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Lecture 04: Database Updates
Outline
@ Transactions
@ Short review of ACID requirements
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Transactions — ACID properties

Should be review from Concurrent Systems and Applications
Atomicity Either all actions are carried out, or none are
@ logs needed to undo operations, if needed

Consistency If each transaction is consistent, and the database is
initially consistent, then it is left consistent

@ This is very much a part of applications design.

Isolation Transactions are isolated, or protected, from the effects of
other scheduled transactions

@ Serializability, 2-phase commit protocol

Durability If a transactions completes successfully, then its effects
persist

@ Logging and crash recovery

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 3/1

Lecture 05: Functional Dependencies

Qutline
@ Update anomalies
@ Functional Dependencies (FDs)
@ Normal Forms, 1NF, 2NF, 3NF, and BCNF
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Transactions from an application perspective

Main issues
@ Avoid update anomalies

@ Minimize locking to improve transaction throughput.
@ Maintain integrity constraints.

These issues are related.
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Update anomalies

Big Table

sid | name | college course part | term_name
yy88 | Yoni | New Hall | Algorithms | | |A Easter
uu99 | Uri King's | Algorithms | | IA Easter

bb44 | Bin | New Hall | Databases | IB Lent
bb44 | Bin | New Hall | Algorithms Il | IB | Michaelmas
zz70 | Zip Trinity Databases | IB Lent

zz70 | Zip Trinity | Algorithms Il | IB | Michaelmas

@ How can we tell if an insert record is consistent with current
records?
@ Can we record data about a course before students enroll?

@ Will we wipe out information about a college when last student
associated with the college is deleted?
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Redundancy implies more locking ...

... at least for correct transactions!
Big Table

sid | name | college course part | term_name
yy88 | Yoni | New Hall | Algorithms | | IA Easter
uu99 | Uri King’s | Algorithms | | IA Easter

bb44 | Bin | New Hall | Databases | IB Lent
bb44 | Bin | New Hall | Algorithms Il | IB | Michaelmas
zz70 | Zip Trinity Databases | IB Lent

zz7/0 | Zip Trinity | Algorithms Il | IB | Michaelmas

@ Change New Hall to Murray Edwards College

» Conceptually simple update
» May require locking entire table.
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Redundancy is the root of (almost) all database evils

@ It may not be obvious, but redundancy is also the cause of update
anomalies.

@ By redundancy we do not mean that some values occur many
times in the database!
» A foreign key value may be have millions of copies!

@ But then, what do we mean?
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Functional Dependency

Functional Dependency (FD)

Let R(X) be a relational schema and Y C X, Z C X be two attribute
sets. We say Y functionally determines Z, written Y — Z, if for any two
tuples u and v in an instance of R(X) we have

uY=vY —-uZ=v.2.

We call Y — Z a functional dependency.

A functional dependency is a semantic assertion. It represents a rule
that should always hold in any instance of schema R(X).
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Example FDs
Big Table
sid | name | college course part | term_name

yy88 | Yoni | New Hall | Algorithms | | IA Easter
uu99 | Uri King's | Algorithms | | 1A Easter

bb44 | Bin | New Hall | Databases | IB Lent
bb44 | Bin | New Hall | Algorithms Il | IB | Michaelmas
zz70 | Zip Trinity Databases | IB Lent

zz70 | Zip Trinity | Algorithms Il | IB | Michaelmas

@ sid — name

@ sid — college

@ course — part

@ course — term_name
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Keys, revisited

Candidate Key

Let R(X) be a relational schema and Y C X. Y is a candidate key if
@ The FD Y — X holds, and
@ for no proper subset Z C Y does Z — X hold.

Prime and Non-prime attributes

An attribute A is prime for R(X) if it is a member of some candidate key

for R. Otherwise, A is non-prime.

v

Database redundancy roughly means the existence of non-key
functional dependencies!
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First Normal Form (1NF)

We will assume every schema is in 1NF.

INF

A schema R(A1: Sy, A2 : So, ---, Ap: Sp)isin First Normal Form
(1NF) if the domains S; are elementary — their values are atomic.

11/1

name
Timothy George Giriffin

first_name | middle_name | last_name
Timothy | George | Giriffin
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Second Normal Form (2NF)

Second Normal Form (2CNF)

A relational schema R is in 2NF if for every functional dependency
X — Aeither

@ Ac X or

@ X is a superkey for R, or

@ Ais a member of some key, or

@ X is not a proper subset of any key.
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3NF and BCNF

Third Normal Form (3CNF)

A relational schema R is in 3NF if for every functional dependency
X — A either

@ Ac X, or
@ Xis a superkey for R, or
@ Ais a member of some key.

Boyce-Codd Normal Form (BCNF)

A relational schema R is in BCNF if for every functional dependency
X — Aeither

@ Ac X, or
@ Xis a superkey for R.
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Inclusions

Clearly BCNF C 3NF C 2NF. These are proper inclusions:

In 2NF, but not 3NF
R(A, B, C), with F = {A— B, B— C}.

