
1

Databases : Lecture 11:
Entity/Relationship modelling

Timothy G. Griffin
Lent Term 2009

www.cl.cam.ac.uk/Teaching/current/Databases/

Dr. Peter Chen
http://bit.csc.lsu.edu/~chen/

2

Conceptual Design

• What are the entities and relationships in
the enterprise?

• What information about these entities and
relationships should we store in the
database?

• What are the integrity constraints
(business rules) that hold?

• We can represent this information
pictorially in E/R diagrams (and then map
these to a relational schema later).

3

E/R basics

• An entity is a real-world object that is
distinguishable from other objects

• Each entity has attributes (with domains)
• A particular entity will have a value for each of its

attributes
• An entity type defines a set of entities that have

the same attributes
• An entity set is the collection of all entities of a

particular entity type (at a particular point in time)

4

Entities and attributes

• Entity types are drawn as rectangles, e.g.

• Attributes are drawn as ovals, and
attached to the entity sets with lines, e.g.

Employees

NI dobName

Employees

5

Key attributes

• A key attribute of an entity type is an
attribute whose values are distinct for each
entity

• Sometimes several attributes (a composite
attribute) together form a key
– NB: Such a composite should be minimal

• We underline key attributes
NI dobName

Employees

6

Entity types to relations

• A (strong) entity type maps to a relation schema
in the obvious way, e.g.

is mapped to the relation schema

Employees(NI:τ1, Name:τ2, dob:τ3)

NI dobName

Employees

7

Relationships

• A relationship type among two or more
entity types defines a set of associations
between entities from those types
– Mathematically, relationship type R

R ⊆ E1 × … × En.
• The set of instances of the relationship

type is called the relationship set

8

Relationships in E/R

• Relationship types are represented by
diamonds

• They connect the participating entity types
with straight lines, e.g.

Works_in

NI dobName

Employees

DID budget
dname

Departments

9

Map to relation

is mapped to the relation schema:
Works_in(NI:τ1, DID:τ2, since:τ3)

Works_in

NI dobName

Employees

DID budget
dname

Departments

since

M N

10

Relationship set diagrams

• Sometimes its useful to represent the
relationship set diagrammatically

e1

e2

e3

e4

e5

d1

d2

d3

d4

d5

r1

r2

r3

r4

… ……

11

Relationship attributes

• Relationships can also have attributes
– NB: A relationship must be uniquely

determined by the entities, without reference
to the relationship attributes

Works_in

NI dobName

Employees

DID budget
dname

Departments

since

12

N-ary relationships

• Although relatively rare, we can have n-ary
relationships, e.g.

Works_in2

NI dobName

Employees

DID budget
dname

Department

since

Locationsaddress capacity

13

Recursive relationships

• Each entity type in a relationship plays a
particular role, which is associated with a role
name (this is usually suppressed)

• An recursive relationship is when an entity
type plays more than one role in the relationship
type

• In this case the role name is required

14

Recursive relationships in E/R

 e.g.

Employees

Reports-to

NI
name

dob

subordinatesupervisor

15

Recursive relationship sets

• Just pick appropriate field names! E.g.

is mapped to

Reports_to(sup_NI:τ1, sub_NI: τ1)

Employees

Reports-to

NI
name

dob

subordinatesupervisor

16

Constraints on relationship
types

• For example:
– An employee can work in many departments;

a department can have many employees
– In contrast, each department has at most one

manager
• Thus we need to be able to specify the

number of relationship instances that an
entity can participate in.

