Foundations of functional programming

Matthew Parkinson 12 Lectures (Lent 2009)

Materials

Previous lecturers notes are still relevant.

Caveat: What's in the slides is what's examinable.

Overview

Motivation

Understanding:

• simple notion of computation

Encoding:

Representing complex features in terms of simpler features

Functional programming in the wild:

 Visual Basic and C# have functional programming features.

(Pure) λ -calculus

$$M ::= x \mid (M M) \mid (\lambda x.M)$$

Syntax:

- x variable
- (M M) (function) application
- (λx.M) (lambda) abstraction

World smallest programming language:

- α, β, η reductions
- when are two programs equal?
- choice of evaluation strategies

Applied λ-calculus

 $M ::= x \mid \lambda x.M \mid M M \mid c$

Syntax:

- x variables
- λx.M (lambda) abstraction
- M M (function) application
- c (constants)

Elements of c used to represent integers, and also functions such as addition

• δ reductions are added to deal with constants

Pure λ -calculus is universal

Can encode:

- Booleans
- Integers
- Pairs
- Disjoint sums
- Lists
- Recursion

within the λ -calculus.

Can simulate a Turing or Register machine (Computation Theory), so is universal.

Combinators

 $M := M M \mid c \quad (omit x and \lambda x.M)$

We just have $c \in \{S, K\}$ regains power of λ -calculus.

Translation to/from lambda calculus including almost equivalent reduction rules.

Evaluation mechanisms/facts

Eager evaluation (Call-by-value)

Lazy evaluation (Call-by-need)

Confluence "There's always a meeting place downstream"

Implementation Techniques

Real implementations

- "Functional Languages"
- Don't do substitution, use environments instead.
- Haskell, ML, F# (, Visual Basic, C#)

SECD

Abstract machine for executing the λ -calculus.

4 registers Stack, Environment, Control and Dump.

Continuations

- λ -expressions restricted to always return "()" [continuations] can implement all λ -expressions
- Continuations can also represent many forms of non-standard control flow, including exceptions
- call/cc

State

How can we use state and effects in a purely functional language?

Pure λ-calculus

Types

This course is primarily untyped.

We will mention types only where it aids understanding.

Syntax

Variables: x,y,z,...

Terms:

 $M,N,L,... := \lambda x.M \mid M N \mid x$

We write M_≡N to say M and N are syntactically equal.

Syntax trees

Recap: Equivalence relations

An equivalence relation is a reflexive, symmetric and transitive relation.

R is an equivalence relation if

Reflexive

$$\forall x. x R x$$

Transitive

$$\forall xyz. x R y \land y R z \Rightarrow x R z$$

Symmetric

$$\forall xy. x R y \Rightarrow y R x$$

Free variables and permutation

We define free variables of a λ -term as

- $FV(M N) = FV(M) \cup FV(N)$
- $FV(\lambda x.M) = FV(M) \setminus \{x\}$
- $FV(x) = \{x\}$

We define variable permutation as

- $X < X \cdot Z > = X < Z \cdot X > = Z$
- $x < y \cdot z > = x$ (provided $x \neq y$ and $x \neq z$)
- $(\lambda x.M) < y \cdot z > = \lambda(x < y \cdot z >).(M < y \cdot z >)$
- $(M N) < y \cdot z > = (M < y \cdot z >) (N < y \cdot z >)$

Contexts

Context (term with a single hole (•)):

$$C ::= \lambda x.C \mid C M \mid M C \mid \bullet$$

Context application/filling

Context application C[M] fills hole (•) with M.

- $(\lambda x.C)[N] = \lambda x.(C[N])$
- (C M)[N] = (C[N]) M
- (M C)[N] = M (C[N])
- • [N] = N

Congruence

A congruence relation is an equivalence relation, that is preserved by placing terms under contexts.

R is a compatible relation if

• $\forall M \ N \ C. \ M \ R \ N \Rightarrow C[M] \ R \ C[N]$

R is a congruence relation if it is both an equivalence and a compatible relation.

α -equivalence

Two terms are α -equivalent if they can be made syntactically equal (=) by renaming bound variables

 α -equivalence (= α) is the least congruence relation satisfying

• $\lambda x. M =_{\alpha} \lambda y. M < x \cdot y > \text{ where } y \notin FV(\lambda x. M)$

Intuition of α -equivalence

Consider

 λx . λy . x y z x

We can see this as

and hence the bound names are irrelevant

We only treat terms up to α -equivalence.

Are these alpha-equivalent?

$\lambda x.x =_{\alpha} \lambda y.y$	

$$\lambda X.\lambda y.X =_{\alpha} \lambda y.\lambda X.y$$

$$\lambda x.y =_{\alpha} \lambda y.y$$

$$(\lambda X.X) (\lambda y.y) =_{\alpha} (\lambda y.y) (\lambda X.X)$$

$$\lambda x. \lambda y. (x z y) =_{\alpha} \lambda z. \lambda y. (z z y)$$

α-equivalence (alternative defn)

Use $\lambda xs.M$ as a shorthand, where

- xs ::= xs,x | []
- $\lambda [].M = M$
- $\lambda xs, x.M = \lambda xs. \lambda x. M$

Definition

- λ []. $X =_{\alpha} \lambda$ [].X
- $\lambda xs_1 \cdot x_2 =_{\alpha} \lambda ys_1 \cdot y_2$ if $(x_1 = x_2 \text{ and } y_1 = y_2)$ or $(x_1 \neq x_2 \text{ and } y_1 \neq y_2 \text{ and } \lambda xs_1 \cdot x_2 =_{\alpha} \lambda ys_1 \cdot y_2)$
- $\lambda xs. M_1 M_2 =_{\alpha} \lambda ys. N_1 N_2$ iff $\lambda xs. M_1 =_{\alpha} \lambda ys. N_1$ and $\lambda xs. M_2 =_{\alpha} \lambda ys. N_2$

Capture avoiding substitution

If $x \notin FV(M)$,

• M [L/x] = M

otherwise:

- (M N) [L/x] = (M [L/x] N [L/x])
- $(\lambda y.M)[L/x] = (\lambda z. M < z \cdot y > [L/x])$ where $z \notin FV(x, L, \lambda y.m)$
- x [L/x] = L

Note: In the ($\lambda y.M$) case, we use a permutation to pick an α -equivalent term that does not capture variables in L.

(x y)[L/y] = x L	
$(\lambda x. y) [x/w] = \lambda x. y$	
$(\lambda x. (x y)) [L/x] = (\lambda x. (x y))$	
$(\lambda x. y) [x/y] = (\lambda z. x)$	
$(\lambda y. (\lambda x. z)) [x w/z] = (\lambda y.(\lambda x. (x w)))$	

Extra brackets

To simplify terms we will drop some brackets:

$$\lambda xy. M \equiv \lambda x. (\lambda y. M)$$
 $L M N \equiv (L M) N$
 $\lambda x. M N \equiv \lambda x. (M N)$

Some examples

$$(\lambda X. \times X) (\lambda X. \times X) y z = (((\lambda X.(X \times X)) (\lambda X.(X \times X))) y) z$$

$$\lambda Xyz.Xyz = \lambda X.(\lambda y.(\lambda z. ((X \times Y) z)))$$

βη-reduction

We define β -reduction as:

$$(\lambda x.M) N \rightarrow_{\beta} M \lceil N/x \rceil$$

This is the workhorse of the λ -calculus.

