# Databases Lectures 4, 5, and 6 

Timothy G. Griffin

Computer Laboratory
University of Cambridge, UK

Databases, Lent 2009

## Lecture 04: Database Updates

## Outline

- Transactions
- Short review of ACID requirements


## Transactions - ACID properties

## Should be review from Concurrent Systems and Applications

Atomicity Either all actions are carried out, or none are

- logs needed to undo operations, if needed

Consistency If each transaction is consistent, and the database is initially consistent, then it is left consistent

- This is very much a part of applications design.

Isolation Transactions are isolated, or protected, from the effects of other scheduled transactions

- Serializability, 2-phase commit protocol

Durability If a transactions completes successfully, then its effects persist

- Logging and crash recovery


## Lecture 05: Functional Dependencies

## Outline

- Update anomalies
- Functional Dependencies (FDs)
- Normal Forms, 1NF, 2NF, 3NF, and BCNF


## Transactions from an application perspective

## Main issues

- Avoid update anomalies
- Minimize locking to improve transaction throughput.
- Maintain integrity constraints.

These issues are related.

## Update anomalies

Big Table

| sid | name | college | course | part | term_name |
| :---: | :---: | :---: | :---: | :---: | :---: |
| yy88 | Yoni | New Hall | Algorithms I | IA | Easter |
| uu99 | Uri | King's | Algorithms I | IA | Easter |
| bb44 | Bin | New Hall | Databases | IB | Lent |
| bb44 | Bin | New Hall | Algorithms II | IB | Michaelmas |
| zz70 | Zip | Trinity | Databases | IB | Lent |
| zz70 | Zip | Trinity | Algorithms II | IB | Michaelmas |

- How can we tell if an insert record is consistent with current records?
- Can we record data about a course before students enroll?
- Will we wipe out information about a college when last student associated with the college is deleted?


## Redundancy implies more locking ...

... at least for correct transactions!
Big Table

| sid | name | college | course | part | term_name |
| :---: | :---: | :---: | :---: | :---: | :---: |
| yy88 | Yoni | New Hall | Algorithms I | IA | Easter |
| uu99 | Uri | King's | Algorithms I | IA | Easter |
| bb44 | Bin | New Hall | Databases | IB | Lent |
| bb44 | Bin | New Hall | Algorithms II | IB | Michaelmas |
| zz70 | Zip | Trinity | Databases | IB | Lent |
| zz70 | Zip | Trinity | Algorithms II | IB | Michaelmas |

- Change New Hall to Murray Edwards College
- Conceptually simple update
- May require locking entire table.


## Redundancy is the root of (almost) all database evils

- It may not be obvious, but redundancy is also the cause of update anomalies.
- By redundancy we do not mean that some values occur many times in the database!
- A foreign key value may be have millions of copies!
- But then, what do we mean?


## Functional Dependency

## Functional Dependency (FD)

Let $R(\mathbf{X})$ be a relational schema and $\mathbf{Y} \subseteq \mathbf{X}, \mathbf{Z} \subseteq \mathbf{X}$ be two attribute sets. We say $\mathbf{Y}$ functionally determines $\mathbf{Z}$, written $\mathbf{Y} \rightarrow \mathbf{Z}$, if for any two tuples $u$ and $v$ in an instance of $R(\mathbf{X})$ we have

$$
u . \mathbf{Y}=v . \mathbf{Y} \rightarrow u . \mathbf{Z}=v . \mathbf{Z} .
$$

We call $\mathbf{Y} \rightarrow \mathbf{Z}$ a functional dependency.
A functional dependency is a semantic assertion. It represents a rule that should always hold in any instance of schema $R(\mathbf{X})$.

