
Complexity Theory 1

Complexity Theory

Lectures 7–12

Lecturer: Dr. Timothy G. Griffin

Slides by Anuj Dawar

Computer Laboratory

University of Cambridge

Easter Term 2009

http://www.cl.cam.ac.uk/teaching/0809/Complexity/

Cambridge Easter 2009

Complexity Theory 2

Hamiltonian Graphs

Recall the definition of HAM—the language of Hamiltonian graphs.

Given a graph G = (V, E), a Hamiltonian cycle in G is a path in

the graph, starting and ending at the same node, such that every

node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Cambridge Easter 2009

Complexity Theory 3

Hamiltonian Cycle

We can construct a reduction from 3SAT to HAM

Essentially, this involves coding up a Boolean expression as a

graph, so that every satisfying truth assignment to the expression

corresponds to a Hamiltonian circuit of the graph.

This reduction is much more intricate than the one for IND.

Cambridge Easter 2009

Complexity Theory 4

Travelling Salesman

Recall the travelling salesman problem

Given

• V — a set of nodes.

• c : V × V → IN — a cost matrix.

Find an ordering v1, . . . , vn of V for which the total cost:

c(vn, v1) +
n−1
∑

i=1

c(vi, vi+1)

is the smallest possible.

Cambridge Easter 2009

Complexity Theory 5

Travelling Salesman

As with other optimisation problems, we can make a decision

problem version of the Travelling Salesman problem.

The problem TSP consists of the set of triples

(V, c : V × V → IN, t)

such that there is a tour of the set of vertices V , which under the

cost matrix c, has cost t or less.

Cambridge Easter 2009

Complexity Theory 6

Reduction

There is a simple reduction from HAM to TSP, mapping a graph

(V, E) to the triple (V, c : V × V → IN, n), where

c(u, v) =







1 if (u, v) ∈ E

2 otherwise

and n is the size of V .

Cambridge Easter 2009

Complexity Theory 7

Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to

be NP-complete.

Literally hundreds of naturally arising problems have been proved

NP-complete, in areas involving network design, scheduling,

optimisation, data storage and retrieval, artificial intelligence and

many others.

Such problems arise naturally whenever we have to construct a

solution within constraints, and the most effective way appears to

be an exhaustive search of an exponential solution space.

We now examine three more NP-complete problems, whose

significance lies in that they have been used to prove a large

number of other problems NP-complete, through reductions.

Cambridge Easter 2009

Complexity Theory 8

3D Matching

The decision problem of 3D Matching is defined as:

Given three disjoint sets X , Y and Z, and a set of triples

M ⊆ X × Y × Z, does M contain a matching?

I.e. is there a subset M ′ ⊆ M , such that each element of

X , Y and Z appears in exactly one triple of M ′?

We can show that 3DM is NP-complete by a reduction from 3SAT.

Cambridge Easter 2009

Complexity Theory 9

Reduction

If a Boolean expression φ in 3CNF has n variables, and m clauses,

we construct for each variable v the following gadget.

zv1

zv2

zv3

zv4

xv1 yv1

z̄v1

z̄v2

yv2

xv2

yv3 xv3

yv4

xv4

z̄v3

z̄v4

Cambridge Easter 2009

Complexity Theory 10

In addition, for every clause c, we have two elements xc and yc.

If the literal v occurs in c, we include the triple

(xc, yc, zvc)

in M .

Similarly, if ¬v occurs in c, we include the triple

(xc, yc, z̄vc)

in M .

Finally, we include extra dummy elements in X and Y to make the

numbers match up.

Cambridge Easter 2009

Complexity Theory 11

Exact Set Covering

Two other well known problems are proved NP-complete by

immediate reduction from 3DM.

Exact Cover by 3-Sets is defined by:

Given a set U with 3n elements, and a collection

S = {S1, . . . , Sm} of three-element subsets of U , is there a

sub collection containing exactly n of these sets whose

union is all of U?

The reduction from 3DM simply takes U = X ∪ Y ∪ Z, and S to be

the collection of three-element subsets resulting from M .