We define $\eta\text{--reduction}$ as: If $x\notin FV(M),$ then

$$\lambda x. (M x) \rightarrow \eta M$$

This collapses trivial functions.

Consider (fn x => sin x) is this the same as sin in ML?

Extra brackets - again

 $LMN \equiv (LM)N$

βη examples

 $(\lambda X. X Y) (\lambda Z. Z) \rightarrow_{\beta} \lambda Z. Z Y$

 $\lambda z. z) \rightarrow_{\beta} \lambda z. z y$

 $(\lambda x. x y) (\lambda z. z) \rightarrow_{\beta} (\lambda z. z) y$

 $\lambda x. M N x \rightarrow_n (M N)$

 $(\lambda x. x x) (\lambda x. x x) \rightarrow_{\beta} (\lambda x. x x) (\lambda x. x x)$

 $(\lambda xy. x) (\lambda x. y) \rightarrow_{\beta} (\lambda yx. y)$

Reduction in a context

We actually define β -reduction as: $C[(\lambda x.M) N] \rightarrow_{\beta} C[M[N/x]]$

and η -reduction as:

 $C[(\lambda x.(M x))] \rightarrow_{\eta} C[M] \text{ (where } x \notin FV(M))$

where $C := \lambda x.C \mid C M \mid M C \mid \bullet$ (from "Context and Congruence" slide)

Note: to control evaluation order we can consider different contexts.

Reduction and normal forms

Normal-form (NF)

A term is in normal form if it there are no β or η reductions that apply.

Examples in NF:

- x; $\lambda x.y$; and $\lambda xy. x (\lambda x.y)$
- and not in NF:
- $(\lambda x.x) y$; $(\lambda x. x x) (\lambda x. x x)$; and $(\lambda x. y x)$

normal-form:

```
• NF ::= \lambda x. NF (if \forall M. NF\neq M x or x \in FV(M))

| NF<sub>1</sub> NF<sub>2</sub> (if \forall M. NF<sub>1</sub> \neq \lambda x. M)
```

Correction

Weak head normal form

A term is in WHNF if it cannot reduce when we restrict the context to

$$C := C M | M C | \bullet$$

That is, we don't reduce under a λ .

 λx . Ω is a WHNF, but not a NF.

Normal-forms

A term has a normal form, if it can be reduced to a normal form:

- (λx.x) y has normal form y
- $(\lambda x. y x)$ has a normal form y
- $(\lambda x. x x) (\lambda x. x x)$ does not have a normal form

Note: $(\lambda x.xx)(\lambda x.xx)$ is sometimes denoted Ω .

Note: Some terms have normal forms and infinite reduction sequences, e.g. $(\lambda x, y) \Omega$.

Multi-step reduction

 $M \rightarrow * N$ iff

- $M \rightarrow_{\beta} N$
- $M \rightarrow_{\eta} N$
- M = N (reflexive)
- 3L. $M \rightarrow^* L$ and $L \rightarrow^* N$ (transitive)

The transitive and reflexive closure of β and η reduction.

Equality

We define equality on terms, =, as the least congruence relation, that additionally contains

- α -equivalence (implicitly)
- β-reduction
- η-reduction

Sometimes expressed as M=M' iff there exists a sequence of forwards and backwards reductions from M to M':

• $M \rightarrow N_1 \leftarrow M_1 \rightarrow N_2 \leftarrow \dots \rightarrow N_k \leftarrow M'$

Exercise: Show these are equivalent.

Church-Rosser Theorem

Theorem: If M=N, then there exists L such that $M\rightarrow TL$ and $N\rightarrow TL$.

Consider $(\lambda x.ax)((\lambda y.by)c)$:

- $(\lambda x.ax)((\lambda y.by)c) \rightarrow_{\beta} a((\lambda y.by)c) \rightarrow_{\beta} a(bc)$
- $(\lambda x.ax)((\lambda y.by)c) \rightarrow_{\beta} (\lambda x.ax) (bc) \rightarrow_{\beta} a(bc)$

Note: Underlined term is reduced.

Equality properties

If $(M \rightarrow^* N \text{ or } N \rightarrow^* M)$, then M = N. The converse is not true (Exercise: why?) If $L \rightarrow^* M$ and $L \rightarrow^* N$, then M = N. If $M \rightarrow^* L$ and $N \rightarrow^* L$, then M = N.

Consequences

If M=N and N is in normal form, then $M \rightarrow T N$.

If M=N and M and N are in normal forms, then $M=\alpha N$. Conversely, if M and N are in normal forms and are distinct, then M \neq N. For example, $\lambda xy.x \neq \lambda xy.y.$

Diamond property

Key to proving Church–Rosser Theorem is demonstrating the diamond property:

• If $M \rightarrow^* N_1$ and $M \rightarrow^* N_2$, then there exists L such that $N_1 \rightarrow^* L$ and $N_2 \rightarrow^* L$.

Exercise: Show how this property implies the Church–Rosser Theorem.

Proving diamond property

Consider $(\lambda x.xx)$ (I a) where I = $\lambda x.x$. This has two initial reductions:

- $(\lambda x.xx)(Ia) \rightarrow_{\beta} (\lambda x.xx) a \rightarrow_{\beta} a a$
- $(\lambda x.xx)(Ia) \rightarrow_{\beta} (Ia)(Ia)$

Now, the second has two possible reduction sequences:

- $(I a) (I a) \rightarrow_{\beta} a (I a) \rightarrow_{\beta} a a$
- $(I a) (I a) \rightarrow_{\beta} (I a) a \rightarrow_{\beta} a a$

Proving diamond property

The diamond property does not hold for the single step reduction:

• If $M \rightarrow_{\beta} N_1$ and $M \rightarrow_{\beta} N_2$, then there exists L such that $N_1 \rightarrow_{\beta} L$ and $N_2 \rightarrow_{\beta} L$.

Proving diamond property

Strip lemma:

• If $M \rightarrow_{\beta} N_1$ and $M \rightarrow^* N_2$, then there exists L such that $N_1 \rightarrow^* L$ and $N_2 \rightarrow^* L$

Proof: Tedious case analysis on reductions.

Note: The proof is beyond the scope of this course.

Reduction order

Consider $(\lambda x.a) \Omega$ this has two initial reductions:

- $(\lambda x.a) \Omega \rightarrow_{\beta} a$
- $(\lambda x.a) \Omega \rightarrow_{\beta} (\lambda x.a) \Omega$

Following first path, we have reached normal-form, while second is potentially infinite.

