Read up on Haskell if this interests you.

Concluding remarks

Where this course sits

Summary

"Everything" can be encoded into the λ-calculus.

- Caveat: not concurrency!

Should we encode everything into λ-calculus?

