Databases Lecture 7

Timothy G. Griffin

Computer Laboratory
University of Cambridge, UK

Databases, Lent 2009

Lecture 07: Decomposition to Normal Forms

Outline

- Attribute closure algorithm
- Schema decomposition methods
- Problems with obtaining both dependency preservation and lossless-join property

Closure

By soundness and completeness

$$
\operatorname{closure}(F, \mathbf{X})=\{\boldsymbol{A} \mid F \vdash \mathbf{X} \rightarrow \boldsymbol{A}\}=\left\{\boldsymbol{A} \mid \mathbf{X} \rightarrow \boldsymbol{A} \in \boldsymbol{F}^{+}\right\}
$$

Claim 2 (from previous lecture)
$\mathbf{Y} \rightarrow \mathbf{W} \in F^{+}$if and only if $\mathbf{W} \subseteq$ closure (F, \mathbf{Y}).
If we had an algorithm for closure (F, \mathbf{X}), then we would have a (brute force!) algorithm for enumerating F^{+}:

F^{+}

- for every subset $\mathbf{Y} \subseteq \operatorname{atts}(F)$ for every subset $\mathbf{Z} \subseteq$ closure(F, \mathbf{Y}), output $\mathbf{Y} \rightarrow \mathbf{Z}$

Attribute Closure Algorithm

- Input : a set of FDs F and a set of attributes \mathbf{X}.
- Output : $\mathbf{Y}=\operatorname{closure}(F, \mathbf{X})$
(1) $\mathbf{Y}:=\mathbf{X}$
(2) while there is some $\mathbf{S} \rightarrow \mathbf{T} \in F$ with $\mathbf{S} \subseteq \mathbf{Y}$ and $\mathbf{T} \nsubseteq \mathbf{Y}$, then $\mathbf{Y}:=\mathbf{Y} \cup \mathbf{T}$.

An Example (UW1997, Exercise 3.6.1)

$R(A, B, C, D)$ with F made up of the FDs

$$
\begin{aligned}
& A, B \rightarrow C \\
& C \rightarrow D \\
& D \rightarrow A
\end{aligned}
$$

What is F^{+}?
Brute force!
Let's just consider all possible nonempty sets \mathbf{X} — there are only 15 ...

Example (cont.)

$$
F=\{A, B \rightarrow C, C \rightarrow D, D \rightarrow A\}
$$

For the single attributes we have

- $\{A\}^{+}=\{A\}$,
- $\{B\}^{+}=\{B\}$,
- $\{C\}^{+}=\{A, C, D\}$,

$$
\{C\} \stackrel{C \rightarrow D}{\Longrightarrow}\{C, D\} \stackrel{D \rightarrow A}{\Longrightarrow}\{A, C, D\}
$$

- $\{D\}^{+}=\{A, D\}$

$$
\{D\} \xrightarrow{D \rightarrow A}\{A, D\}
$$

The only new dependency we get with a single attribute on the left is $C \rightarrow A$.

Example (cont.)

$$
F=\{A, B \rightarrow C, C \rightarrow D, \quad D \rightarrow A\}
$$

Now consider pairs of attributes.

- $\{A, B\}^{+}=\{A, B, C, D\}$,
so $A, B \rightarrow D$ is a new dependency
- $\{A, C\}^{+}=\{A, C, D\}$, so $A, C \rightarrow D$ is a new dependency
- $\{A, D\}^{+}=\{A, D\}$,
so nothing new.
- $\{B, C\}^{+}=\{A, B, C, D\}$, so $B, C \rightarrow A, D$ is a new dependency
- $\{B, D\}^{+}=\{A, B, C, D\}$,
so $B, D \rightarrow A, C$ is a new dependency
- $\{C, D\}^{+}=\{A, C, D\}$,
so $C, D \rightarrow A$ is a new dependency

Example (cont.)

$$
F=\{A, B \rightarrow C, C \rightarrow D, \quad D \rightarrow A\}
$$

For the triples of attributes:

- $\{A, C, D\}^{+}=\{A, C, D\}$,
- $\{A, B, D\}^{+}=\{A, B, C, D\}$, so $A, B, D \rightarrow C$ is a new dependency
- $\{A, B, C\}^{+}=\{A, B, C, D\}$, so $A, B, C \rightarrow D$ is a new dependency
- $\{B, C, D\}^{+}=\{A, B, C, D\}$, so $B, C, D \rightarrow A$ is a new dependency

And since $\{A, B, C, D\}+=\{A, B, C, D\}$, we get no new dependencies with four attributes.

Example (cont.)