Example reduction: normalorder

 $(\lambda x.x (\lambda y.y)) (\lambda y.(\lambda z.z z z z) (y t))$

- $\rightarrow (\lambda y.(\lambda z.z z z z) (y t)) (\lambda y.y)$
- \rightarrow ($\lambda z.z z z z$) (($\lambda y.y$) t)
- \rightarrow ($\lambda y.y$) t (($\lambda y.y$) t) (($\lambda y.y$) t) (($\lambda y.y$) t)
- $\rightarrow \ t \ ((\lambda y.y) \ t) \ ((\lambda y.y) \ t) \ ((\lambda y.y) \ t)$
- \rightarrow t t (($\lambda y.y$) t) (($\lambda y.y$) t)
- \rightarrow ttt(($\lambda y.y$)t)
- → tttt

Normal order reduction

Perform leftmost, outermost β -reduction. (leave η -reduction until the end)

Reduction context

```
• C ::= \lambda x.C

| C M (if \forall C' x. C \neq \lambda x.C') | Correction

| NF C (if \forall M x. NF \neq \lambda x.M)
```

where NF is from normal-form definition.

This definition is guaranteed to reach normal-form if one exists.

Call-by-name

Do not reduce under $\boldsymbol{\lambda}$ and do not reduce argument

Example reduction: CBN

 $(\lambda x.x (\lambda y.y)) (\lambda y.(\lambda z.z z z z) (y t))$

- $\rightarrow (\lambda y.(\lambda z.z z z z) (y t)) (\lambda y.y)$
- $\rightarrow (\lambda z.z z z z) ((\lambda y.y) t)$
- \rightarrow ($\lambda y.y$) t (($\lambda y.y$) t) (($\lambda y.y$) t) (($\lambda y.y$) t)
- \rightarrow t (($\lambda y.y$) t) (($\lambda y.y$) t) (($\lambda y.y$) t)

Example reduction: CBV

```
(\lambda x.x (\lambda y.y)) (\lambda y.(\lambda z.z z z z) (y t))
```

- \rightarrow ($\lambda y.(\lambda z.z z z z) (y t)) (<math>\lambda y.y$)
- \rightarrow ($\lambda z.z z z z$) (($\lambda y.y$) t)
- \rightarrow ($\lambda z.z z z z$) t
- \rightarrow tttt

Call-by-value

- $V := x \mid \lambda x. M$ (values)
- $C := C M \mid \bullet \mid (\lambda x.M) C$
- $C[(\lambda x.M) V] \rightarrow_{\beta} C[M[V/x]]$

Do no reduce under λ , and only apply function when its argument is a value.

Call-by-normal-form

```
    V ::= x | λx. M (values)
    C ::= C M (if ∀C' x. C ≠ λx.C')
    | (λx.M) C
    | λx.C
```

• $C[(\lambda x.M) NF] \rightarrow_{\beta} C[M[NF/x]]$

Only apply function when its argument is a normal-form.

Example reduction: CB-NF

 $(\lambda x.x (\lambda y.y)) (\lambda y.(\lambda z.z z z z) (y t))$

- \rightarrow ($\lambda x.x$ ($\lambda y.y$)) ($\lambda y.y$ t (y t) (y t) (y t))
- \rightarrow ($\lambda y.y t (y t) (y t) (y t) (<math>\lambda y.y$)
- \rightarrow ($\lambda y.y$) t (($\lambda y.y$) t) (($\lambda y.y$) t) (($\lambda y.y$) t)
- \rightarrow t (($\lambda y.y$) t) (($\lambda y.y$) t) (($\lambda y.y$) t)
- \rightarrow t t (($\lambda y.y$) t) (($\lambda y.y$) t)
- \rightarrow t t t (($\lambda y.y$) t)
- \rightarrow tttt

Encoding Data

Encoding booleans

To encode booleans we require IF, TRUE, and FALSE such that:

IF TRUE M N = M
IF FALSE M N = N

Here, we are using = as defined earlier.

Motivation

We want to use different datatypes in the λ -calculus.

Two possibilities:

- Add new datatypes to the language
- Encode datatypes into the language

Encoding makes program language simpler, but less efficient.

Encoding booleans

Definitions:

- TRUE = λm n. m
- FALSE $\equiv \lambda m n$. n
- IF = λb m n. b m n

TRUE and FALSE are both in normal-form, so by Church-Rosser, we know TRUE≠FALSE.

Note that, IF is not strictly necessary as

• $\forall P$. IF P = P (Exercise: show this).

Encoding booleans

Exercise: Show

- If L=TRUE then IF L M N = M.
- If L=FALSE then IF L M N = N.

Encoding pairs

Constructor:

• PAIR = λxyf . fxy

Destructors:

- FST = $\lambda p.p$ TRUE
- SND = $\lambda p.p$ FALSE

Properties: ∀pq.

- FST (PAIR p q) = p
- SND (PAIR p q) = q

Logical operators

We can give AND, OR and NOT operators as well:

- AND = λxy . IF x y FALSE
- OR = λxy . IF x TRUE y
- NOT = λx . IF x FALSE TRUE

Encoding sums

Constructors:

- INL = λx . PAIR TRUE x
- INR = λx . PAIR FALSE x

Destructor:

• CASE = $\lambda s f g$. IF (FST s) (f(SND s)) (g(SND s))

Properties:

- CASE (INL x) fg = fx
- CASE (INR x) fg = gx

Encoding sums (alternative defn)

Constructors:

- INL = $\lambda x f a. f x$
- INR = $\lambda x f g. g x$

Destructors:

• CASE = λ s f g. s f g

As with booleans destructor unnecessary.

• $\forall p. CASE p = p$

Arithmetic

Definitions

- ADD = λ mnfx. m f (n f x)
- MULT = λ mnfx. m (n f) x = λ mnf. m (n f)
- EXP = λ mnfx. n m f x = λ mn. n m

Example:

ADD $\underline{m} \underline{n} \rightarrow T \lambda f x. \underline{m} f(\underline{n} f x) \rightarrow T f^{m} (f^{n} x) \equiv f^{m+n} x$

Church Numerals

Define:

- $0 = \lambda f \times X$
- $1 = \lambda f x. f x$
- $2 = \lambda f x. f(f x)$
- $3 = \lambda f x. f(f(f x))$
- ...
- $\underline{n} = \lambda f x. f(...(f x)...)$

That is, \underline{n} takes a function and applies it n times to its argument: \underline{n} f is f^n .

More arithmetic

Definitions

- SUC = $\lambda n f x \cdot f(n f x)$
- ISZERO = $\lambda n. n (\lambda x.FALSE) TRUE$

Properties

- SUC n = n+1
- ISZERO $\underline{0}$ = TRUE
- ISZERO $(\underline{n+1})$ = FALSE

We also require decrement/predecessor!

Building decrement

n	PFN(n)
0	(0,0)
I	(1,0)
2	(2,1)
3	(3,2)
4	(4,3)

Decrement and subtraction

Definitions:

- PFN = λ n.n (λ p.PAIR (SUC(FST p)) (FST p)) (PAIR $\underline{0}$ $\underline{0}$)
- PRE = λn . SND (PFN n)
- SUB = λ mn. n PRE m

Exercise: Evaluate

- PFN <u>5</u>
- PRE 0
- SUB 4 6

Correction.
Using PAIR rather
than (,) notation.
Also, changed P to p

Lists

Constructors:

- NIL = PAIR TRUE $(\lambda z.z)$
- CONS = λxy . PAIR FALSE (PAIR x y)

Destructors:

- NULL ≡ FST
- HD = λI . FST (SND I)
- TL = λI . SND (SND I)

Properties:

- NULL NIL = TRUE
- HD (CONS M N) = M

Recursion

How do we actually iterate over a list?

