
Databases
Lectures 4, 5, and 6

Timothy G. Griffin

Computer Laboratory
University of Cambridge, UK

Databases, Lent 2009

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 1 / 1

Lecture 04: Database Updates

Outline
Transactions
Short review of ACID requirements

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 2 / 1

Transactions — ACID properties

Should be review from Concurrent Systems and Applications
Atomicity Either all actions are carried out, or none are

logs needed to undo operations, if needed
Consistency If each transaction is consistent, and the database is

initially consistent, then it is left consistent
This is very much a part of applications design.

Isolation Transactions are isolated, or protected, from the effects of
other scheduled transactions

Serializability, 2-phase commit protocol
Durability If a transactions completes successfully, then its effects

persist
Logging and crash recovery

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 3 / 1

Lecture 05: Functional Dependencies

Outline
Update anomalies
Functional Dependencies (FDs)
Normal Forms, 1NF, 2NF, 3NF, and BCNF

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 4 / 1

Transactions from an application perspective

Main issues
Avoid update anomalies
Minimize locking to improve transaction throughput.
Maintain integrity constraints.

These issues are related.

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 5 / 1

Update anomalies

Big Table

sid name college course part term_name
yy88 Yoni New Hall Algorithms I IA Easter
uu99 Uri King’s Algorithms I IA Easter
bb44 Bin New Hall Databases IB Lent
bb44 Bin New Hall Algorithms II IB Michaelmas
zz70 Zip Trinity Databases IB Lent
zz70 Zip Trinity Algorithms II IB Michaelmas

How can we tell if an insert record is consistent with current
records?
Can we record data about a course before students enroll?
Will we wipe out information about a college when last student
associated with the college is deleted?

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 6 / 1

Redundancy implies more locking ...

... at least for correct transactions!

Big Table

sid name college course part term_name
yy88 Yoni New Hall Algorithms I IA Easter
uu99 Uri King’s Algorithms I IA Easter
bb44 Bin New Hall Databases IB Lent
bb44 Bin New Hall Algorithms II IB Michaelmas
zz70 Zip Trinity Databases IB Lent
zz70 Zip Trinity Algorithms II IB Michaelmas

Change New Hall to Murray Edwards College
I Conceptually simple update
I May require locking entire table.

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 7 / 1

Redundancy is the root of (almost) all database evils

It may not be obvious, but redundancy is also the cause of update
anomalies.
By redundancy we do not mean that some values occur many
times in the database!

I A foreign key value may be have millions of copies!

But then, what do we mean?

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 8 / 1

Functional Dependency

Functional Dependency (FD)
Let R(X) be a relational schema and Y ⊆ X, Z ⊆ X be two attribute
sets. We say Y functionally determines Z, written Y → Z, if for any two
tuples u and v in an instance of R(X) we have

u.Y = v .Y → u.Z = v .Z.

We call Y → Z a functional dependency.

A functional dependency is a semantic assertion. It represents a rule
that should always hold in any instance of schema R(X).

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 9 / 1

Example FDs

Big Table

sid name college course part term_name
yy88 Yoni New Hall Algorithms I IA Easter
uu99 Uri King’s Algorithms I IA Easter
bb44 Bin New Hall Databases IB Lent
bb44 Bin New Hall Algorithms II IB Michaelmas
zz70 Zip Trinity Databases IB Lent
zz70 Zip Trinity Algorithms II IB Michaelmas

sid → name
sid → college
course → part
course → term_name

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 10 / 1

Keys, revisited

Candidate Key
Let R(X) be a relational schema and Y ⊆ X. Y is a candidate key if

1 The FD Y → X holds, and
2 for no proper subset Z ⊂ Y does Z → X hold.

Prime and Non-prime attributes
An attribute A is prime for R(X) if it is a member of some candidate key
for R. Otherwise, A is non-prime.

Database redundancy roughly means the existence of non-key
functional dependencies!

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 11 / 1

First Normal Form (1NF)

We will assume every schema is in 1NF.

1NF
A schema R(A1 : S1, A2 : S2, · · · , An : Sn) is in First Normal Form
(1NF) if the domains S1 are elementary — their values are atomic.

name
Timothy George Griffin

=⇒

first_name middle_name last_name
Timothy George Griffin

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 12 / 1

Second Normal Form (2NF)

Second Normal Form (2CNF)
A relational schema R is in 2NF if for every functional dependency
X → A either

A ∈ X, or
X is a superkey for R, or
A is a member of some key, or
X is not a proper subset of any key.

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 13 / 1

3NF and BCNF

Third Normal Form (3CNF)
A relational schema R is in 3NF if for every functional dependency
X → A either

A ∈ X, or
X is a superkey for R, or
A is a member of some key.

Boyce-Codd Normal Form (BCNF)
A relational schema R is in BCNF if for every functional dependency
X → A either

A ∈ X, or
X is a superkey for R.

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 14 / 1

Inclusions

Clearly BCNF ⊆ 3NF ⊆ 2NF . These are proper inclusions:

In 2NF, but not 3NF
R(A, B, C), with F = {A → B, B → C}.

In 3NF, but not BCNF
R(A, B, C), with F = {A, B → C, C → B}.

This is in 3NF since AB and AC are keys, so there are no
non-prime attributes
But not in BCNF since C is not a key and we have C → B.

