Lecture 7

Relating Denotational and Operational Semantics

Adequacy

For any closed PCF terms M and V of ground type $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \downarrow_{\gamma} V.$$

NB. Adequacy does not hold at function types

Adequacy

For any closed PCF terms M and V of ground type $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \downarrow_{\gamma} V.$$

Adequacy

For any closed PCF terms M and V of ground type $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \downarrow_{\gamma} V.$$

NB. Adequacy does not hold at function types:

$$\llbracket \mathbf{fn} \ x : \tau . \ (\mathbf{fn} \ y : \tau . \ y) \ x \rrbracket \quad = \quad \llbracket \mathbf{fn} \ x : \tau . \ x \rrbracket \quad : \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket$$

2

2

Adequacy

For any closed PCF terms M and V of ground type $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \downarrow_{\gamma} V.$$

NB. Adequacy does not hold at function types:

$$\llbracket \mathbf{fn} \ x : \tau . \left(\mathbf{fn} \ y : \tau . \ y \right) x \rrbracket = \llbracket \mathbf{fn} \ x : \tau . \ x \rrbracket : \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket$$

but

fn
$$x : \tau$$
. (**fn** $y : \tau$. y) $x \not \! \! \downarrow_{\tau \to \tau}$ **fn** $x : \tau$. x

Adequacy proof idea

- 1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.
 - ▶ Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$, $\mathbf{fn} x : \tau . M'$.

Adequacy proof idea

Adequacy proof idea

- 1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.
 - ▶ Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$, $\mathbf{fn} x : \tau . M'$.
- 2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

3

3

Adequacy proof idea

- 1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.
 - ▶ Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$, $\mathbf{fn} x : \tau . M'$.
- 2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

$$[\![M]\!] \lhd_\tau M$$
 for all types τ and all $M \in \mathrm{PCF}_\tau$

where the formal approximation relations

$$\lhd_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_{\tau}$$

are *logically* chosen to allow a proof by induction.

Definition of $d \lhd_{\gamma} M \ (d \in [\![\gamma]\!], M \in \mathrm{PCF}_{\gamma})$ for $\gamma \in \{nat, bool\}$

$$n \triangleleft_{nat} M \stackrel{\text{def}}{\Leftrightarrow} (n \in \mathbb{N} \Rightarrow M \Downarrow_{nat} \mathbf{succ}^n(\mathbf{0}))$$

$$b \lhd_{bool} M \stackrel{\text{def}}{\Leftrightarrow} (b = true \Rightarrow M \Downarrow_{bool} \mathbf{true})$$

 $\& (b = false \Rightarrow M \Downarrow_{bool} \mathbf{false})$

Requirements on the formal approximation relations, I

We want that, for $\gamma \in \{nat, bool\}$,

$$\llbracket M \rrbracket \lhd_{\gamma} M \text{ implies } \underbrace{\forall \, V \, (\llbracket M \rrbracket = \llbracket V \rrbracket \implies M \Downarrow_{\gamma} V)}_{\text{adequacy}}$$

Proof of: $[\![M]\!] \lhd_{\gamma} M$ implies adequacy

Case $\gamma = nat$.

3

$$\begin{split} \llbracket M \rrbracket &= \llbracket V \rrbracket \\ &\Longrightarrow \llbracket M \rrbracket = \llbracket \mathbf{succ}^n(\mathbf{0}) \rrbracket \quad \text{ for some } n \in \mathbb{N} \\ &\Longrightarrow n = \llbracket M \rrbracket \lhd_\gamma M \\ &\Longrightarrow M \Downarrow \mathbf{succ}^n(\mathbf{0}) \quad \text{ by definition of } \lhd_{nat} \end{split}$$

Case $\gamma = bool$ is similar.

Requirements on the formal approximation relations, II

We want to be able to proceed by induction.

▶ Consider the case $M = M_1 M_2$.

→ logical definition

8

Definition of

$$f \vartriangleleft_{\tau \to \tau'} M \ \left(f \in (\llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket), M \in \mathrm{PCF}_{\tau \to \tau'} \right)$$

$$f \vartriangleleft_{\tau \to \tau'} M$$

$$\stackrel{\text{def}}{\Leftrightarrow} \forall x \in \llbracket \tau \rrbracket, N \in \mathrm{PCF}_{\tau}$$

$$(x \vartriangleleft_{\tau} N \Rightarrow f(x) \vartriangleleft_{\tau'} M N)$$

Definition of

$$f \vartriangleleft_{\tau \to \tau'} M \ (f \in (\llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket), M \in PCF_{\tau \to \tau'})$$

Requirements on the formal approximation relations, III

We want to be able to proceed by induction.

ightharpoonup Consider the case $M = \mathbf{fix}(M')$.