In 3NF, but not BCNF
R(A, B, C), with F = {A,B— C, C — B}.

@ This is in 3NF since AB and AC are keys, so there are no
non-prime attributes

@ But not in BCNF since C is not a key and we have C — B.
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The Plan

Given a relational schema R(X) with FDs F :
@ Reason about FDs
Is F missing FDs that are logically implied by those in F?

@ Decompose each R(X) into smaller Ry(X1), Ro(X2), --- Rix(Xk),
where each R;(X;) is in the desired Normal Form.

Are some decompositions better than others?
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Desired properties of any decomposition

Lossless-join decomposition

A decomposition of schema R(X) to S(YuZ)and T(YU (X —2Z))is a
lossless-join decomposition if for every database instances we have
R=SxT.

Dependency preserving decomposition

A decomposition of schema R(X) to S(YuZ) and T(YU (X —2)) is
dependency preserving, if enforcing FDs on S and T individually has
the same effect as enforcing all FDson S x T.

o

We will see that it is not always possible to achieve both of these goals.
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Lecture 06: Reasoning about FDs

Outline
@ Implied dependencies (closure)
@ Armstrong’s Axioms
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Semantic Closure

Notation
FEY—Z

means that any database instance that that satisfies every FD of F,
must also satisfy Y — Z.

The semantic closure of F, denoted F, is defined to be
Ffr={Y—-2Z|YuZCatts(FlandANF =Y — Z}.

The membership problem is to determine if Y — Z € F™.
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Reasoning about Functional Dependencies

We write FF Y — ZwhenY — Z can be derived from F via the
following rules.

Armstrong’s Axioms
Reflexivity IfZ C Y, then FFY — Z.

Augmentation f FFY —Zthen FFY,W — 2Z W.
Transitivity f FF Y —-Zand F =Z — W,then F-FY — W.
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Logical Closure (of a set of attributes)

Notation
closure(F, X)={A| FF X — A}

Claim 1

IfY - We FandY C closure(F, X), then W C closure(F, X).

Claim 2
Y - W e F*if and only if W C closure(F, Y).
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Soundness and Completeness

Soundness
FFf = feF?
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Completeness

feFT — FKf
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Proof of Completeness (soundness left as an exercise)

Show -(F+f) = —(F E=f):
@ Suppose —(F Y — Z) for R(X).
@ Let YT = closure(F, Y).
@ JBeZ withBg YT,

@ Construct an instance of R with just two records, u and v, that
agreeon Y* butnoton X — Y.

@ By construction, this instance does not satisfy Y — Z.
@ But it does satisfy F! Why?

» letS — T be any FD in F, with u.[S] = v.[S].

» SOSCY+.andsoTC Y+ byclaim1,

» and so u.[T] = v.[T]
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Consequences of Armstrong’s Axioms

Union f FEY —-Zand FEY —>W,then FEY - W, Z

Pseudo-transitivity If FEY —Zand F = U,Z — W, then
FEY,U—W.

Decomposition f Fl=Y -ZandWCZ,then F=Y — W.

Exercise : Prove these using Armstrong’s axioms!
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Proof of the Union Rule

Suppose we have

FEY—2
FEY—W.
By augmentation we have
FEY,Y—-Y,Z
that is,
FEY—-Y,Z

Also using augmentation we obtain
FEY,Z—-W,Z
Therefore, by transitivity we obtain

FEY - W,Z
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Example application of functional reasoning.

Heath’s Rule

Suppose R(A, B, C) is a relational schema with functional
dependency A — B, then

R = maB(R) xamac(R).
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Proof of Heath’s Rule

We first show that R C 7TA7B(R) X A WA’C(R).
o lfu=(a, b, ¢) € R thenu; =(a, b) € m4p(R) and
Uz = (a, ¢) € mac(R).
@ Since {(a, b)} xa {(a, ¢)} ={(a, b, c)} we know
uemapg(R) xamac(R).

In the other direction we must show R’ = 74 g(R) xa 14 c(R) C R.
@ If u=(a, b, ¢c) € R, then there must exist tuples
ui =(a, b) e map(R)and ux; = (a, ¢) € mac(R).
@ This means that there must exista v’ = (a, b/, ¢) € R such that
Uz =mac({(a b, c)}).
@ However, the functional dependency tells us that b = b/, so
u=(a, b, c) € R.

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 27 /1

Closure Example

R(A, B,C, D, D, F) with
AB—-C
B.C—D
D— E
C.,F—-B

What is the closure of {A, B}?

(A B} “Z5° (A B, C}
B,C—D
2P 1A B, C, D)
=% (A B, C, D, E)

So{A B)*={A B, C, D, E\and A B — C,D,E.
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