## Example FDs

## Big Table

| sid | name | college | course | part | term_name |
| :---: | :---: | :---: | :---: | :---: | :---: |
| yy88 | Yoni | New Hall | Algorithms I | IA | Easter |
| uu99 | Uri | King's | Algorithms I | IA | Easter |
| bb44 | Bin | New Hall | Databases | IB | Lent |
| bb44 | Bin | New Hall | Algorithms II | IB | Michaelmas |
| zz70 | Zip | Trinity | Databases | IB | Lent |
| zz70 | Zip | Trinity | Algorithms II | IB | Michaelmas |

- sid $\rightarrow$ name
- sid $\rightarrow$ college
- course $\rightarrow$ part
- course $\rightarrow$ term_name


## Keys, revisited

## Candidate Key

Let $R(\mathbf{X})$ be a relational schema and $\mathbf{Y} \subseteq \mathbf{X}$. $\mathbf{Y}$ is a candidate key if
(1) The FD $\mathbf{Y} \rightarrow \mathbf{X}$ holds, and
(2) for no proper subset $\mathbf{Z} \subset \mathbf{Y}$ does $\mathbf{Z} \rightarrow \mathbf{X}$ hold.

## Prime and Non-prime attributes

An attribute $A$ is prime for $R(\mathbf{X})$ if it is a member of some candidate key for $R$. Otherwise, $A$ is non-prime.

Database redundancy roughly means the existence of non-key functional dependencies!

## First Normal Form (1NF)

We will assume every schema is in 1NF.

## 1NF

A schema $R\left(A_{1}: S_{1}, A_{2}: S_{2}, \cdots, A_{n}: S_{n}\right)$ is in First Normal Form (1NF) if the domains $S_{1}$ are elementary - their values are atomic.
$\frac{\text { name }}{\text { Timothy George Griffin }}$

| first_name | middle_name | last_name |
| :---: | :---: | :---: |
| Timothy | George | Griffin |

## Second Normal Form (2NF)

## Second Normal Form (2CNF)

A relational schema $R$ is in 2NF if for every functional dependency $\mathbf{X} \rightarrow \boldsymbol{A}$ either

- $A \in \mathbf{X}$, or
- $\mathbf{X}$ is a superkey for $R$, or
- $A$ is a member of some key, or
- $\mathbf{X}$ is not a proper subset of any key.


## 3NF and BCNF

## Third Normal Form (3CNF)

A relational schema $R$ is in 3NF if for every functional dependency $\mathbf{X} \rightarrow A$ either

- $A \in \mathbf{X}$, or
- $\mathbf{X}$ is a superkey for $R$, or
- $A$ is a member of some key.


## Boyce-Codd Normal Form (BCNF)

A relational schema $R$ is in BCNF if for every functional dependency
$\mathbf{X} \rightarrow A$ either

- $A \in \mathbf{X}$, or
- $\mathbf{X}$ is a superkey for $R$.


## Inclusions

Clearly $\mathrm{BCNF} \subseteq 3 N F \subseteq 2 N F$. These are proper inclusions:
In 2NF, but not 3NF
$R(A, B, C)$, with $F=\{A \rightarrow B, B \rightarrow C\}$.
In 3NF, but not BCNF
$R(A, B, C)$, with $F=\{A, B \rightarrow C, C \rightarrow B\}$.

- This is in 3NF since $A B$ and $A C$ are keys, so there are no non-prime attributes
- But not in BCNF since $C$ is not a key and we have $C \rightarrow B$.


## The Plan

Given a relational schema $R(\mathbf{X})$ with FDs $F$ :

- Reason about FDs

Is $F$ missing FDs that are logically implied by those in $F$ ?

- Decompose each $R(\mathbf{X})$ into smaller $R_{1}\left(\mathbf{X}_{1}\right), R_{2}\left(\mathbf{X}_{2}\right), \cdots R_{k}\left(\mathbf{X}_{k}\right)$, where each $R_{i}\left(\mathbf{X}_{i}\right)$ is in the desired Normal Form.

Are some decompositions better than others?

## Desired properties of any decomposition

Lossless-join decomposition
A decomposition of schema $R(\mathbf{X})$ to $S(\mathbf{Y} \cup \mathbf{Z})$ and $T(\mathbf{Y} \cup(\mathbf{X}-\mathbf{Z}))$ is a lossless-join decomposition if for every database instances we have $R=S \bowtie T$.