→ admissibility property

Admissibility property

Lemma. For all types τ and $M \in \mathrm{PCF}_{\tau}$, the set

$$\{ d \in \llbracket \tau \rrbracket \mid d \lhd_{\tau} M \}$$

is an admissible subset of $\llbracket \tau \rrbracket$.

Requirements on the formal approximation relations, IV

We want to be able to proceed by induction.

▶ Consider the case $M = \mathbf{fn} \, x : \tau \, . \, M'$.

→ substitutivity property for open terms

Further properties

Lemma. For all types τ , elements $d, d' \in [\![\tau]\!]$, and terms $M, N, V \in \mathrm{PCF}_{\tau}$,

1. If
$$d \sqsubseteq d'$$
 and $d' \lhd_{\tau} M$ then $d \lhd_{\tau} M$.

2. If
$$d \lhd_{\tau} M$$
 and $\forall V (M \Downarrow_{\tau} V \implies N \Downarrow_{\tau} V)$ then $d \lhd_{\tau} N$.

10

Fundamental property

Theorem. For all $\Gamma = \langle x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n \rangle$ and all $\Gamma \vdash M : \tau$, if $d_1 \lhd_{\tau_1} M_1, \dots, d_n \lhd_{\tau_n} M_n$ then $\llbracket \Gamma \vdash M \rrbracket \llbracket (x_1 \mapsto d_1, \dots, x_n \mapsto d_n) \vartriangleleft_{\tau} M \llbracket M_1/x_1, \dots, M_n/x_n \rrbracket .$

13

11

Fundamental property

Theorem. For all $\Gamma = \langle x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n \rangle$ and all $\Gamma \vdash M : \tau$, if $d_1 \lhd_{\tau_1} M_1, \dots, d_n \lhd_{\tau_n} M_n$ then $\llbracket \Gamma \vdash M \rrbracket \llbracket x_1 \mapsto d_1, \dots, x_n \mapsto d_n \rrbracket \lhd_{\tau} M \llbracket M_1/x_1, \dots, M_n/x_n \rrbracket.$

NB. The case $\Gamma = \emptyset$ reduces to

$$\llbracket M \rrbracket \lhd_{\tau} M$$

for all $M \in \mathrm{PCF}_{\tau}$.

13

15

Given PCF terms M_1, M_2 , PCF type au, and a type environment Γ , the relation $\Gamma \vdash M_1 \leq_{\operatorname{ctx}} M_2 : au$ is defined to hold iff

Contextual preorder between PCF terms

- ullet Both the typings $\Gamma \vdash M_1 : \tau$ and $\Gamma \vdash M_2 : \tau$ hold.
- For all PCF contexts $\mathcal C$ for which $\mathcal C[M_1]$ and $\mathcal C[M_2]$ are closed terms of type γ , where $\gamma=nat$ or $\gamma=bool$, and for all values $V\in \mathrm{PCF}_{\gamma}$,

$$\mathcal{C}[M_1] \downarrow_{\gamma} V \implies \mathcal{C}[M_2] \downarrow_{\gamma} V$$
.

Contextual preorder from formal approximation

Proposition. For all PCF types τ and all closed terms $M_1, M_2 \in \mathrm{PCF}_{\tau}$,

$$\llbracket M_1 \rrbracket \lhd_{\tau} M_2 \iff M_1 \leq_{\operatorname{ctx}} M_2 : \tau$$
.

Extensionality properties of \leq_{ctx}

At a ground type $\gamma \in \{bool, nat\}$,

 $M_1 \leq_{
m ctx} M_2 : \gamma$ holds if and only if

$$\forall V \in \mathrm{PCF}_{\gamma} (M_1 \Downarrow_{\gamma} V \implies M_2 \Downarrow_{\gamma} V)$$
.

At a function type $\tau \to \tau'$,

 $M_1 \leq_{\mathrm{ctx}} M_2 : \tau \to \tau'$ holds if and only if

$$\forall M \in \mathrm{PCF}_{\tau} (M_1 M \leq_{\mathrm{ctx}} M_2 M : \tau')$$
.

16