Lecture 1

Introduction

• General area.

Formal methods: Mathematical techniques for the specification, development, and verification of software and hardware systems.

• Specific area.

Formal semantics: Mathematical theories for ascribing meanings to computer languages.

Why do we care?

- Rigour.
 - ... specification of programming languages
 - ... justification of program transformations
- Insight.
 - ... generalisations of notions computability
 - ... higher-order functions
 - ... data structures

- Feedback into language design.
 - ... continuations
 - ... monads
- Reasoning principles.
 - ... Scott induction
 - ... Logical relations
 - ... Co-induction

1

4

Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the *steps of computation* they can take during program execution.

Axiomatic.

Meanings for program phrases defined indirectly via the *ax-ioms and rules* of some logic of program properties.

Denotational.

Concerned with giving *mathematical models* of programming languages. Meanings for program phrases defined abstractly as elements of some suitable mathematical structure.

Basic idea of denotational semantics

 $\begin{array}{cccc} \text{Syntax} & \stackrel{\llbracket-\rrbracket}{\longrightarrow} & \text{Semantics} \\ \text{Recursive program} & \mapsto & \text{Partial recursive function} \\ \text{Boolean circuit} & \mapsto & \text{Boolean function} \\ P & \mapsto & \llbracket P \rrbracket \end{array}$

Concerns:

- Abstract models (*i.e.* implementation/machine independent).
 ~> Lectures 2, 3 and 4.
- Compositionality.
 - \rightsquigarrow Lectures 5 and 6.
- Relationship to computation (*e.g.* operational semantics).
 ~> Lectures 7 and 8.

8

Basic example of denotational semantics (I)

IMP syntax

Arithmetic expressions

Boolean expressions

 $B ::= \mathbf{true} \mid \mathbf{false} \mid A = A \mid \dots \\ \mid \neg B \mid \dots$

Commands

 $C ::= \mathbf{skip} \mid L := A \mid C; C$ $\mid \mathbf{if} B \mathbf{then} C \mathbf{else} C$ $\mid \mathbf{while} B \mathbf{do} C$

Characteristic features of a denotational semantics

- Each phrase (= part of a program), P, is given a denotation,
 [P] a mathematical object representing the contribution of P to the meaning of any complete program in which it occurs.
- The denotation of a phrase is determined just by the denotations of its subphrases (one says that the semantics is compositional).

Semantic functions

 $\mathcal{A}: \quad \mathbf{Aexp} \to (State \to \mathbb{Z})$ $\mathcal{B}: \quad \mathbf{Bexp} \to (State \to \mathbb{B})$ $\mathcal{C}: \quad \mathbf{Comm} \to (State \to State)$

where

$$\mathbb{Z} = \{ \dots, -1, 0, 1, \dots \}$$
$$\mathbb{B} = \{ true, false \}$$
$$State = (\mathbb{L} \to \mathbb{Z})$$

Semantic function \mathcal{A}

 $\begin{aligned} \mathcal{A}[\![\underline{n}]\!] &= \lambda s \in State. \, n \\ \mathcal{A}[\![L]\!] &= \lambda s \in State. \, s(L) \\ \mathcal{A}[\![A_1 + A_2]\!] &= \lambda s \in State. \, \mathcal{A}[\![A_1]\!](s) + \mathcal{A}[\![A_2]\!](s) \end{aligned}$

10

Basic example of denotational semantics (IV)

Semantic function \mathcal{B}

$$\mathcal{B}\llbracket \mathbf{frue} \rrbracket = \lambda s \in State. true$$
$$\mathcal{B}\llbracket \mathbf{false} \rrbracket = \lambda s \in State. false$$
$$\mathcal{B}\llbracket A_1 = A_2 \rrbracket = \lambda s \in State. eq(\mathcal{A}\llbracket A_1 \rrbracket(s), \mathcal{A}\llbracket A_2 \rrbracket(s))$$
$$\text{where } eq(a, a') = \begin{cases} true & \text{if } a = a' \\ false & \text{if } a \neq a' \end{cases}$$

Basic example of denotational semantics (V)

Semantic function C

 $\llbracket \mathbf{skip} \rrbracket = \lambda s \in State.s$

NB: From now on the names of semantic functions are omitted!

Given partial functions $\llbracket C \rrbracket, \llbracket C' \rrbracket : State \rightarrow State$ and a function $\llbracket B \rrbracket : State \rightarrow \{true, false\}$, we can define

 $\llbracket \mathbf{if} \ B \ \mathbf{then} \ C \ \mathbf{else} \ C' \rrbracket = \\ \lambda s \in State. \ if \left(\llbracket B \rrbracket(s), \llbracket C \rrbracket(s), \llbracket C' \rrbracket(s) \right)$

where

$$if(b, x, x') = \begin{cases} x & \text{if } b = true \\ x' & \text{if } b = false \end{cases}$$

Basic example of denotational semantics (VI)

Semantic function C

 $\llbracket L := A \rrbracket = \lambda s \in State. \, \lambda \ell \in \mathbb{L}. \, if \left(\ell = L, \llbracket A \rrbracket(s), s(\ell) \right)$

14

13

Denotational semantics of sequential composition

Denotation of sequential composition C; C' of two commands

$$[C; C'] = \llbracket C' \rrbracket \circ \llbracket C \rrbracket = \lambda s \in State. \llbracket C' \rrbracket (\llbracket C \rrbracket (s))$$

given by composition of the partial functions from states to states $\llbracket C \rrbracket, \llbracket C' \rrbracket : State \rightharpoonup State$ which are the denotations of the commands.

Cf. operational semantics of sequential composition:

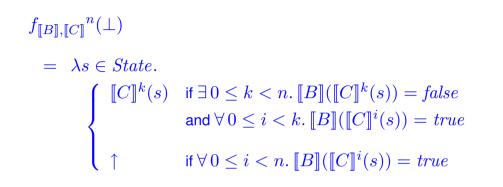
$$\frac{C, s \Downarrow s' \quad C', s' \Downarrow s''}{C; C', s \Downarrow s''}$$

Fixed point property of [while B do C]

$$\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket = f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket)$$
where, for each $b : State \rightarrow \{true, false\}$ and
 $c, w : State \rightarrow State$, we define
$$f_{b,c} : (State \rightarrow State) \rightarrow (State \rightarrow State)$$
as
$$f_{b,c} = \lambda w \in (State \rightarrow State). \ \lambda s \in State. \ if (b(s), w(c(s)), s).$$

- Why does $w = f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(w)$ have a solution?
- What if it has several solutions—which one do we take to be **[while** *B* **do** *C*]?

Approximating \llbracket while B do $C \rrbracket$



 $D \stackrel{\mathrm{def}}{=} State \rightharpoonup State$

- Partial order \sqsubseteq on D:
 - $w \sqsubseteq w'$ iff for all $s \in State$, if w is defined at s then so is w' and moreover w(s) = w'(s).
 - iff the graph of w is included in the graph of w'.
- Least element $\bot \in D$ w.r.t. \sqsubseteq :
 - \perp = totally undefined partial function
 - = partial function with empty graph

(satisfies $\perp \sqsubseteq w$, for all $w \in D$).