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 15 / 1

The Plan

Given a relational schema R(X) with FDs F :
Reason about FDs

I Is F missing FDs that are logically implied by those in F?

Decompose each R(X) into smaller R1(X1), R2(X2), · · ·Rk (Xk),
where each Ri(Xi) is in the desired Normal Form.

Are some decompositions better than others?

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 16 / 1

Desired properties of any decomposition

Lossless-join decomposition
A decomposition of schema R(X) to S(Y ∪ Z) and T (Y ∪ (X− Z)) is a
lossless-join decomposition if for every database instances we have
R = S on T .

Dependency preserving decomposition
A decomposition of schema R(X) to S(Y ∪ Z) and T (Y ∪ (X− Z)) is
dependency preserving, if enforcing FDs on S and T individually has
the same effect as enforcing all FDs on S on T .

We will see that it is not always possible to achieve both of these goals.

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 17 / 1

Lecture 06: Reasoning about FDs

Outline
Implied dependencies (closure)
Armstrong’s Axioms

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 18 / 1

Semantic Closure

Notation

F |= Y → Z

means that any database instance that that satisfies every FD of F ,
must also satisfy Y → Z.

The semantic closure of F , denoted F+, is defined to be

F+ = {Y → Z | Y ∪ Z ⊆ atts(F)and ∧ F |= Y → Z}.

The membership problem is to determine if Y → Z ∈ F+.

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 19 / 1

Reasoning about Functional Dependencies

We write F ` Y → Z when Y → Z can be derived from F via the
following rules.

Armstrong’s Axioms
Reflexivity If Z ⊆ Y, then F ` Y → Z.

Augmentation If F ` Y → Z then F ` Y, W → Z, W.
Transitivity If F ` Y → Z and F |= Z → W, then F ` Y → W.

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 20 / 1

Logical Closure (of a set of attributes)

Notation

closure(F , X) = {A | F ` X → A}

Claim 1
If Y → W ∈ F and Y ⊆ closure(F , X), then W ⊆ closure(F , X).

Claim 2
Y → W ∈ F+ if and only if W ⊆ closure(F , Y).

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 21 / 1

Soundness and Completeness

Soundness

F ` f =⇒ f ∈ F+

Completeness

f ∈ F+ =⇒ F ` f

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 22 / 1

Proof of Completeness (soundness left as an exercise)

Show ¬(F ` f) =⇒ ¬(F |= f):

Suppose ¬(F ` Y → Z) for R(X).
Let Y+ = closure(F , Y).
∃B ∈ Z, with B 6∈ Y+.
Construct an instance of R with just two records, u and v , that
agree on Y+ but not on X− Y+.
By construction, this instance does not satisfy Y → Z.
But it does satisfy F ! Why?

I let S → T be any FD in F , with u.[S] = v .[S].
I So S ⊆ Y+. and so T ⊆ Y+ by claim 1,
I and so u.[T] = v .[T]

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 23 / 1

Consequences of Armstrong’s Axioms

Union If F |= Y → Z and F |= Y → W, then F |= Y → W, Z.
Pseudo-transitivity If F |= Y → Z and F |= U, Z → W, then

F |= Y, U → W.
Decomposition If F |= Y → Z and W ⊆ Z, then F |= Y → W.

Exercise : Prove these using Armstrong’s axioms!

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 24 / 1

Proof of the Union Rule

Suppose we have
F |= Y → Z,
F |= Y → W.

By augmentation we have

F |= Y, Y → Y, Z,

that is,
F |= Y → Y, Z.

Also using augmentation we obtain

F |= Y, Z → W, Z.

Therefore, by transitivity we obtain

F |= Y → W, Z.

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 25 / 1

Example application of functional reasoning.

Heath’s Rule
Suppose R(A, B, C) is a relational schema with functional
dependency A → B, then

R = πA,B(R) onA πA,C(R).

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 26 / 1

Proof of Heath’s Rule

We first show that R ⊆ πA,B(R) onA πA,C(R).
If u = (a, b, c) ∈ R, then u1 = (a, b) ∈ πA,B(R) and
u2 = (a, c) ∈ πA,C(R).
Since {(a, b)} onA {(a, c)} = {(a, b, c)} we know
u ∈ πA,B(R) onA πA,C(R).

In the other direction we must show R′ = πA,B(R) onA πA,C(R) ⊆ R.
If u = (a, b, c) ∈ R′, then there must exist tuples
u1 = (a, b) ∈ πA,B(R) and u2 = (a, c) ∈ πA,C(R).
This means that there must exist a u′ = (a, b′, c) ∈ R such that
u2 = πA,C({(a, b′, c)}).
However, the functional dependency tells us that b = b′, so
u = (a, b, c) ∈ R.

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 27 / 1

Closure Example

R(A, B, C, D, D, F) with
A, B → C
B, C → D
D → E
C, F → B

What is the closure of {A, B}?

{A, B} A,B→C
=⇒ {A, B, C}

B,C→D
=⇒ {A, B, C, D}
D→E
=⇒ {A, B, C, D, E}

So {A, B}+ = {A, B, C, D, E} and A, B → C, D, E .

T. Griffin (cl.cam.ac.uk) Databases Lectures 4, 5, and 6 DB 2009 28 / 1