Cambridge Easter 2009

Complexity Theory 12

Set Covering

More generally, we have the Set Covering problem:

Given a set U , a collection of S = {S1, . . . , Sm} subsets of

U and an integer budget B, is there a collection of B sets

in S whose union is U?

Cambridge Easter 2009

Complexity Theory 13

Knapsack

KNAPSACK is a problem which generalises many natural

scheduling and optimisation problems, and through reductions has

been used to show many such problems NP-complete.

In the problem, we are given n items, each with a positive integer

value vi and weight wi.

We are also given a maximum total weight W , and a minimum

total value V .

Can we select a subset of the items whose total weight does

not exceed W , and whose total value exceeds V ?

Cambridge Easter 2009

Complexity Theory 14

Reduction

The proof that KNAPSACK is NP-complete is by a reduction from

the problem of Exact Cover by 3-Sets.

Given a set U = {1, . . . , 3n} and a collection of 3-element subsets of

U , S = {S1, . . . , Sm}.
We map this to an instance of KNAPSACK with m elements each

corresponding to one of the Si, and having weight and value

Σj∈Si
(m + 1)j−1

and set the target weight and value both to

Σ3n−1
j=0 (m + 1)j

Cambridge Easter 2009

Complexity Theory 15

Scheduling

Some examples of the kinds of scheduling tasks that have been

proved NP-complete include:

Timetable Design

Given a set H of work periods, a set W of workers each

with an associated subset of H (available periods), a set T

of tasks and an assignment r : W × T → IN of required

work, is there a mapping f : W × T × H → {0, 1} which

completes all tasks?

Cambridge Easter 2009

Complexity Theory 16

Scheduling

Sequencing with Deadlines

Given a set T of tasks and for each task a length l ∈ IN, a

release time r ∈ IN and a deadline d ∈ IN, is there a work

schedule which completes each task between its release

time and its deadline?

Job Scheduling

Given a set T of tasks, a number m ∈ IN of processors a

length l ∈ IN for each task, and an overall deadline D ∈ IN,

is there a multi-processor schedule which completes all

tasks by the deadline?

Cambridge Easter 2009

Complexity Theory 17

Responses to NP-Completeness

Confronted by an NP-complete problem, say constructing a

timetable, what can one do?

• It’s a single instance, does asymptotic complexity matter?

• What’s the critical size? Is scalability important?

• Are there guaranteed restrictions on the input? Will a special

purpose algorithm suffice?

• Will an approximate solution suffice? Are performance

guarantees required?

• Are there useful heuristics that can constrain a search? Ways

of ordering choices to control backtracking?

Cambridge Easter 2009

Complexity Theory 18

Validity

We define VAL—the set of valid Boolean expressions—to be those

Boolean expressions for which every assignment of truth values to

variables yields an expression equivalent to true.

φ ∈ VAL ⇔ ¬φ 6∈ SAT

By an exhaustive search algorithm similar to the one for SAT, VAL

is in TIME(n22n).

Is VAL ∈ NP?

Cambridge Easter 2009

Complexity Theory 19

Validity

VAL = {φ | φ 6∈ VAL}—the complement of VAL is in NP.

Guess a a falsifying truth assignment and verify it.

Such an algorithm does not work for VAL.

In this case, we have to determine whether every truth assignment

results in true—a requirement that does not sit as well with the

definition of acceptance by a nondeterministic machine.

Cambridge Easter 2009

Complexity Theory 20

Complementation

If we interchange accepting and rejecting states in a deterministic

machine that accepts the language L, we get one that accepts L.

If a language L ∈ P, then also L ∈ P.

Complexity classes defined in terms of nondeterministic machine

models are not necessarily closed under complementation of

languages.

Define,

co-NP – the languages whose complements are in NP.

Cambridge Easter 2009

Complexity Theory 21

Succinct Certificates

The complexity class NP can be characterised as the collection of

languages of the form:

L = {x | ∃yR(x, y)}

Where R is a relation on strings satisfying two key conditions

1. R is decidable in polynomial time.

2. R is polynomially balanced. That is, there is a polynomial p

such that if R(x, y) and the length of x is n, then the length of

y is no more than p(n).