Recursion

Defining recursive function

Consider defining a factorial function with the following property:

 $FACT = \lambda n.(ISZERO n) \underline{1} (MULT n (FACT (PRE n)))$

We can define

 $\label{eq:prefixed_prefixed_prefixed} \begin{aligned} & \text{PREFACT} = \lambda f n. \ (\text{ISZERO } n) \ 1 \ (\text{MULT } n \ (f \ (\text{PRE } n))) \\ & \text{Properties} \end{aligned}$

- Base case: $\forall F. PREFACT F 0 = 1$
- Inductive case: ∀F. If F behaves like factorial up to n, then PREFACT F behaves like factorial up to n+1;

Fixed point combinator (Y)

We use a fixed point combinator Y to allow recursion

In ML, we write:

letrec f(x) = M in N

this is really

let $f = Y (\lambda f. \lambda x. M)$ in N

and hence

 $(\lambda f.N) (Y \lambda f. \lambda x. M)$

Fixed points

Discrete Maths: x is a fixed point of f, iff f x = x

Assume, Y exists (we will define it shortly) such that

• Y f = f (Y f)

Hence, by using Y we can satisfy this property: FACT = Y (PREFACT)

Exercise: Show FACT satisfies property on previous slide.

General approach

If you need a term, M, such that

• M = PM

Then M ≡ YP suffices

Example:

- ZEROES = CONS $\underline{0}$ ZEROES = $(\lambda p.CONS \underline{0} p)$ ZEROES
- ZEROES = Y ($\lambda p.CONS \underline{0} p$)

Y

Definition (Discovered by Haskell B. Curry):

• $Y = \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))$

Properties

 $YF = (\lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))) F$

- \rightarrow ($\lambda x. F(xx)$) ($\lambda x. F(xx)$)
- \rightarrow F ((λx . F(xx)) (λx .F(xx)))
- \leftarrow F $((\lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))) F) = F(YF)$

There are other terms with this property:

• (λxy.xyx) (λxy.xyx) (see wikipedia for more)

Mutual Recursion

Consider trying to find solutions M and N to:

- M = P M N
- N = Q M N

We can do this using pairs:

 $L \equiv Y(\lambda p. \; PAIR \; (P \; (FST \; p) \; (SND \; p)) \; (Q \; (FST \; p) \; (SND \; p)))$

M = FST L

 $N \equiv SND L$

Exercise: Show this satisfies equations given above.

Y has no normal form

We assume:

 M has no normal form, iff M x has no normal form. (Exercise: prove this)

Proof of Y has no normal form:

- Y f = f(Y f) (by Y property)
- Assume Y f has a normal form N.
- Hence f (Y f) can reduce to f N, and f N is also a normal form.
- Therefore, by Church Rosser, f N = N, which is a contradiction, so Y f cannot have a normal form.
- Therefore, Y has no normal form.

Head normal form

How can we characterise well-behaved λ -terms?

- Terms with normal forms? (Too strong, FACT does not have normal form)
- Terms with weak head normal form (WHNF)? (Too weak, lots of bad terms have this, for example $\lambda x.\Omega$).
- New concept: Head normal form.

Properties

Head normal form can be reached by performing head reduction (leftmost)

- C' ::= C' M | •
- C ::= λx.C | C'

Therefore, Ω has no HNF (Exercise: prove this.)

If M N has a HNF, then so does M. Therefore, if M has no HNF, then M $N_1 \dots N_k$ does not have a HNF. Hence, M is a "totally undefined function".

HNF

A term is in head normal form, iff it looks like $\lambda x_1...x_m$. y M_1 ... M_k $(m,k \ge 0)$

Examples:

- x, $\lambda xy.x$, $\lambda z.z((\lambda x.a)c)$,
- $\lambda f. f(\lambda x. f(xx)) (\lambda x. f(xx))$

Non-examples:

- $\lambda y.(\lambda x.a) y \rightarrow \lambda y.a$
- $\lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))$

ISWIM

 $\lambda\text{-calculus}$ as a programming language (The next 700 programming languages [Landin 1966])

ISWIM: Syntax

From the λ -calculus

- x (variable)
- λx.M (abstraction)
- M N (application)

Local declarations

- let x = M in N (simple declaration)
- let $f x_1 ... x_n = M$ in N (function declaration)
- letrec f $x_1 ... x_n = M$ in N (recursive declaration) and post-hoc declarations
- N where x = M

ISWIM: Constants

 $M := x \mid c \mid \lambda x.M \mid MN$

Constants c include:

- 0 1 -1 2 -2 ... (integers)
- + x / (arithmetic operators)
- = \neq < > (relational operators)
- true false (booleans)
- and or not (boolean connectives)

Reduction rules for constants: e.g.

• $+00 \rightarrow_{\delta} 0$

ISWIM: Syntactic sugar

N where x=M \equiv let x = M in N

 $\begin{array}{lll} \text{let } x = M \text{ in } N & \equiv & (\lambda x.N) \text{ M} \\ \text{let } f x_1...x_n = M \text{ in } N & \equiv & \text{let } f = \lambda x_1...x_n.M \text{ in } N \\ \end{array}$

letrec f $x_1...x_n = M$ in $N = let f = Y(\lambda f.\lambda x_1...x_n.M)$ in N

Desugaring explains syntax purely in terms of λ calculus.

Call-by-value and IF-THEN-ELSE

ISWIM uses the call-by-value λ -calculus.

Consider: IF TRUE 1Ω

IF E THEN M ELSE N = $(IF E (\lambda x.M) (\lambda x.N)) (\lambda z.z)$

where $x \notin FV(M|N)$

Pattern matching

Has

- (M,N) (pair constructor)
- $\lambda(p_1,p_2)$. M (pattern matching pairs)

Desugaring

• $\lambda(p_1,p_2)$. M = $\lambda z.(\lambda p_1p_2. M)$ (fst z) (snd z) where $z \notin FV(M)$

Environments and Closures

Consider β-reduction sequence

$$(\lambda xy.x + y)$$
 3 5 \rightarrow $(\lambda y.3 + y)$ 5 \rightarrow 3 + 5 \rightarrow 8.

Rather than produce $(\lambda y.3+y)$ build a closure:

Clo(
$$y$$
, $x+y$, $x=3$)

The arguments are

- bound variable;
- function body; and
- environment.

Real λ -evaluator

Don't use β and substitution

Do use environment of values, and delayed substitution.

SECD Machine

Virtual machine for ISWIM.

The SECD machine has a state consisting of four components S, E, C and D:

- S: The "stack" is a list of values typically operands or function arguments; it also returns result of a function call;
- E: The "environment" has the form $x_1=a_1;...;x_n=a_n$, expressing that the variables $x_1,...,x_n$ have values $a_1...a_n$ respectively; and
- C: The "control" is a list of commands, that is λ -terms or special tokens/instructions.