• For binary relationships the possible ratios
are: 1:1, 1:N, N:1, M:N

17

Cardinality ratios
1:1 1:N

M:N

18

Cardinality ratios in E/R

M:N

N:1

1:1

M N

N 1

1 1

Note: Sometimes this is written using different arrowheads

19

Participation constraints

Every department must have a manager

• This is an example of a participation
constraint

• The participation of an entity set, E, in a
relationship set R is said to be total if
every entity in E participates in at least
one relationship in R. (If not its
participation is said to be partial)

20

Participation in E/R diagrams

• Total participation is displayed as a bold
line between the entity type and the
relationship
– NB. Sometimes this is written as a double line

Manages

NI dobName

Employees

DID budget
dname

Department

since

1 N

21

Weak entity types

• An entity type may not have sufficient
attributes to form a primary key

• Such an entity type is called a weak entity
type

• A weak entity can only be identified
uniquely by considering the primary key of
another (owner) entity

22

Weak entity types cont.

• Thus the owner and weak entity types
must participate in a 1:N relationship

• Weak entity set must have total
participation in this identifying
relationship set.

Employees

NI Name

Policy Dependents

Cost pName age

1 N

23

Implementng Weak entity types

• Given a weak entity type, W, we generate a
relation schema with fields consisting of the
attributes of W, and the primary key attributes of
the owner entity type

• For any relationship in which W appears we
generate a relation schema which must take as
the key for W all of its key attributes, including
those from its owner set

24

Example

is mapped to the following schema:
 Dependents(pName:τ1, NI:τ2, age:τ3)
 Policy(pName:τ1, NI:τ2, Cost:τ4)

Employees

NI Name

Policy Dependents

Cost pName age

Alternatively:
 Policy(pName :τ1, NI :τ2, age :τ3, Cost :τ4)

1 N

25

Extended E/R modelling

• What we’ve seen so far is “classic” E/R
• Over the years a number of features have

been added to the model and the
modelling process

• These features include:
• Higher/Lower-level
entity sets
• Attribute
inheritance
• Aggregation

• Sub- and super-
classes
• Specialisation
• Generalisation
• Categories

26

ISA hierarchies

• We can devise hierarchies for our entity
types

• If we declare
A ISA B, every
A entity is
considered to
be a B entity

Employees

ISA

Temp_Emp Contract_Emp

hoursrate cid

NI Name
dob

27

ISA Hierarchies

Two choices:

1. 3 relations
(Employees, Temp_Emp

and Contract_Emp)

2. 2 relations
(Temp_Emp and

Contract_Emp)

Employees

ISA

Temp_Emp Contract_Emp

hoursrate

NI Name dob

cid

28

Databases Lecture 12:
Database Systems

Timothy G. Griffin
Lent Term 2009

29

What is a database system?

• A database is a large, integrated
collection of data

• A database contains a model of
something!

• A database management system
(DBMS) is a software system designed to
store, manage and facilitate access to the
database

30

What does a database system
do?

• Manages Very Large Amounts of Data
• Supports efficient access to Very Large

Amounts of Data
• Supports concurrent access to Very

Large Amounts of Data
• Supports secure, atomic access to Very

Large Amounts of Data

31

Database system architecture

• It is common to describe databases in two ways
– The logical level:

• What users see, the program or query language interface, …
– The physical level:

• How files are organised, what indexing mechanisms are
used, …

• It is traditional to split the logical level into two: overall
database design (conceptual) and the views that
various users get to see

• A schema is a description of a database

32

Three-level architecture

Conceptual
Schema

…

Physical
level

Conceptual
level

Internal
Schema

External
Schema 1

External
Schema 2

External
Schema n

External
level

33

Logical and physical data
independence

• Data independence is the ability to change the schema
at one level of the database system without changing the
schema at the next higher level

• Logical data independence is the capacity to change
the conceptual schema without changing the user views

• Physical data independence is the capacity to change
the internal schema without having to change the
conceptual schema or user views

34

Database Context

• Data-warehousing features
– Data cube

• Inter-database exchange features
– XML

Database systems are more and more likely to support
features that “unlock” databases and allow them to
aasily interact in a larger context

35

The “Data Publishing” Problem

DB 2

DB 2

DB 1

DB 3

DB 5

DB 4

Exports Excel

Exports HTML

Exports printed
documents

Exports Word Documents

Exports .txt files
in ad hoc format

Exports .txt files
in ad hoc format

Need to share data without exposing internal details of your database.

