
Databases
Lectures 1 and 2

Timothy G. Griffin

Computer Laboratory
University of Cambridge, UK

Databases, Lent 2009

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 1 / 36

Re-ordered Syllabus

Note: All lecture slides have been written from scratch for Lent 2009 —
please help me find the typos!

Lecture 01 Basic Concepts. Relations, attributes, tuples, and
relational schema. Tables in SQL.

Lecture 02 Query languages. Relational algebra, relational calculi
(tuple and domain). Examples of SQL constructs that mix
and match these models.

Lecture 03 More on SQL. Null values (and three-valued logic). Inner
and Outer Joins. Views and integrity constraints.

Lecture 04 Database updates. Basic ACID properties. Serializability
in multi-user database context. 2-phase commits. Locking
vs. update throughput.

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 2 / 36

Re-ordered Syllabus

Lecture 05 Redundancy is a Bad Thing. Update anomalies. More
redundancy implies more locking. Capturing redundancy
with functional and multivalued dependencies.

Lecture 06 Analysis of Redundancy. Implied functional
dependencies, logical closure. Reasoning about
functional dependencies.

Lecture 07 Eliminating Redundancy. Schema decomposition.
Lossless join decomposition. Dependency preservation.
3rd normal form. Boyce-Codd normal form.

Lecture 08 Decomposition algorithms. Decomposition examples.
Multivalued dependencies and Fourth normal form.

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 3 / 36

Re-ordered Syllabus

Lecture 09 Multisets, grouping, and aggregates. Bag (multiset)
algebra. Aggregates and grouping examples in SQL.
More problems with null values.

Lecture 10 Redundancy is a Good Thing! The main issue: query
response vs. update throughput. Indices are derived
data! Selective de-normalization. Materialized views. The
extreme case: “read only” database, data warehousing,
data-cubes, and OLAP vs OLTP.

Lecture 11 Entity-Relationship Modeling. High-level modeling.
Entities and relationships. Representation in relational
model. Reverse engineering as a common application.

Lecture 12 What is a DBMS? Different levels of abstraction, data
independence. Other data models (Object-Oriented
databases, Nested Relations). XML as a universal data
exchange language.

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 4 / 36

Recommended Reading

Textbooks
UW1997 Ullman, J. and Widom, J. (1997). A first course in

database systems. Prentice Hall.
D2004 Date, C.J. (2004). An introduction to database systems.

Addison-Wesley (8th ed.).
SL2002 Silberschatz, A., Korth, H.F. and Sudarshan, S. (2002).

Database system concepts. McGraw-Hill (4th ed.).
EN2000 Elmasri, R. and Navathe, S.B. (2000). Fundamentals of

database systems. Addison-Wesley (3rd ed.).

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 5 / 36

Reading for the fun of it ...

Research Papers (Google for them)
C1970 E.F. Codd, (1970). "A Relational Model of Data for Large

Shared Data Banks". Communications of the ACM.
F1977 Ronald Fagin (1977) Multivalued dependencies and a

new normal form for relational databases. TODS 2 (3).
L2003 L. Libkin. Expressive power of SQL. TCS, 296 (2003).

C+1996 L. Colby et al. Algorithms for deferred view maintenance.
SIGMOD 199.

G+1997 J. Gray et al. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals
(1997) Data Mining and Knowledge Discovery.

H2001 A. Halevy. Answering queries using views: A survey.
VLDB Journal. December 2001.

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 6 / 36

Lecture 01: Relations and Tables

Lecture Outline
Relations, attributes, tuples, and relational schema
Representation in SQL : Tables, columns, rows (records)
Important: users should be able to create and manipulate
relations (tables) without regard to implementation details!

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 7 / 36

Edgar F. Codd

pgflastimage

The problem : in 1970 you could not
write a database application without
knowing a great deal about the the
low-level physical implementation of
the data.
Codd’s radical idea [C1970]: give
users a model of data and a
language for manipulating that data
which is completely independent of
the details of its physical
representation/implementation.
This decouples development of
Database Management Systems
(DBMSs) from the development of
database applications (at least in a
idealized world).