SECD Machine

• D: The "dump" is either empty (-) or is another machine state of the form (S,E,C,D). A typical state looks like

 $(S_1,E_1,C_1,(S_2,E_2,C_2,...(S_n,E_n,C_n,-)...))$ It is essentially a list of triples $(S_1,E_1,C_1),...,(S_n,E_n,C_n)$ and serves as the function call stack.

State transitions: constant S C;S E C;C D D

State-transition: application S S E M N;C D N; M; app; C D

Final configuration

Example

We can see $((\lambda xy.x + y) 3) 5$ compiles to

- const 5; const 3; Closure(x,C₀); app; app where
- $C_0 = Closure(y, C_1)$
- $C_1 = var x; var y; add$

Compiled SECD machine

Inefficient as requires construction of closures.

Perform some conversions in advance:

- | x | = var x
- [MN] = [N]; [M]; app
- $[\lambda x.M] = Closure(x,[M])$
- $\llbracket M + N \rrbracket = \llbracket M \rrbracket ; \llbracket N \rrbracket ; add$
- ..

More intelligent compilations for "let" and tail recursive functions can also be constructed.

Recursion

The usual fixpoint combinator fails under the SECD machine: it loops forever.

A modified one can be used:

• $\lambda fx. f(\lambda y. x x y)(\lambda y. x x y)$

This is very inefficient.

Better approach to have closure with pointer to itself.

Recursive functions $(Y(\lambda fx.M))$

Implementation in ML

SECD machine is a small-step machine.

Next we will see a big-step evaluator written in ML.

Implementation in ML

datatype Expr = Name of string
| Numb of int
| Plus of Expr * Expr
| Fn of string * Expr
| Apply of Expr * Expr

datatype Val =
 IntVal of val
| FnVal of string * Expr * Env

and Env = Empty | Defn of string * Val * Env

Implementation in ML

fun lookup (n, Defn (s,v,r)) =
 if s=n then v else lookup(n,r)
 | lookup(n, Empty) = raise oddity()

Implementation in ML

```
fun eval (Name(s), r) = lookup(s,r)
  | eval(Fn(bv,body),r) = FnVal(bv,body,r)
  | eval(Apply(e,e'), r) =
   case eval(e,r)
    of IntVal(i) => raise oddity()
        | FnVal(bv,body,env) =>
        let val arg = eval(e',r) in
        eval(body, Defn(bv,arg,env)
        ...
```

Combinators

Exercises

How could we make it lazy?

Combinator logic

Syntax:

$$P,Q,R := S \mid K \mid PQ$$

Reductions:

$$\begin{array}{c} K \ P \ Q \rightarrow_w P \\ S \ P \ Q \ R \rightarrow_w (P \ R) \ (Q \ R) \end{array}$$

Note that the term S K does not reduce: it requires three arguments. Combinator reductions are called "weak reductions".

Identity combinator

Consider the reduction of, for any P

• $S K K P \rightarrow_{W} K P (K P) \rightarrow_{W} P$

Hence, we define I = S K K, where I stands for identity.

Encoding the λ -calculus

Use extended syntax with variables:

• P := S | K | PP | X

Define meta-operator on combinators λ^* by

- $\lambda^* X.X \equiv I$
- $\lambda * x.P = KP$ (where $x \notin FV(P)$)
- $\lambda^* x.P Q = S (\lambda^* x.P) (\lambda^* x.Q)$

Church-Rosser

Combinators also satisfy Church-Rosser:

• if P = Q, then exists R such that $P \rightarrow_w T R$ and $Q \rightarrow_w T R$

Example translation

 $(\lambda^* x. \lambda^* y. y x)$

- $\equiv \lambda^* x. S (\lambda^* y. y) (\lambda^* y. x)$
- $\equiv \lambda^* x. (SI) (Kx)$
- $\equiv S(\lambda^*x.(SI))(\lambda^*x.Kx)$
- $\equiv S(K(SI))(S(\lambda^*x.K)(\lambda^*x.x))$
- $\equiv S(K(SI))(S(KK)I)$

There and back again

λ -calculus to SK:

- $(\lambda x.M)_{CL} = (\lambda Tx. (M)_{CL})$
- $(X)_{CL} = X$
- $(M \ N)_{Cl} = (M)_{Cl} (N)_{Cl}$

SK to λ -calculus:

- $(X)_{\lambda} = X$
- $(K)_{\lambda} = \lambda xy.x$
- $(S)_{\lambda} = \lambda x y z. x z (y z)$
- $(P Q)_{\lambda} = (P)_{\lambda} (Q)_{\lambda}$

Equality on combinators

Combinators don't have an analogue of the η -reduction rule.

• $(SK)_{\lambda} = (KI)_{\lambda}$, but SK and KI are both normal forms

To define equality on combinators, we take the least congruence relation satisfying:

- weak reductions, and
- functional extensionality: If P x = Q x, then P = Q (where x ∉ FV(PQ)).

$$S K X Y \rightarrow (K Y) (K X) \rightarrow Y \leftarrow I Y \leftarrow K I X Y$$

Therefore, SK = KI.

Properties

Free variables are preserved by translation

- $FV(M) = FV((M)_{CL})$
- $FV(P) = FV((P)_{\lambda})$

Supports α and β reduction:

- $(\lambda T \times P) Q \rightarrow_w T P [Q/x]$
- $(\lambda T \times P) = \lambda Ty. P < y \cdot x > (where y \notin FV(P))$

Properties

We get the following properties of the translation:

- $((M)_{CL})_{\lambda} = M$
- $((P)_{\lambda})_{CL}) = P$
- $M=N \Leftrightarrow (M)_{CL} = (N)_{CL}$
- $P=Q \Leftrightarrow (P)_{\lambda} = (Q)_{\lambda}$

Aside: Hilbert style proof

In Logic and Proof you covered Hilbert style proof:

- Axiom K: $\forall AB. A \rightarrow (B \rightarrow A)$
- Axiom S: $\forall ABC. (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
- Modus Ponens : If A → B and A, then B

Hilbert style proofs correspond to "Typed" combinator terms:

- S K : \forall AB. $((A \rightarrow B) \rightarrow (A \rightarrow A))$
- $S K K : \forall A. (A \rightarrow A)$

Logic, Combinators and the λ -calculus are carefully intertwined. See Types course for more details.

Advanced translation

- $\lambda^T X.X \equiv I$
- $\lambda^T x.P \equiv KP \quad (x \notin FV(P))$
- $\lambda^T x.Px = P$ $(x \notin FV(P))$
- $\lambda^T x.PQ = B P(\lambda^T x.Q)$ $(x \notin FV(P) \text{ and } x \in FV(Q))$
- $\lambda^T x.PQ = C(\lambda^T x.P)Q$ $(x \in FV(P) \text{ and } x \notin FV(Q))$
- $\lambda^T x.PQ = S(\lambda^T x.P)(\lambda^T x.Q)$ $(x \in FV(P), x \in FV(Q))$

(Invented by David Turner)

Compiling with combinators

The translation given so far is exponential in the number of lambda abstractions.