Dependency preserving decomposition
A decomposition of schema $R(\mathbf{X})$ to $S(\mathbf{Y} \cup \mathbf{Z})$ and $T(\mathbf{Y} \cup(\mathbf{X}-\mathbf{Z}))$ is dependency preserving, if enforcing FDs on $S$ and $T$ individually has the same effect as enforcing all FDs on $S \bowtie T$.

We will see that it is not always possible to achieve both of these goals.

## Lecture 06: Reasoning about FDs

## Outline

- Implied dependencies (closure)
- Armstrong's Axioms


## Semantic Closure

## Notation

$$
F \models \mathbf{Y} \rightarrow \mathbf{Z}
$$

means that any database instance that that satisfies every FD of $F$, must also satisfy $\mathbf{Y} \rightarrow \mathbf{Z}$.

The semantic closure of $F$, denoted $F^{+}$, is defined to be

$$
F^{+}=\{\mathbf{Y} \rightarrow \mathbf{Z} \mid \mathbf{Y} \cup \mathbf{Z} \subseteq \operatorname{atts}(F) \text { and } \wedge F \models \mathbf{Y} \rightarrow \mathbf{Z}\} .
$$

The membership problem is to determine if $\mathbf{Y} \rightarrow \mathbf{Z} \in F^{+}$.

## Reasoning about Functional Dependencies

We write $F \vdash \mathbf{Y} \rightarrow \mathbf{Z}$ when $\mathbf{Y} \rightarrow \mathbf{Z}$ can be derived from $F$ via the following rules.

Armstrong's Axioms
Reflexivity If $\mathbf{Z} \subseteq \mathbf{Y}$, then $F \vdash \mathbf{Y} \rightarrow \mathbf{Z}$.
Augmentation If $F \vdash \mathbf{Y} \rightarrow \mathbf{Z}$ then $F \vdash \mathbf{Y}, \mathbf{W} \rightarrow \mathbf{Z}, \mathbf{W}$.
Transitivity If $F \vdash \mathbf{Y} \rightarrow \mathbf{Z}$ and $F \models \mathbf{Z} \rightarrow \mathbf{W}$, then $F \vdash \mathbf{Y} \rightarrow \mathbf{W}$.

## Logical Closure (of a set of attributes)

## Notation

$$
\text { closure }(F, \mathbf{X})=\{\boldsymbol{A} \mid F \vdash \mathbf{X} \rightarrow \boldsymbol{A}\}
$$

## Claim 1 <br> If $\mathbf{Y} \rightarrow \mathbf{W} \in F$ and $\mathbf{Y} \subseteq \operatorname{closure}(F, \mathbf{X})$, then $\mathbf{W} \subseteq \operatorname{closure}(F, \mathbf{X})$.

Claim 2
$\mathbf{Y} \rightarrow \mathbf{W} \in F^{+}$if and only if $\mathbf{W} \subseteq$ closure $(F, \mathbf{Y})$.

## Soundness and Completeness

## Soundness

$$
F \vdash f \Longrightarrow f \in F^{+}
$$

Completeness

$$
f \in F^{+} \Longrightarrow F \vdash f
$$

## Proof of Completeness (soundness left as an exercise)

Show $\neg(F \vdash f) \Longrightarrow \neg(F \models f)$ :

- Suppose $\neg(F \vdash \mathbf{Y} \rightarrow \mathbf{Z})$ for $R(\mathbf{X})$.
- Let $\mathbf{Y}^{+}=\operatorname{closure}(F, \mathbf{Y})$.
- $\exists B \in \mathbf{Z}$, with $B \notin \mathbf{Y}^{+}$.
- Construct an instance of $R$ with just two records, $u$ and $v$, that agree on $\mathbf{Y}^{+}$but not on $\mathbf{X}-\mathbf{Y}^{+}$.
- By construction, this instance does not satisfy $\mathbf{Y} \rightarrow \mathbf{Z}$.
- But it does satisfy F! Why?
- let $\mathbf{S} \rightarrow \mathbf{T}$ be any FD in $F$, with $u .[\mathbf{S}]=v$.[S].
- So $\mathbf{S} \subseteq \mathbf{Y}+$. and so $\mathbf{T} \subseteq \mathbf{Y}+$ by claim 1,
- and so $u .[T]=v .[T]$