Lack of standard
exchange formats
requires the
implementation of
many ad hoc
translators

36

XML as a data exchange format

DB 2

DB 2

DB 1

DB 3

DB 5

DB 4
Exports XML

Exports XML

Exports XML

Exports XML

Exports XML

Exports XMLXML conforming to
agreed upon

semantics

37

XML and Databases

• XML-enabled databases:
– Data stored in structured (usually relational) format.
– XML primarily used as a data exchange format
– Interfaces and SQL extensions provided to facilitate generation

of XML and parsing of XML.
– “Data-centric”

• Native XML database:
– Allows direct storage and manipulation of XML data.
– “Document-centric”

38

What is XML?

• Extensible Markup Language
• W3C proposal, Current version 1.0 (3rd ed.)

February 2004
• Authors:

– Tim Bray (Netscape)
– Jean Paoli (Microsoft)
– C.M. Sperberg-McQueen (W3C)
– Eve Maler (Sun)
– François Yergeau

http://www.w3.org/TR/REC-xml

XML has roots in HTML

39

HTML

• Lingua-franca for publishing hypertext on
the web

• Designed to inform a web-browser both
what information to render, and how it
should be rendered
– (Actually these shouldn’t be mixed up)

• Easy to learn (Big win)
• Fixed tag set, rather odd syntax

40

HTML: An example
<HTML>
 <HEAD>
 <TITLE>
 Welcome to gmb’s homepage
 </TITLE>
 </HEAD>
 <BODY>
 <H1>Background info</H1>

 I have a lot of great friends
 …
 </BODY>
</HTML>

Opening tag

Closing tag

Text
(PCDATA)

Attribute
(name and value)

41

XML structure

• The fundamental construct is the element, which is essentially a
pair of matching tags and the text between them, e.g.
– <name>Britney</name> is an element
– <name>Victoria</nom> is not an element

• XML documents must have single root element
• No fixed set of tags
• Elements can be properly nested, thus

– <name> … <address> … </address> … </name>
– <name> … <address> … </name> … </address>

42

XML structure cont.

• We can represent various structures using nesting and repetition
• Tuple (Record):

<person>

 <name>Emma Bunton</name>
 <tel>020 8777 1234</tel>

 <email>baby@spicegirls.com</email>
</person>

• Lists:
<addresses>
 <person> … </person>
 <person> … </person>

 <person> … </person> …
</addresses>

43

XML structure cont.

• Nesting can be used to avoid joins, e.g.
 <bank>

 <cust><name>Britney Spears</name>
 <address>Florida</address>

 </cust> …
 <acc>

 <accno>BS001</accno>
 <branch>Florida High Street</branch>

 <balance>10,000,000</balance>
 </acc> …

 <saver>
 <sname>Britney Spears</sname>

 <saccno>BS001</saccno>

 </saver> …
 </bank>

44

XML structure cont.

• Join avoiding:
 <bank2>

 <cust>

 <name>Britney Spears</name>

 <address>Florida</address>

 <acc>

 <accno>BS001</accno>

 <branch>Florida High Street</branch>

 <balance>10,000,000</balance>

 </acc>

 </cust>
 …

 </bank2>

45

XML and trees

• One can visualise XML documents as
trees, e.g.

person

name tel email

Emma
Bunton

020 8777 1234 baby@spicegirls.com

46

Attributes

• In addition to elements we have attributes
• Attributes appear as name=value pairs in

opening tags, e.g.
– <acc type=“deposit”> … </acc>
– <acc type=“saving” status=“closed”> …
</acc>

• (Aside: An element with no body can be
abbreviated from <foo></foo> to <foo/>)

47

DTDs

• XML documents can be created without
any schema

• XML documents can contain a document
type definition (DTD), which is similar to
a schema