Add two new combinators

- $B P Q R \rightarrow_{W} P (Q R)$
- $CPQR \rightarrow_w PRQ$

Exercise: Encode B and C into just S and K.

Example

```
(\lambda^T x. \lambda^T y. y x)
```

- $= (\lambda^T x.C (\lambda^T y. y) x)$
- $= (\lambda^T x.C | x)$
- = CI

Compared to $(\lambda^* x. \lambda^* y. y x) = S(K(S))(S(K))$

Translation with λ^* is exponential, while λ^T is only quadratic.

Example

 $\lambda^{\mathsf{T}} f. \lambda^{\mathsf{T}} x. \ f (x \ x)$ $\equiv \lambda^{\mathsf{T}} f. \ B \ (f \ (\lambda^{\mathsf{T}} x. x \ x))$ $\equiv \lambda^{\mathsf{T}} f. \ B \ (f \ (S \ (\lambda^{\mathsf{T}} x. x) \ (\lambda^{\mathsf{T}} x. x))$ $\equiv \lambda^{\mathsf{T}} f. \ B \ (f \ (S \ I \ I))$ $\equiv B \ B \ (\lambda^{\mathsf{T}} f. \ f \ (S \ I \ I))$ $\equiv B \ B \ (C \ (\lambda^{\mathsf{T}} f. \ f) \ (S \ I \ I))$

 $\equiv BB(CI(SII))$

This is wrong!!!!

Combinators as graphs

To enable lazy reduction, consider combinator terms as graphs.

S reduction creates two pointers to the same subterm.

Let's consider

- C15 (S mult I)

Exercise: Show this translation.

Example

 $\lambda^T f.(\lambda^T x.f(x x))$

- $= \lambda^T f.B f (\lambda^T x.x x)$
- = $\lambda^T f.B f (S (\lambda^T x.x) (\lambda^T x.x))$
- $= \lambda^T f.B f (S I (\lambda^T x.x))$
- $= \lambda^T f.B f(SII)$
- $= C (\lambda^T f.B f) (S I I)$
- = CB(SII)

C I 5 (S mult I)

Recursion

Comments

If 5 was actually a more complex calculation, would only have to perform it once.

Lazy languages such as Haskell, don't use this method.

Could we have done graphs of λ -terms? No. Substitution messes up sharing.

Example using recursion in Paulson's notes.

Types

Simply typed λ -calculus

Types

$$\tau ::= int \mid \tau \rightarrow \tau$$

Syntactic convention

$$\tau_1 \rightarrow \tau_2 \rightarrow \tau_3 \equiv \tau_1 \rightarrow (\tau_2 \rightarrow \tau_3)$$

Simplifies types of curried functions.

Type checking

We check

- $M N : \tau$ iff $\exists \tau' . M : \tau' \rightarrow \tau$ and $N : \tau'$
- $\lambda x. M : \tau \rightarrow \tau'$ iff $\exists \tau.$ if $x:\tau$ then $M : \tau'$
- n : int

Semantics course covers this more formally, and types course next year in considerably more detail.

Type checking

 $\lambda x. x : int \rightarrow int$

 $\lambda x f. f x : int \rightarrow (int \rightarrow int) \rightarrow int$

 $\lambda fgx. fgx : (\tau_1 \rightarrow \tau_2) \rightarrow (\tau_2 \rightarrow \tau_3) \rightarrow \tau_1 \rightarrow \tau_3$

 $\lambda fgx. f(gx) : (\tau_1 \rightarrow \tau_2) \rightarrow (\tau_2 \rightarrow \tau_3) \rightarrow \tau_1 \rightarrow \tau_3$

 $\lambda f x. f (f x) : (\tau \rightarrow \tau) \rightarrow \tau \rightarrow \tau$

Types help find terms

Consider type $(\tau_1 \rightarrow \tau_2 \rightarrow \tau_3) \rightarrow \tau_2 \rightarrow \tau_1 \rightarrow \tau_3$

Term $\lambda f.M$ where $f: (\tau_1 \rightarrow \tau_2 \rightarrow \tau_3)$ and $M: \tau_2 \rightarrow \tau_1 \rightarrow \tau_3$

Therefore $M = \lambda xy$. N where $x:\tau_2$, $y:\tau_1$ and $N:\tau_3$.

Therefore N = f y x

Therefore λfxy . $fyx: (\tau_1 \rightarrow \tau_2 \rightarrow \tau_3) \rightarrow \tau_2 \rightarrow \tau_1 \rightarrow \tau_3$

Recap: Call-by-name

Do not reduce under λ and do not reduce argument • $C := C M \mid$ •

Polymorphism and inference

ML type system supports polymorphism: $\tau ::= \alpha \mid \forall \alpha. \ \tau \mid ...$

Types can be inferred using unification.

Recap: Call-by-value

- $V := x \mid \lambda x. M$ (values)
- $C := C M \mid \bullet \mid (\lambda x.M) C$
- $C[(\lambda x.M) V] \rightarrow_{\beta} C[M[V/x]]$

Do no reduce under λ , and only apply function when its argument is a value.

Continuations

Call-by-value

Definition:

- 1. $[x]_{v}(k) = kx$
- 2. $\| \mathbf{c} \|_{\mathsf{v}}(\mathbf{k}) = \mathbf{k} \mathbf{c}$
- 3. $[\![\lambda x.M]\!]_{v}(k) \equiv k (\lambda(x,k'). [\![M]\!]_{v}(k'))$
- 4. $\llbracket M N \rrbracket_{v}(k) \equiv \llbracket M \rrbracket_{v}(\lambda m. \llbracket N \rrbracket_{v}(\lambda n. m (n,k)))$

Intuition:

- $\mathbb{I} M \mathbb{I}_{v}(k)$ means evaluate M and then pass the result to k.
- k is what to do next.

Pairs not essential, but make the translation simpler.

Overview

Encode evaluation order.

Encode control flow commands: for example Exit, exceptions, and goto.

Enables backtracking algorithms easily.

Key concept:

 don't return, pass result to continuation. (This is what you did with the MIPS JAL (Jump And Link.) instruction.)

Example: CBV

$[\![\lambda x.y]\!]_{v}(k)$

- $= k (\lambda(x,k'). [y]_{v}(k'))$
- $= k (\lambda(x,k'). k'y)$

$[(\lambda x.y) z]_v(k)$

- $= [[\lambda x.y]]_{v}(\lambda m.[z]]_{v}(\lambda n. m(n,k)))$
- $= [[\lambda x.y]]_{v}(\lambda m.(\lambda n. m(n,k))z)$
- $= (\lambda m. (\lambda n. m(n,k)) z) (\lambda(x,k'). k' y)$
- \rightarrow (λ n. (λ (x,k'). k'y)) (n,k)) z
- $\rightarrow (\lambda(x,k').\ k'\ y))\ (z,k)$
- $\rightarrow k y$

Call-by-name

Definition:

- $\| x \|_n(k) = x k$
- $\| \mathbf{c} \|_{\mathbf{n}}(\mathbf{k}) = \mathbf{k} \mathbf{c}$
- $[\![\lambda x.M]\!]_n(k) = k (\lambda(x,k'). [\![M]\!](k'))$
- $\llbracket M N \rrbracket_n(k) = \llbracket M \rrbracket (\lambda m. m (\lambda k'. \llbracket N \rrbracket (k'), k))$

Only application and variable are different. Don't have to evaluate N before putting it into M.