Cambridge Easter 2009

Complexity Theory 22

Succinct Certificates

y is a certificate for the membership of x in L.

Example: If L is SAT, then for a satisfiable expression x, a

certificate would be a satisfying truth assignment.

Cambridge Easter 2009

Complexity Theory 23

co-NP

As co-NP is the collection of complements of languages in NP, and

P is closed under complementation, co-NP can also be characterised

as the collection of languages of the form:

L = {x | ∀y |y| < p(|x|) → R′(x, y)}

NP – the collection of languages with succinct certificates of

membership.

co-NP – the collection of languages with succinct certificates of

disqualification.

Cambridge Easter 2009

Complexity Theory 24

NP

P

co-NP

Any of the situations is consistent with our present state of

knowledge:

• P = NP = co-NP

• P = NP ∩ co-NP 6= NP 6= co-NP

• P 6= NP ∩ co-NP = NP = co-NP

• P 6= NP ∩ co-NP 6= NP 6= co-NP

Cambridge Easter 2009

Complexity Theory 25

co-NP-complete

VAL – the collection of Boolean expressions that are valid is

co-NP-complete.

Any language L that is the complement of an NP-complete

language is co-NP-complete.

Any reduction of a language L1 to L2 is also a reduction of L̄1–the

complement of L1–to L̄2–the complement of L2.

There is an easy reduction from the complement of SAT to VAL,

namely the map that takes an expression to its negation.

VAL ∈ P ⇒ P = NP = co-NP

VAL ∈ NP ⇒ NP = co-NP

Cambridge Easter 2009

Complexity Theory 26

Prime Numbers

Consider the decision problem PRIME:

Given a number x, is it prime?

This problem is in co-NP.

∀y(y < x → (y = 1 ∨ ¬(div(y, x))))

Note again, the algorithm that checks for all numbers up to√
n whether any of them divides n, is not polynomial, as√
n is not polynomial in the size of the input string, which

is log n.

Cambridge Easter 2009

Complexity Theory 27

Primality

Another way of putting this is that Composite is in NP.

Pratt (1976) showed that PRIME is in NP, by exhibiting succinct

certificates of primality based on:

A number p > 2 is prime if, and only if, there is a number

r, 1 < r < p, such that rp−1 = 1 mod p and

r
p−1

q 6= 1 mod p for all prime divisors q of p − 1.

Cambridge Easter 2009

Complexity Theory 28

Primality

In 2002, Agrawal, Kayal and Saxena showed that PRIME is in P.

If a is co-prime to p,

(x − a)p ≡ (xp − a) (mod p)

if, and only if, p is a prime.

Checking this equivalence would take to long. Instead, the

equivalence is checked modulo a polynomial xr − 1, for “suitable” r.

The existence of suitable small r relies on deep results in number

theory.

Cambridge Easter 2009

Complexity Theory 29

Factors

Consider the language Factor

{(x, k) | x has a factor y with 1 < y < k}

Factor ∈ NP ∩ co-NP

Certificate of membership—a factor of x less than k.

Certificate of disqualification—the prime factorisation of x.

Cambridge Easter 2009

Complexity Theory 30

Optimisation

The Travelling Salesman Problem was originally conceived of as an

optimisation problem

to find a minimum cost tour.

We forced it into the mould of a decision problem – TSP – in order

to fit it into our theory of NP-completeness.

Similar arguments can be made about the problems CLIQUE and

IND.

Cambridge Easter 2009

Complexity Theory 31

This is still reasonable, as we are establishing the difficulty of the

problems.

A polynomial time solution to the optimisation version would give

a polynomial time solution to the decision problem.

Also, a polynomial time solution to the decision problem would

allow a polynomial time algorithm for finding the optimal value,

using binary search, if necessary.

Cambridge Easter 2009

Complexity Theory 32

Function Problems

Still, there is something interesting to be said for function problems

arising from NP problems.

Suppose

L = {x | ∃yR(x, y)}
where R is a polynomially-balanced, polynomial time decidable

relation.

A witness function for L is any function f such that:

• if x ∈ L, then f(x) = y for some y such that R(x, y);

• f(x) = “no” otherwise.