## Consequences of Armstrong's Axioms

Union If $F \models \mathbf{Y} \rightarrow \mathbf{Z}$ and $F \models \mathbf{Y} \rightarrow \mathbf{W}$, then $F \models \mathbf{Y} \rightarrow \mathbf{W}, \mathbf{Z}$.
Pseudo-transitivity If $F \models \mathbf{Y} \rightarrow \mathbf{Z}$ and $F \models \mathbf{U}, \mathbf{Z} \rightarrow \mathbf{W}$, then

$$
F \models \mathbf{Y}, \mathbf{U} \rightarrow \mathbf{W}
$$

Decomposition If $F \models \mathbf{Y} \rightarrow \mathbf{Z}$ and $\mathbf{W} \subseteq \mathbf{Z}$, then $F \models \mathbf{Y} \rightarrow \mathbf{W}$.
Exercise : Prove these using Armstrong's axioms!

## Proof of the Union Rule

Suppose we have

$$
\begin{aligned}
& F=\mathbf{Y} \rightarrow \mathbf{Z}, \\
& F \equiv \mathbf{Y} \rightarrow \mathbf{W} .
\end{aligned}
$$

By augmentation we have

$$
F \models \mathbf{Y}, \mathbf{Y} \rightarrow \mathbf{Y}, \mathbf{Z}
$$

that is,

$$
F \models \mathbf{Y} \rightarrow \mathbf{Y}, \mathbf{Z}
$$

Also using augmentation we obtain

$$
F \models \mathbf{Y}, \mathbf{Z} \rightarrow \mathbf{W}, \mathbf{Z} .
$$

Therefore, by transitivity we obtain

$$
F \models \mathbf{Y} \rightarrow \mathbf{W}, \mathbf{Z}
$$

## Example application of functional reasoning.

## Heath's Rule

Suppose $R(A, B, C)$ is a relational schema with functional dependency $A \rightarrow B$, then

$$
R=\pi_{A, B}(R) \bowtie_{A} \pi_{A, C}(R)
$$

## Proof of Heath's Rule

We first show that $R \subseteq \pi_{A, B}(R) \bowtie_{A} \pi_{A, C}(R)$.

- If $u=(a, b, c) \in R$, then $u_{1}=(a, b) \in \pi_{A, B}(R)$ and
$u_{2}=(a, c) \in \pi_{A, C}(R)$.
- Since $\{(a, b)\} \bowtie_{A}\{(a, c)\}=\{(a, b, c)\}$ we know $u \in \pi_{A, B}(R) \bowtie_{A} \pi_{A, C}(R)$.

In the other direction we must show $R^{\prime}=\pi_{A, B}(R) \bowtie_{A} \pi_{A, C}(R) \subseteq R$.

- If $u=(a, b, c) \in R^{\prime}$, then there must exist tuples

$$
u_{1}=(a, b) \in \pi_{A, B}(R) \text { and } u_{2}=(a, c) \in \pi_{A, C}(R)
$$

- This means that there must exist a $u^{\prime}=\left(a, b^{\prime}, c\right) \in R$ such that $u_{2}=\pi_{A, C}\left(\left\{\left(a, b^{\prime}, c\right)\right\}\right)$.
- However, the functional dependency tells us that $b=b^{\prime}$, so $u=(a, b, c) \in R$.


## Closure Example

$R(A, B, C, D, D, F)$ with

$$
\begin{aligned}
& A, B \rightarrow C \\
& B, C \rightarrow D \\
& D \rightarrow E \\
& C, F \rightarrow B
\end{aligned}
$$

What is the closure of $\{A, B\}$ ?

$$
\begin{aligned}
\{A, B\} & \stackrel{A, B \rightarrow C}{\Longrightarrow}\{A, B, C\} \\
& \underset{B, C \rightarrow D}{\Longrightarrow}\{A, B, C, D\} \\
& \xlongequal[D \rightarrow E]{\Longrightarrow}\{A, B, C, D, E\}
\end{aligned}
$$

So $\{A, B\}^{+}=\{A, B, C, D, E\}$ and $A, B \rightarrow C, D, E$.