We generated 11 new FDs:

$$
\begin{array}{ccccc}
C & \rightarrow A & A, B & \rightarrow & D \\
A, C & \rightarrow D & B, C & \rightarrow & A \\
B, C & \rightarrow D & B, D & \rightarrow & A \\
B, D & \rightarrow C & C, D & \rightarrow & A \\
A, B, C & \rightarrow D & A, B, D & \rightarrow & C \\
B, C, D & \rightarrow & A & & \\
\end{array}
$$

Can you see the Key?
$\{A, B\},\{B, C\}$, and $\{B, D\}$ are keys.
Note: this schema is already in 3NF! Why?

General Decomposition Method (GDM)

GDM

(1) Understand your FDs F (compute F^{+}),
(2) find $R(\mathbf{X})=R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ (sets \mathbf{Z}, \mathbf{W} and \mathbf{Y} are disjoint) with FD
$\mathbf{Z} \rightarrow \mathbf{W} \in F^{+}$violating a condition of desired $N F$,
(0) split R into two tables $R_{1}(\mathbf{Z}, \mathbf{W})$ and $R_{2}(\mathbf{Z}, \mathbf{Y})$
(9) wash, rinse, repeat

Reminder

For $\mathbf{Z} \rightarrow \mathbf{W}$, if we assume $\mathbf{Z} \cap \mathbf{W}=\{ \}$, then the conditions are
© \mathbf{Z} is a superkey for R (2NF, 3NF, BCNF)
(2) \mathbf{W} is a subset of some key (2NF, 3NF)
(\mathbf{Z} is not a proper subset of any key (2NF)

The lossless-join condition is guaranteed by GDM

- This method will produce a lossless-join decomposition because of (repeated applications of) Heath's Rule!
- That is, each time we replace an S by S_{1} and S_{2}, we will always be able to recover S as $S_{1} \bowtie S_{2}$.
- Note that in GDM step 3, the FD $\mathbf{Z} \rightarrow \mathbf{W}$ may represent a key constraint for R_{1}.

But does the method always terminate? Please think about this

Return to Example — Decompose to BCNF

$R(A, B, C, D)$

$$
F=\{A, B \rightarrow C, C \rightarrow D, \quad D \rightarrow A\}
$$

Which FDs in F^{+}violate BCNF?

$$
\begin{array}{ccc}
C & \rightarrow A \\
C & \rightarrow & D \\
D & \rightarrow & A \\
A, C & \rightarrow & D \\
C, D & \rightarrow & A
\end{array}
$$

Return to Example — Decompose to BCNF

Decompose $R(A, B, C, D)$ to BCNF

Use $C \rightarrow D$ to obtain

- $R_{1}(C, D)$. This is in BCNF. Done.
- $R_{2}(A, B, C)$ This is not in BCNF. Why? A, B and B, C are the only keys, and $C \rightarrow A$ is a FD for R_{1}. So use $C \rightarrow A$ to obtain
$R_{2.1}(A, C)$. This is in BCNF. Done.
$R_{2.2}(B, C)$. This is in BCNF. Done.
Exercise : Try starting with any of the other BCNF violations and see where you end up.

The GDM does not always preserve dependencies!
$R(A, B, C, D, E)$

$$
\begin{aligned}
A, B & \rightarrow C \\
D, E & \rightarrow C \\
B & \rightarrow D
\end{aligned}
$$

- $\{A, B\}^{+}=\{A, B, C, D\}$,
- so $A, B \rightarrow C, D$,
- and $\{A, B, E\}$ is a key.
- $\{B, E\}^{+}=\{B, C, D, E\}$,
- so $B, E \rightarrow C, D$,
- and $\{A, B, E\}$ is a key (again)

Let's try for a BCNF decomposition ...

Decomposition 1

Decompose $R(A, B, C, D, E)$ using $A, B \rightarrow C, D$:

- $R_{1}(A, B, C, D)$. Decompose this using $B \rightarrow D$:

$R_{1.1}(B, D)$. Done.
$R_{1.2}(A, B, C)$. Done.

- $R_{2}(A, B, E)$. Done.

But in this decomposition, how will we enforce this dependency?

$$
D, E \rightarrow C
$$

Decomposition 2

Decompose $R(A, B, C, D, E)$ using $B, E \rightarrow C, D$:

- $R_{3}(B, C, D, E)$. Decompose this using $D, E \rightarrow C$
$R_{3.1}(C, D, E)$. Done.
$R_{3.2}(B, D, E)$. Decompose this using $B \rightarrow D$:

$$
\begin{aligned}
& R_{3.2 .1}(B, D) \text {. Done. } \\
& R_{3.2 .2}(B, E) \text {. Done. }
\end{aligned}
$$

- $R_{4}(A, B, E)$. Done.

But in this decomposition, how will we enforce this dependency?

$$
A, B \rightarrow C
$$

Summary

- It always is possible to obtain BCNF that has the lossless-join property (using GDM)

But the result may not preserve all dependencies.

- It is always possible to obtain 3NF that preserves dependencies and has the lossless-join property.

Using methods based on "minimal covers" (for example, see EN2000).