The class FNP is the collection of all witness functions for

languages in NP.

Cambridge Easter 2009

Complexity Theory 33

FNP and FP

A function which, for any given Boolean expression φ, gives a

satisfying truth assignment if φ is satisfiable, and returns “no”

otherwise, is a witness function for SAT.

If any witness function for SAT is computable in polynomial time,

then P = NP.

If P = NP, then for every language in NP, some witness function is

computable in polynomial time, by a binary search algorithm.

P = NP if, and only if, FNP = FP

Under a suitable definition of reduction, the witness functions for

SAT are FNP-complete.

Cambridge Easter 2009

Complexity Theory 34

Factorisation

The factorisation function maps a number n to its prime

factorisation:

2k13k2 · · · pkm

m .

This function is in FNP.

The corresponding decision problem (for which it is a witness

function) is trivial - it is the set of all numbers.

Still, it is not known whether this function can be computed in

polynomial time.

Cambridge Easter 2009

Complexity Theory 35

Cryptography

Alice Bob

Eve

Alice wishes to communicate with Bob without Eve eavesdropping.

Cambridge Easter 2009

Complexity Theory 36

Private Key

In a private key system, there are two secret keys

e – the encryption key

d – the decryption key

and two functions D and E such that:

for any x,

D(E(x, e), d) = x

For instance, taking d = e and both D and E as exclusive or, we

have the one time pad:

(x ⊕ e) ⊕ e = x

Cambridge Easter 2009

Complexity Theory 37

One Time Pad

The one time pad is provably secure, in that the only way Eve can

decode a message is by knowing the key.

If the original message x and the encrypted message y are known,

then so is the key:

e = x ⊕ y

Cambridge Easter 2009

Complexity Theory 38

Public Key

In public key cryptography, the encryption key e is public, and the

decryption key d is private.

We still have,

for any x,

D(E(x, e), d) = x

If E is polynomial time computable (and it must be if

communication is not to be painfully slow), then the function that

takes y = E(x, e) to x (without knowing d), must be in FNP.

Thus, public key cryptography is not provably secure in the way

that the one time pad is. It relies on the existence of functions in

FNP − FP.

Cambridge Easter 2009

Complexity Theory 39

One Way Functions

A function f is called a one way function if it satisfies the following

conditions:

1. f is one-to-one.

2. for each x, |x|1/k ≤ |f(x)| ≤ |x|k for some k.

3. f ∈ FP.

4. f−1 6∈ FP.

We cannot hope to prove the existence of one-way functions

without at the same time proving P 6= NP.

It is strongly believed that the RSA function:

f(x, e, p, q) = (xe mod pq, pq, e)

is a one-way function.

Cambridge Easter 2009

Complexity Theory 40

UP

Though one cannot hope to prove that the RSA function is one-way

without separating P and NP, we might hope to make it as secure

as a proof of NP-completeness.

Definition

A nondeterministic machine is unambiguous if, for any input x,

there is at most one accepting computation of the machine.

UP is the class of languages accepted by unambiguous machines in

polynomial time.

Cambridge Easter 2009

Complexity Theory 41

UP

Equivalently, UP is the class of languages of the form

{x | ∃yR(x, y)}

Where R is polynomial time computable, polynomially balanced,

and for each x, there is at most one y such that R(x, y).

Cambridge Easter 2009

Complexity Theory 42

UP One-way Functions

We have

P ⊆ UP ⊆ NP

It seems unlikely that there are any NP-complete problems in UP.

One-way functions exist if, and only if, P 6= UP.

Cambridge Easter 2009

Complexity Theory 43

Space Complexity

We’ve already seen the definition SPACE(f(n)): the languages

accepted by a machine which uses O(f(n)) tape cells on inputs of

length n. Counting only work space

NSPACE(f(n)) is the class of languages accepted by a

nondeterministic Turing machine using at most f(n) work space.

As we are only counting work space, it makes sense to consider

bounding functions f that are less than linear.

