Learning checklist Part I	Lecture Notes pointers
Lecture 1: Introduction	
\Box Understand the basic ideas of the <i>denotational approach</i> to the semantics of programming languages.	[Slides 1–2]
\Box Understand the notion of <i>compositional semantics</i> .	[Slides 3–4]
\Box Understand the need for supporting <i>fixed point operators</i> .	$[\S{1.1}]$
Lecture 2: Least fixed points	
\Box Be able to give the definition and examples/non-examples of <i>partial order</i> , <i>cpo</i> , and <i>domain</i> .	[§2.1]
 Be able to give the definition of <i>lubs</i> of chains, and use the definition as a proof principle. Be able to state and prove the <i>basic properties of lubs</i> of chains. 	[§2.1] [Slide 16]
\Box Be able to give the definition and examples/non-examples of <i>monotone</i> , <i>continuous</i> , and <i>strict</i> functions.	[§2.1]
 Be able to give the definition of <i>least pre-fixed point</i>, and use the definition as a proof principle. Be able to prove that least pre-fixed points are <i>fixed-points</i>. 	[§2.2]
\Box Be able to state and prove Tarski's fixed point theorem.	[§2.2]
Lecture 3: Constructions on domains	
\Box Be able to give the definition of the <i>product</i> of domains, <i>function</i> domains, and <i>flat</i> domains.	[§§3.1–3.3]
\Box Be able to give the definition and establish the <i>continuity</i> of the various functions (projections, pairings, evaluation, currying, composition, fixed point operator) associated to the above constructions.	[§§3.1–3.3] [Slide 37]
Lecture 4: Scott induction ¹	
\Box Be able to give the definition of the concept of <i>admissible subset</i> of a domain.	[§4.1]
\Box Be able to state, prove the soundness of, and apply <i>Scott's induction principle</i> .	$[\S\S4.1-4.2]$
\Box Be able to build <i>admissible subsets</i> , justifying the constructions.	[§4.3]

¹You can safely skip pages 32–34 of the lecture notes.

Learning checklist Part II	Lecture Notes pointers
Lecture 5: PCF	
\Box Understand the syntax, typing, and operational semantics of <i>PCF</i> .	$[\S5.1-5.4]$
\Box Be able to define <i>partial recursive functions</i> in PCF.	[§5.3]
\Box Be able to give the definition of the notion of <i>contextual equivalence</i> in PCF.	[§5.5]
Lecture 6: Denotational semantics of PCF	
\Box Be able to give the definition of the <i>denotational semantics of PCF</i> .	$[\S6.1-6.2]$
\Box Be able to <i>use</i> the denotational semantics of PCF to prove contextual equivalence in PCF.	[Slide 30]
\Box Be able to state the <i>compositionality properties</i> of the denotational semantics of PCF.	[§6.3]
\Box Be able to state and prove the <i>soundness</i> of the denotational semantics of PCF.	[§6.4] [Slide 27]
Lecture 7: Relating denotational and operational semantics	
\Box Be able to state the <i>adequacy</i> property of the denotational semantics of PCF.	[Slide 27]
□ Be able to give the definition of the notion of <i>contextual preorder</i> in PCF, and to state and prove its extensionality properties.	[§7.3]
Lecture 8: Full abstraction	

\Box Understand the concept of <i>full abstraction</i> in PCF, and the reason for which it fails. [§8]	[8.1]
--	-------