48

Example DTD

<!DOCTYPE bank [

<!ELEMENT bank ((acc|cust|saver)+)>

 <!ELEMENT acc (accno branch balance)>

 <!ELEMENT cust (name address)>

 <!ELEMENT saver (sname saccno)>

 <!ELEMENT accno (#PCDATA)>

 <!ELEMENT branch (#PCDATA)>

 <!ELEMENT balance(#PCDATA)>
 <!ELEMENT name (#PCDATA)>

 <!ELEMENT address(#PCDATA)>

 <!ELEMENT sname (#PCDATA)>

 <!ELEMENT saccno (#PCDATA)>

]>

49

DTD details

Attribute
name

Attribute
Type
(String of
characters)

Default
value

Element

• ‘|’ denotes alternative, ‘+’ denotes one or more,
and ‘*’ denotes zero or more

• ‘#PCDATA’ (Parsed Character Data) means any
text!

• We can also specify attributes, e.g.
• <!ATTLIST acc acctype CDATA “deposit”>

50

Attributes

• An attribute of type ID provides a unique identifier for the
element

• An attribute of type IDREF is a reference to an element
• Example:
 <!ATTLIST account number ID #REQUIRED

 owners IDREFS #REQUIRED>

 <account number=“A001” owners=“C001 C007”>

 …</account>

51

Using DTDs

• DTDs are placed at the start of an XML
document

• A document that conforms to its DTD is said to
be valid

• Alternatively you can give a URL for a DTD, e.g.
 <!DOCTYPE mybank SYSTEM
 “http://www.hsbc.com/mybank.dtd”>

 <mybank>

 …

 </mybank>

52

Aside on DTDs

• Wouldn’t it be better in ML?

datatype bank = BANK of bankitem list

 and bankitem = ACC of accno*branch*balance

 | CUST of name*address

 | SAVER of sname*saccno;

type accno = string;

type branch = string;

type balance = string; (*could be int!*)

type name = string;

type address = string;
type sname = string;

type saccno = string;

53

Schema

• You’ll have noticed weaknesses with DTDs from
a database schema point of view
– Individual text elements and attributes can’t be typed

further
– We don’t need ordered sub-elements in database

world
– There is a lack of typing in IDs and IDREFs

• An effort to address these problems has led to a
better schema language: XML schema

54

Domain specific DTDs

• There are now lots of DTDs that have been
agreed by groups, including
– WML: Wireless markup language (WAP)
– OFX: Open financial exchange
– CML: Chemical markup language
– AML: Astronomical markup language
– MathML: Mathematics markup language
– SMIL: Synchronised Multimedia Integration Language
– ThML: Theological markup language

55

Native XML Databases

<?xml version="1.0" encoding="ISO-8859-1"?>
<nitf>
<head> <title>Colombia Earthquake</title> </head>
<body>
<body.head>
<headline>
<hl1>143 Dead in Colombia Earthquake</hl1>
</headline>
<byline>
<bytag>By Jared Kotler, Associated Press Writer</bytag>
</byline>
<dateline>
 <location>Bogota, Colombia</location>
 <story.date>Monday January 25 1999 7:28 ET</story.date>
</dateline>
</body.head>
 </body>
</nitf>

XML-enabled
Native XML

publish

shred

<?xml version="1.0" encoding="ISO-8859-1"?>
<nitf>
<head> <title>Colombia Earthquake</title> </head>
<body>
<body.head>
<headline>
<hl1>143 Dead in Colombia Earthquake</hl1>
</headline>
<byline>
<bytag>By Jared Kotler, Associated Press Writer</bytag>
</byline>
<dateline>
 <location>Bogota, Colombia</location>
 <story.date>Monday January 25 1999 7:28 ET</story.date>
</dateline>
</body.head>
 </body>
</nitf>

56

Documents vs databases

• But this is a document, which is quite different
from our world of databases

QueryingRetrieval (IR)
UpdatingEditing

Meta data: schemaMeta data: Author, title, date
Machine friendlyHuman friendly
RecordsTagging
Explicit structure (schema)Implicit structure

DynamicStatic (normally)

A few large databasesLots of small documents
Database worldDocument world

