Databases Lecture 8

Timothy G. Griffin

Computer Laboratory University of Cambridge, UK

Databases, Lent 2009

A (10) A (10) A (10)

Lecture 08: Multivalued Dependencies

Outline

- Multivalued Dependencies
- Fourth Normal Form (4NF)
- General integrity Constraints

Another look at Heath's Rule

1

Given $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ with FDs F

If $\mathbf{Z} \to \mathbf{W} \in F^+$, the

$$\mathbf{R} = \pi_{\mathbf{Z},\mathbf{W}}(\mathbf{R}) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(\mathbf{R})$$

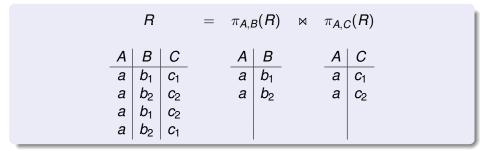
What about an implication in the other direction? That is, suppose we have

$$\mathsf{R} = \pi_{\mathsf{Z},\mathsf{W}}(\mathsf{R}) \bowtie \pi_{\mathsf{Z},\mathsf{Y}}(\mathsf{R}).$$

Q Can we conclude anything about FDs on R? In particular, is it true that $\mathbf{Z} \to \mathbf{W}$ holds?

A No!

We just need one counter example ...



Clearly $A \rightarrow B$ is not an FD of R.

T. Griffin (cl.cam.ac.uk)

Databases Lecture 8

DB 2009 4 / 15

A concrete example

course_name	lecturer	text
Databases	Tim	Ullman and Widom
Databases	Fatima	Date
Databases	Tim	Date
Databases	Fatima	Ullman and Widom

Assuming that texts and lecturers are assigned to courses independently, then a better representation would in two tables:

course_name	lecturer	course_name	text
Databases	Tim	Databases	Ullman and Widom
Databases	Fatima	Databases	Date

Time for a definition!

Multivalued Dependencies (MVDs)

Let $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ be a relational schema. A multivalued dependency, denoted $\mathbf{Z} \rightarrow \mathbf{W}$, holds if whenever *t* and *u* are two records that agree on the attributes of \mathbf{Z} , then there must be some tuple *v* such that

- v agrees with both t and u on the attributes of Z,
- 2 v agrees with t on the attributes of W,
- **3** v agrees with u on the attributes of **Y**.

A few observations

Note 1

Every functional dependency is multivalued dependency,

$$(\mathbf{Z} \rightarrow \mathbf{W}) \implies (\mathbf{Z} \twoheadrightarrow \mathbf{W}).$$

To see this, just let v = u in the above definition.

Note 2

Let $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ be a relational schema, then

$$(\textbf{Z}\twoheadrightarrow\textbf{W})\iff(\textbf{Z}\twoheadrightarrow\textbf{Y}),$$

by symmetry of the definition.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

MVDs and lossless-join decompositions

Fun Fun Fact

Let $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ be a relational schema. The decomposition $R_1(\mathbf{Z}, \mathbf{W})$, $R_2(\mathbf{Z}, \mathbf{Y})$ is a lossless-join decomposition of R if and only if the MVD $\mathbf{Z} \rightarrow \mathbf{W}$ holds.

伺下 イヨト イヨ

Proof of Fun Fun Fact

Proof of $(\mathbf{Z} \twoheadrightarrow \mathbf{W}) \implies R = \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R)$

- Suppose $\mathbf{Z} \rightarrow \mathbf{W}$.
- We know (from proof of Heath's rule) that R ⊆ π_{Z,W}(R) ⋈ π_{Z,Y}(R). So we only need to show π_{Z,W}(R) ⋈ π_{Z,Y}(R) ⊆ R.
- Suppose $r \in \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R)$.
- So there must be a $t \in R$ and $u \in R$ with $\{r\} = \pi_{\mathbf{Z}, \mathbf{W}}(\{t\}) \bowtie \pi_{\mathbf{Z}, \mathbf{Y}}(\{u\}).$
- In other words, there must be a $t \in R$ and $u \in R$ with t.Z = u.Z.
- So the MVD tells us that then there must be some tuple v ∈ R such that
 - v agrees with both t and u on the attributes of Z,
 - 2 v agrees with t on the attributes of **W**,
 - **3** v agrees with u on the attributes of **Y**.
- This v must be the same as r, so $r \in R$.

イロト 不得 トイヨト イヨト

Proof of Fun Fun Fact (cont.)

Proof of $R = \pi_{\mathsf{Z},\mathsf{W}}(R) \bowtie \pi_{\mathsf{Z},\mathsf{Y}}(R) \implies (\mathsf{Z} \twoheadrightarrow \mathsf{W})$

- Suppose $R = \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R)$.
- Let t and u be any records in R with $t.\mathbf{Z} = u.\mathbf{Z}$.
- Let v be defined by {v} = π_{Z,W}({t}) ⋈ π_{Z,Y}({u}) (and we know v ∈ R by the assumption).
- Note that by construction we have

•
$$v.Z = t.Z = u.Z$$

• $v.W = t.W$,
• $vY = uY$

• Therefore, **Z** \rightarrow **W** holds.

く 戸 と く ヨ と く ヨ と …

Fourth Normal Form

Trivial MVD The MVD $Z \rightarrow W$ is trivial for relational schema R(Z, W, Y) if **2** $\cap W \neq \{\}$, or **2** $Y = \{\}$.

4NF

A relational schema $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ is in 4NF if for every MVD $\mathbf{Z} \rightarrow \mathbf{W}$ either

- $\mathbf{Z} \rightarrow \mathbf{W}$ is a trivial MVD, or
- Z is a superkey for R.

Note : 4NF \subset BCNF \subset 3NF \subset 2NF

イロト イ団ト イヨト イヨト

General Decomposition Method Revisited

GDM++

- Understand your FDs and MVDs F (compute F⁺),
- If ind R(X) = R(Z, W, Y) (sets Z, W and Y are disjoint) with either FD Z → W ∈ F⁺ or MVD Z → W ∈ F⁺ violating a condition of desired NF,
- **③** split *R* into two tables $R_1(\mathbf{Z}, \mathbf{W})$ and $R_2(\mathbf{Z}, \mathbf{Y})$
- wash, rinse, repeat

A (10) A (10)

Summary

We always want the lossless-join property. What are our options?

	3NF	BCNF	4NF
Preserves FDs	Yes	Maybe	Maybe
Preserves MVDs	Maybe	Maybe	Maybe
Eliminates FD-redundancy	Maybe	Yes	Yes
Eliminates MVD-redundancy	No	No	Yes

< 17 ▶

General integrity constraints

- Suppose that *C* is some constraint we would like to enforce on our database.
- Let $Q_{\neg C}$ be a query that captures all violations of *C*.
- Enforce (somehow) that the assertion that is always $Q_{\neg C}$ empty.

Example

- $C = \mathbf{Z} \rightarrow \mathbf{W}$, and FD that was not preserved for relation $R(\mathbf{X})$,
- Let Q_R be a join that reconstructs R,
- Let Q'_{R} be this query with $\mathbf{X} \mapsto \mathbf{X}'$ and

•
$$Q_{\neg C} = \sigma_{\mathbf{W} \neq \mathbf{W}'}(\sigma_{\mathbf{Z} = \mathbf{Z}'}(Q_R \times Q_R'))$$

Assertions in SQL

create view C_violations as

create assertion check_C
 check not (exists C_violations)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@