This is the kind of abstraction at the heart of Computer Science!
T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 8 / 36

Let’s start with mathematical relations

Suppose that S1 and S2 are sets. The Cartesian product, S1 × S2, is
the set

S1 × S2 = {(s1, s2) | s1 ∈ S1, s2 ∈ S2}

A (binary) relation over S1 × S2 is any set r with

r ⊆ S1 × S2.

In a similar way, if we have n sets,

S1, S2, . . . ,Sn,

then an n-ary relation r is a set

r ⊆ S1 × S2 × · · · × Sn = {(s1, s2, . . . , sn) | si ∈ Si}

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 9 / 36

Did you notice the prestidigitation?

What do we really mean by this notation?

S1 × S2 × · · · × Sn

Does it represent n − 1 applications of a binary operator ×? NO!.
If we wanted to be extremely careful we might write something like
×(S1, S2, . . . ,Sn).
We perform this kind of sleight of hand very often. Here’s an example
from OCaml:

let flatten_left : ((’a * ’b) * ’c) -> (’a * ’b * ’c)
= function p ->

(fst (fst p), snd (fst p), snd p)

Perhaps if we had the option of writing *(’a, ’b, ’c) it would make
this implicit flattening more obvious.

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 10 / 36

Mathematical vs. database relations

Suppose we have an n-tuple t ∈ S1 × S2 × · · · × Sn. Extracting the i-th
component of t , say as πi(t), feels a bit low-level.

Solution: (1) Associate a name, Ai (called an attribute name) with
each domain Si . (2) Instead of tuples, use records — sets of pairs
each associating an attribute name Ai with a value in domain Si .

A database relation R over the schema
A1 : S1 × A2 : S2 × · · · × An : Sn is a finite set

R ⊆ {{(A1, s1), (A2, s2), . . . , (An, sn)} | si ∈ Si}

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 11 / 36

Example
A relational schema
Students(name: string, sid: string, age : integer)

A relational instance of this schema
Students = {

{(name, Fatima), (sid, fm21), (age, 20)},
{(name, Eva), (sid, ev77), (age, 18)},
{(name, James), (sid, jj25), (age, 19)}
}

A tabular presentation

name sid age
Fatima fm21 20
Eva ev77 18
James jj25 19

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 12 / 36

Creating Tables in SQL

create table Students
(sid varchar(10),
name varchar(50),
age int);

-- insert record with attribute names
insert into Students set

name = ’Fatima’, age = 20, sid = ’fm21’;

-- or insert records with values in same order
-- as in create table
insert into Students values

(’jj25’ , ’James’ , 19),
(’ev77’ , ’Eva’ , 18);

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 13 / 36

Listing a Table in SQL

-- list by attribute order of create table
mysql> select * from Students;
+------+--------+------+
| sid | name | age |
+------+--------+------+
ev77	Eva	18
fm21	Fatima	20
jj25	James	19
+------+--------+------+
3 rows in set (0.00 sec)

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 14 / 36

Listing a Table in SQL

-- list by specified attribute order
mysql> select name, age, sid from Students;
+--------+------+------+
| name | age | sid |
+--------+------+------+
Eva	18	ev77
Fatima	20	fm21
James	19	jj25
+--------+------+------+
3 rows in set (0.00 sec)

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 15 / 36

Keys in SQL
A key is a set of attributes that will uniquely identify any record (row) in
a table. We will get more precise in Lecture 06.

-- with this create table
create table Students

(sid varchar(10),
name varchar(50),
age int,
primary key (sid));

-- if we try to insert this (fourth) student ...
mysql> insert into Students set

name = ’Flavia’, age = 23, sid = ’fm21’;

ERROR 1062 (23000): Duplicate
entry ’fm21’ for key ’PRIMARY’

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 16 / 36

Put all information in one big table?

Suppose we want to add information about college membership to our
Student database. We could add an additional attribute for the college.