Encoding control

Consider trying to add an Exit instruction to the λ -calculus.

- Exit M → Exit (CBN and CBV)
- $(\lambda x.M)$ Exit \rightarrow Exit (Just CBV)

When we encounter Exit execution is stopped.

- (λx.y) Exit = Exit (CBV)
- $(\lambda x.y)$ Exit = y (CBN)

Encode as

• \mathbb{E} Exit $\mathbb{I}(k) = ()$ (Both CBV and CBN)

CBN and CBV

For any closed term M $(FV(M) = \{\})$

- M terminates with value v in the CBV λ -calculus, iff $[M]_{V}(\lambda x.x)$ terminates in both the CBV and CBN λ -calculus with value v.
- M terminates with value v in the CBN λ -calculus, iff $[M]_n(\lambda x.x)$ terminates in both the CBV and CBN λ -calculus with value v.

Example CBV

```
[(\lambda x.y) Exit]_{v}(k)
```

- $= [\![\lambda x.y]\!]_{v} (\lambda m. [\![Exit]\!]_{v} (\lambda n. m (n,k)))$
- $= [[\lambda x.y]]_{V}(\lambda m.())$
- $\equiv (\lambda m. ()) (\lambda(x,k'). k' y)$
- \rightarrow ()

Example CBN

$[\![(\lambda x.y)\;Exit]\!]_n(k)$

- $= [\lambda x.y]_n (\lambda m. m (\lambda k'.[Exit]_n(k'),k))$
- = $(\lambda m. \ m \ (\lambda k'. [Exit]_n(k'), k)) \ (\lambda(x,k'). \ y \ k')$
- \rightarrow $(\lambda(x,k'). y k') (\lambda k'. [Exit]_n(k'),k)$
- \rightarrow y k

Example

Consider having two Exit expressions

- $\| \text{Exit}_1 \| (k) = 1$
- $[[Exit_2]](k) = 2$

Now, we can observe the two different translations by considering Exit₁ Exit₂:

- $[Exit_1 Exit_2]_{v1}(k) = [Exit_1]_{v1}(k)$ (Function first)
- $[Exit_1 Exit_2]_{v2}(k) = [Exit_2]_{v2}(k)$ (Argument first)

Order of evaluation

With CBV we can consider two orders of evaluation:

```
Function first:
```

```
\llbracket M N \rrbracket_{v1}(k) \equiv \llbracket M \rrbracket (\lambda m. \llbracket N \rrbracket (\lambda n. m (n,k)))
```

Argument first:

```
\llbracket M N \rrbracket_{v2}(k) \equiv \llbracket N \rrbracket (\lambda n. \llbracket M \rrbracket (\lambda m. m (n,k)))
```

Example (continued)

```
[Exit_1 Exit_2]_{v1}(k)
```

- $= [[Exit_1]] (\lambda m. [[Exit_2]] (\lambda n. m (n,k))$
- $= 1 = [Exit_1](k)$

$[Exit_1 Exit_2]_{v2}(k)$

- $= [Exit_2](\lambda n. [Exit_1](\lambda m. m(n,k)))$
- $= 2 = [Exit_2](k)$

Typed translation: CBV

Consider types:

$$\tau ::= b \mid \tau \rightarrow \tau \mid \bot$$

Here b is for base types of constants. \perp for continuation return type.

We translate: Typo:T in notes should be ×

- $\llbracket \tau_1 \rightarrow \tau_2 \rrbracket_{\mathsf{V}} \equiv (\llbracket \tau_1 \rrbracket_{\mathsf{V}} \times (\llbracket \tau_2 \rrbracket_{\mathsf{V}} \rightarrow \bot)) \rightarrow \bot$
- $\mathbb{I} b \mathbb{I}_{v} = b$

If M: τ then λk . $\|M\|_{V}(k)$: $(\|\tau\|_{V} \to \bot) \to \bot$

Sometimes, we write T τ for $(\tau \to \bot) \to \bot$

Types guide translation

Application translation (MN): Assume

- $k: (\llbracket \tau_2 \rrbracket_V \rightarrow \bot)$
- $M: \tau_1 \rightarrow \tau_2$, hence $[M]_{V}: ([\tau_1 \rightarrow \tau_2]_{V} \rightarrow \bot) \rightarrow \bot$
- N: τ_1 , hence $[N]_V:([\tau_1]_V \to \bot) \to \bot$

Find L such that $\llbracket M \rrbracket_v L : \bot$ therefore $L: \llbracket \tau_1 \rightarrow \tau_2 \rrbracket_v \rightarrow \bot$

So, $L = \lambda m$. L_1 , where $L_1 : \bot$ if $m: \llbracket \tau_1 \rightarrow \tau_2 \rrbracket_{V} = \llbracket \tau_1 \rrbracket_{V} T(\llbracket \tau_2 \rrbracket_{V} \rightarrow \tau_2 \rrbracket_{V})$ \perp) \rightarrow \perp

Find L₂ such that \mathbb{I} N \mathbb{I}_{V} L₂: \perp therefore L₂: $\mathbb{I}_{\tau_1}\mathbb{I}_{V} \rightarrow \perp$

Therefore $L_2 = \lambda n$. L_3 where L_3 : \perp if $n: [\tau_1]_{\nu}$.

Therefore $L_3 = m(n,k)$

 $\llbracket M N \rrbracket_{V}(k) = \llbracket M \rrbracket (\lambda m. \llbracket N \rrbracket (\lambda n. m (n,k)))$

Types guide translation

For function translation: Assume

- $k: (\llbracket \tau_1 \rightarrow \tau_2 \rrbracket_V \rightarrow \bot)$
- $\lambda x.M : \tau_1 \rightarrow \tau_2$, hence $[M]_v : ([\tau_2]_v \rightarrow \bot) \rightarrow \bot$ if $x : [\tau_1]_v$

Find N such that $k N : \bot$ therefore $N : \llbracket \tau_1 \rightarrow \tau_2 \rrbracket_V$

So, $N = \lambda(x,k')$. L, where L: \perp if

- $x : [\tau_1]_v$ and
- $k': \llbracket \tau_2 \rrbracket_v \rightarrow \bot$

Therefore $L = \mathbb{I} M \mathbb{I}_{k}(k')$

 $[\![\lambda x.M]\!]_{v}(k) \equiv k (\lambda(x,k'). [\![M]\!](k'))$

Other encodings

We can encode other control structures:

- Exceptions (2 continuations: normal and exception)
- Breaks and continues in loops (3 continuations: normal, break, and continue)
- Goto, jumps and labels
- call/cc (passing continuations into programs)
- backtracking

Exercises

- Find an example that evaluates differently for each of the three encodings, and demonstrate this.
- How would you perform a type call-by-name translation?