Cambridge Easter 2009

Complexity Theory 44

Classes

L = SPACE(log n)

NL = NSPACE(log n)

PSPACE =
⋃

∞

k=1 SPACE(nk)

The class of languages decidable in polynomial space.

NPSPACE =
⋃

∞

k=1 NSPACE(nk)

Also, define

co-NL – the languages whose complements are in NL.

co-NPSPACE – the languages whose complements are in NPSPACE.

Cambridge Easter 2009

Complexity Theory 45

Inclusions

We have the following inclusions:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP

where EXP =
⋃

∞

k=1 TIME(2nk

)

Moreover,

L ⊆ NL ∩ co-NL

P ⊆ NP ∩ co-NP

PSPACE ⊆ NPSPACE ∩ co-NPSPACE

Cambridge Easter 2009

Complexity Theory 46

Establishing Inclusions

To establish the known inclusions between the main complexity

classes, we prove the following.

• SPACE(f(n)) ⊆ NSPACE(f(n));

• TIME(f(n)) ⊆ NTIME(f(n));

• NTIME(f(n)) ⊆ SPACE(f(n));

• NSPACE(f(n)) ⊆ TIME(klog n+f(n));

The first two are straightforward from definitions.

The third is an easy simulation.

The last requires some more work.

Cambridge Easter 2009

Complexity Theory 47

Reachability

Recall the Reachability problem: given a directed graph G = (V, E)

and two nodes a, b ∈ V , determine whether there is a path from a

to b in G.

A simple search algorithm solves it:

1. mark node a, leaving other nodes unmarked, and initialise set

S to {a};

2. while S is not empty, choose node i in S: remove i from S and

for all j such that there is an edge (i, j) and j is unmarked,

mark j and add j to S;

3. if b is marked, accept else reject.

Cambridge Easter 2009

Complexity Theory 48

NL Reachability

We can construct an algorithm to show that the Reachability

problem is in NL:

1. write the index of node a in the work space;

2. if i is the index currently written on the work space:

(a) if i = b then accept, else

guess an index j (log n bits) and write it on the work space.

(b) if (i, j) is not an edge, reject, else replace i by j and return

to (2).

Cambridge Easter 2009

Complexity Theory 49

We can use the O(n2) algorithm for Reachability to show that:

NSPACE(f(n)) ⊆ TIME(klog n+f(n))

for some constant k.

Let M be a nondeterministic machine working in space bounds

f(n).

For any input x of length n, there is a constant c (depending on the

number of states and alphabet of M) such that the total number of

possible configurations of M within space bounds f(n) is bounded

by n · cf(n).

Here, cf(n) represents the number of different possible

contents of the work space, and n different head positions

on the input.

Cambridge Easter 2009

Complexity Theory 50

Configuration Graph

Define the configuration graph of M, x to be the graph whose nodes

are the possible configurations, and there is an edge from i to j if,

and only if, i →M j.

Then, M accepts x if, and only if, some accepting configuration is

reachable from the starting configuration (s, ⊲, x, ⊲, ε) in the

configuration graph of M, x.

Cambridge Easter 2009

Complexity Theory 51

Using the O(n2) algorithm for Reachability, we get that M can be

simulated by a deterministic machine operating in time

c′(ncf(n))2 ∼ c′c2(log n+f(n)) ∼ k(log n+f(n))

In particular, this establishes that NL ⊆ P and NPSPACE ⊆ EXP.

Cambridge Easter 2009

Complexity Theory 52

Savitch’s Theorem

Further simulation results for nondeterministic space are obtained

by other algorithms for Reachability.

We can show that Reachability can be solved by a deterministic

algorithm in O((log n)2) space.

Consider the following recursive algorithm for determining whether

there is a path from a to b of length at most n (for n a power of 2):

Cambridge Easter 2009

Complexity Theory 53

O((log n)2) space Reachability algorithm:

Path(a, b, i)

if i = 1 and (a, b) is not an edge reject

else if (a, b) is an edge or a = b accept

else, for each node x, check:

1. is there a path a − x of length i/2; and

2. is there a path x − b of length i/2?

if such an x is found, then accept, else reject.

The maximum depth of recursion is log n, and the number of bits

of information kept at each stage is 3 log n.