StudentsWithCollege :
+--------+------+------+--------+
| name | age | sid | college|
+--------+------+------+--------+
Eva	18	ev77	King’s
Fatima	20	fm21	Clare
James	19	jj25	Clare
+--------+------+------+--------+

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 17 / 36

Put logically independent data in distinct tables?
Students : +--------+------+------+-----+

| name | age | sid | cid |
+--------+------+------+-----+
Eva	18	ev77	k
Fatima	20	fm21	cl
James	19	jj25	cl
+--------+------+------+-----+

Colleges : +-----+---------------+
| cid | college_name |
+-----+---------------+
k	King’s
cl	Clare
sid	Sidney Sussex
q	Queens’

...

But how do we put them back together again?
T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 18 / 36

The main themes of these lectures

We will focus on databases from the perspective of an application
writer.

I We will not be looking at implementation details.
The main question is this:

I What criteria can we use to asses the quality of a database
application?

We will see that there is an inherent tradeoff between query
response time and (concurrent) update throughput.
Understanding this tradeoff will involve a careful analysis of the
data redundancy implied by a database schema design.

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 19 / 36

Lecture 02: Relational Expressions

Outline
Database query languages
The Relational Algebra
The Relational Calculi (tuple and domain)
SQL

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 20 / 36

What is a (relational) database query language?

Input : a collection of Output : a single
relation instances relation instance

R1, R2, · · · , Rk =⇒ Q(R1, R2, · · · , Rk)

How can we express Q?
In order to meet Codd’s goals we want a query language that is
high-level and independent of physical data representation.

There are many possibilities ...

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 21 / 36

The Relational Algebra (RA)

Q ::= R base relation
| σp(Q) selection
| πX(Q) projection
| Q ×Q product
| Q −Q difference
| Q ∪Q union
| Q ∩Q intersection
| ρM(Q) renaming

p is a simple boolean predicate over attributes values.
X = {A1, A2, . . . , Ak} is a set of attributes.
M = {A1 7→ B1, A2 7→ B2, . . . , Ak 7→ Bk} is a renaming map.

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 22 / 36

Relational Calculi

The Tuple Relational Calculus (TRC)

Q = {t | P(t)}

The Domain Relational Calculus (DRC)

Q = {(A1 = v1, A2 = v2, . . . ,Ak = vk) | P(v1, v2, · · · , vk)}

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 23 / 36

The SQL standard

Origins at IBM in early 1970’s.
SQL has grown and grown through many rounds of
standardization :

I ANSI: SQL-86
I ANSI and ISO : SQL-89, SQL-92, SQL:1999, SQL:2003,

SQL:2006, SQL:2008
SQL is made up of many sub-languages :

I Query Language
I Data Definition Language
I System Administration Language
I ...

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 24 / 36

Selection

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

A B C D
20 10 0 55
77 25 4 0

RA Q = σA>12(R)

TRC Q = {t | t ∈ R ∧ t .A > 12}
DRC Q = {{(A, a), (B, b), (C, c), (D, d)} |

{(A, a), (B, b), (C, c), (D, d)} ∈ R ∧ a > 12}
SQL select * from R where R.A > 12

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 25 / 36

Projection

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

=⇒

Q(R)

B C
10 0
99 17
25 4

RA Q = πB,C(R)

TRC Q = {t | ∃u ∈ R ∧ t .[B,C] = u.[B,C]}
DRC Q = {{(B, b), (C, c)} |

∃{(A, a), (B, b), (C, c), (D, d)} ∈ R}
SQL select distinct B, C from R

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 26 / 36

Why the distinct in the SQL?

The SQL query

select B, C from R

will produce a bag (multiset)!

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

B C
10 0 ? ? ?
10 0 ? ? ?
99 17
25 4

SQL is actually based on multisets, not sets. We will look into this
more in Lecture 09.