Implementation

Plan: use continuations to enable backtracking:

```
fun
```

```
f ("c") (a::xs) k = if a=c then (k xs) else false

| f ("c") [] k = false

| f (re1; re2) xs k = f re1 xs (λys. f re2 ys k)

| f (re1 | re2) xs k = (f re1 xs k) orelse (f re2 xs k)

| f (re1 *) xs k =

(k xs) orelse (f (re1; re1*) xs k
```

Exercise: execute f (("a" | "a"; "b"; "c"); "b") ["a", "b", "c"] (λxs. xs=[])

Aside: backtracking

Continuations can be a powerful way to implement backtracking algorithms. (The following is due to Olivier Danvy.)

Consider implementing regular expression pattern matcher in ML:

```
datatype re =
    Char of char (* "c" *)
    | Seq of re * re (* re1; re2 *)
    | Alt of re * re (* re1 | re2 *)
    | Star of re * (* re1 * *)
```

Example execution

```
f (("a"; "a" | "a"); "a") ["a", "a"] (\lambda xs. xs=[])

→ f ("a"; "a" | "a") ["a", "a"] (\lambda xs. f "a" xs (\lambda xs. xs=[]))

→ f ("a"; "a") ["a", "a"] (\lambda xs. f "a" xs (\lambda xs. xs=[]))

orelse f "a" ["a", "a"] (\lambda xs. f "a" xs (\lambda xs. xs=[]))

→ (\lambda xs. f "a" xs (\lambda xs. xs=[])) []

orelse f "a" ["a", "a"] (\lambda xs. f "a" xs (\lambda xs. xs=[]))

→ false

orelse f "a" ["a", "a"] (\lambda xs. f "a" xs (\lambda xs. xs=[]))

→ f "a" ["a", "a"] (\lambda xs. f "a" xs (\lambda xs. xs=[]))

→ (\lambda xs. f "a" xs (\lambda xs. xs=[])) ["a"]

→ (\lambda xs. xs=[]) [] → true
```

Exercise

How could you extend this to

- count the number of matches; and
- allow matches that don't consume the whole string?

Remove use of orelse by building a list of continuations for backtracking.

State

Comments

Not the most efficient regular expression pattern matching, but very concise code.

This style can implement efficient lazy pattern matchers or unification algorithms.

Encoding state

Now, we can consider extending the λ -calculus with

- Assignment M := N
- Read !M

How can we do this by encoding?

ML Program

```
val a = ref 1:
fun q(x) = (a := (!a)*2; x+1)
fun h(y) = (a := (!a)+3; y*2)
print q(1) + h(3) + !a
```

```
fun g(x,w) = (x+1,w^*2)
fun h(y,w) = (y*2,w + 3)
val w0 = 1
val(g',w1) = g(1,w0)
val(h',w2) = h(3,w1)
print g' + h' + w2
```

CPS and State

Definition: (This is a CBV translation.)

- $[x]_{v}(k,s) = k(x,s)$
- $[c]_{v}(k,s) = k(c,s)$
- $[\lambda x.M]_{V}(k,s) = k((\lambda(x,k',s').[M](k',s')), s)$
- $\|MN\|_{V}(k,s) =$ $\llbracket M \rrbracket_{V} (\lambda(m,s'), \llbracket N \rrbracket_{V}(\lambda(n,s''), m(n,k,s''), s'), s)$
- $[\![!M]\!]_{v}(k,s) = [\![M]\!]_{v}(\lambda(v,s'), k (GET s' v, s'), s)$
- $[[M]:=N]_{V}(k,s) =$ $\llbracket M \rrbracket_{\vee}(\lambda(v,s'), \llbracket N \rrbracket_{\vee}(\lambda(v',s''),k((),SET s'' v v'),s'),s)$

Comments

Assume x, y and z are integers, so we have =. Could use Church numerals.

Evaluation order made explicit (CPS transform).

Parameter used to carry state around.

We use the following encoding of state functions,

- SET s x y = λz . IF z=x THEN y ELSE s z Typo in printout

• GET s x = s x

Note that, we ignore allocation in this encoding.

CPS and State

Definition with state first

Definition: (This is a CBV translation.)

- $[X]_{v}(s,k) = k(s,x)$
- $[c]_{v}(s,k) = k(s,c)$
- $[\![\lambda x.M]\!]_{v}(s,k) = k(s, (\lambda(s',x,k'). [\![M]\!](s',k')))$
- $\|MN\|_{V}(s,k) =$ $\llbracket M \rrbracket_{V}(s,\lambda(s',m), \llbracket N \rrbracket_{V}(s',\lambda(s'',n), m(s'',n,k)))$
- $[M]_{v}(s,k) = [M]_{v}(s,\lambda(s',v),k(s',GETs'v))$
- $[[M]:=N]_{V}(s,k) =$ $\llbracket M \rrbracket_{v}(s, \lambda(s',v), \llbracket N \rrbracket_{v}(s',\lambda(s'',v'), k(SET s'' v v',())), s)$

Exercises

- Extend encoding with sequential composition M:N
- Translate: [x]:=1; !x
- Translate: $(\lambda y.z)([x]:=(!x+1))$
- Redo translations above.

Monad (Haskell)

Haskell provides a syntax and type system for threading "effects" through code.

Two required operations

- return : $\tau \rightarrow T \tau$
- >>=: $T \tau \rightarrow (\tau \rightarrow T \tau') \rightarrow T \tau'$ [bind]

It's getting complicated

Common theme, we are threading "stuff" through the evaluation:

- continuations
- state

If we add new things, for example IO and exceptions, we will need even more parameters.

Can we abstract the idea of threading "stuff" through evaluation?

Option/Maybe Monad

Types

• Option τ

Definition

• Option $\tau = unit + \tau$

Operations

- return : $\tau \rightarrow$ Option τ
 - return M = Some M
- >>= : Option $\tau \rightarrow (\tau \rightarrow Option \tau') \rightarrow Option \tau'$ $\lambda xy. \ case \ x \ of \ None => None | Some \ z => y \ z$

Example

```
Imagine findx and findy are of type unit \rightarrow Option \tau findx() >>= \lambda x. findy() >>= \lambda y. return (x,y)

This code is of type Option (\tau T \tau).

ML code: case findx() of None => None | Some x => case findy() of None => None | Some y => Some (x,y)
```

State monad

Types

• State τ

Definition

• State $\tau = s \rightarrow s * \tau$ (s is some type for representing state, i.e. partial functions)

Operations

- return : $\tau \rightarrow State \tau$
- >>= : State $\tau \rightarrow (\tau \rightarrow State \tau') \rightarrow State \tau'$ (infix)
- set : Loc \rightarrow Int \rightarrow State ()
- get : Loc → State Int
- new : () → State Loc

Do notation

```
\label{eq:linear_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_con
```

Haskell

Read up on Haskell if this interests you.

Concluding remarks

Summary

"Everything" can be encoded into the λ -calculus.

• Caveat: not concurrency!

Should we encode everything into λ -calculus?