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 27 / 36

Renaming

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

A E C F
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

RA Q = ρ{B 7→E , D 7→F}(R)

TRC Q = {t | ∃u ∈ R ∧ t .A = u.A ∧ t .E = u.E ∧ t .C =
u.C ∧ t .F = u.D}

DRC Q = {{(A, a), (E , b), (C, c), (F , d)} |
∃{(A, a), (B, b), (C, c), (D, d)} ∈ R}

SQL select A, B as E, C, D as F from R

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 28 / 36

Product

R
A B
20 10
11 10
4 99

S
C D
14 99
77 100 =⇒

Q(R, S)
A B C D
20 10 14 99
20 10 77 100
11 10 14 99
11 10 77 100
4 99 14 99
4 99 77 100

Note the automatic flattening
RA Q = R × S

TRC Q = {t | ∃u ∈ R, v ∈ S, t .[A,B] = u.[A,B] ∧ t .[C,D] =
v .[C,D]}

DRC Q = {{(A, a), (B, b), (C, c), (D, d)} |
{(A, a), (B, b)} ∈ R ∧ {(C, c), (D, d)} ∈ S}

SQL select A, B, C, D from R, S
T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 29 / 36

Union

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R, S)

A B
20 10
11 10
4 99
77 1000

RA Q = R ∪ S
TRC Q = {t | t ∈ R ∨ t ∈ S}
DRC Q = {{(A, a), (B, b)} | {(A, a), (B, b)} ∈

R ∨ {(A, a), (B, b)} ∈ S}
SQL (select * from R) union (select * from S)

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 30 / 36

Intersection

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R)

A B
20 10

RA Q = R ∩ S
TRC Q = {t | t ∈ R ∧ t ∈ S}
DRC Q = {{(A, a), (B, b)} | {(A, a), (B, b)} ∈

R ∧ {(A, a), (B, b)} ∈ S}
SQL

(select * from R) intersect (select * from S)

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 31 / 36

Difference

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R)

A B
11 10
4 99

RA Q = R − S
TRC Q = {t | t ∈ R ∧ t 6∈ S}
DRC Q = {{(A, a), (B, b)} | {(A, a), (B, b)} ∈

R ∧ {(A, a), (B, b)} 6∈ S}
SQL (select * from R) except (select * from S)

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 32 / 36

Query Safety
A query like Q = {t | t ∈ R ∧ t 6∈ S} raises some interesting questions.
Should we allow the following query?

Q = {t | t 6∈ S}

We want our relations to be finite!

Safety
A (TRC) query

Q = {t | P(t)}

is safe if it is always finite for any database instance.

Problem : query safety is not decidable!
Solution : define a restricted syntax that guarantees safety.

Safe queries can be represented in the Relational Algebra.

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 33 / 36

Division

Given R(X, Y) and S(Y), the division of R by S, denoted R ÷ S, is the
relation over attributes X defined as (in the TRC)

R ÷ S ≡ {x | ∀s ∈ S, x ∪ s ∈ R}.

name award
Fatima writing
Fatima music
Eva music
Eva writing
Eva dance
James dance

÷

award
music
writing
dance

=
name
Eva

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 34 / 36

Division in the Relational Algebra?

Clearly, R ÷ S ⊆ πX(R). So R ÷ S = πX(R)− C, where C represents
counter examples to the division condition. That is, in the TRC,

C = {x | ∃s ∈ S, x ∪ s 6∈ R}.

U = πX(R)× S represents all possible x ∪ s for x ∈ X(R) and
s ∈ S,
so T = U − R represents all those x ∪ s that are not in R,
so C = πX(T) represents those records x that are counter
examples.

Division in RA

R ÷ S ≡ πX(R)− πX((πX(R)× S)− R)

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 35 / 36

Limitations of simple relational query languages

The expressive power of RA, TRC, and DRC are essentially the
same.

I None can express the transitive closure of a relation.

We could extend RA to a more powerful languages (like Datalog).
SQL has been extended with many features beyond the Relational
Algebra.

I stored procedures
I recursive queries
I ability to embed SQL in standard procedural languages

T. Griffin (cl.cam.ac.uk) Databases Lectures 1 and 2 DB 2009 36 / 36