Cambridge Easter 2009

Complexity Theory 54

Savitch’s Theorem - 2

The space efficient algorithm for reachability used on the

configuration graph of a nondeterministic machine shows:

NSPACE(f(n)) ⊆ SPACE(f(n)2)

for f(n) ≥ log n.

This yields

PSPACE = NPSPACE = co-NPSPACE.

Cambridge Easter 2009

Complexity Theory 55

Complementation

A still more clever algorithm for Reachability has been used to show

that nondeterministic space classes are closed under

complementation:

If f(n) ≥ log n, then

NSPACE(f(n)) = co-NSPACE(f(n))

In particular

NL = co-NL.

Cambridge Easter 2009

Complexity Theory 56

Complexity Classes

We have established the following inclusions among complexity

classes:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP

Showing that a problem is NP-complete or PSPACE-complete, we

often say that we have proved it intractable.

While this is not strictly correct, a proof of completeness for these

classes does tell us that the problem is structurally difficult.

Similarly, we say that PSPACE-complete problems are harder than

NP-complete ones, even if the running time is not higher.

Cambridge Easter 2009

Complexity Theory 57

Provable Intractability

Our aim now is to show that there are languages (or, equivalently,

decision problems) that we can prove are not in P.

This is done by showing that, for every reasonable function f , there

is a language that is not in TIME(f(n)).

The proof is based on the diagonal method, as in the proof of the

undecidability of the halting problem.

Cambridge Easter 2009

Complexity Theory 58

Constructible Functions

A complexity class such as TIME(f(n)) can be very unnatural, if

f(n) is.

We restrict our bounding functions f(n) to be proper functions:

Definition

A function f : IN → IN is constructible if:

• f is non-decreasing, i.e. f(n + 1) ≥ f(n) for all n; and

• there is a deterministic machine M which, on any input of

length n, replaces the input with the string 0f(n), and M runs

in time O(n + f(n)) and uses O(f(n)) work space.

Cambridge Easter 2009

Complexity Theory 59

Examples

All of the following functions are constructible:

• ⌈log n⌉;

• n2;

• n;

• 2n.

If f and g are constructible functions, then so are

f + g, f · g, 2f and f(g) (this last, provided that f(n) > n).

Cambridge Easter 2009

Complexity Theory 60

Using Constructible Functions

Recall NTIME(f(n)) is defined as the class of those languages L

accepted by a nondeterministic Turing machine M , such that for

every x ∈ L, there is an accepting computation of M on x of

length at most O(f(n)).

If f is a constructible function then any language in NTIME(f(n))

is accepted by a machine for which all computations are of length

at most O(f(n)).

Also, given a Turing machine M and a constructible function f , we

can define a machine that simulates M for f(n) steps.

Cambridge Easter 2009

Complexity Theory 61

Inclusions

The inclusions we proved between complexity classes:

• NTIME(f(n)) ⊆ SPACE(f(n));

• NSPACE(f(n)) ⊆ TIME(klog n+f(n));

• NSPACE(f(n)) ⊆ SPACE(f(n)2)

really only work for constructible functions f .

The inclusions are established by showing that a deterministic

machine can simulate a nondeterministic machine M for f(n) steps.

For this, we have to be able to compute f within the required

bounds.

Cambridge Easter 2009

Complexity Theory 62

Time Hierarchy Theorem

For any constructible function f , with f(n) ≥ n, define the

f -bounded halting language to be:

Hf = {[M], x | M accepts x in f(|x|) steps}

where [M] is a description of M in some fixed encoding scheme.

Then, we can show

Hf ∈ TIME(f(n)3) and Hf 6∈ TIME(f(⌊n/2⌋))

Time Hierarchy Theorem

For any constructible function f(n) ≥ n, TIME(f(n)) is properly

contained in TIME(f(2n + 1)3).

Cambridge Easter 2009

Complexity Theory 63

Strong Hierarchy Theorems

For any constructible function f(n) ≥ n, TIME(f(n)) is properly

contained in TIME(f(n)(log f(n))).

Space Hierarchy Theorem

For any pair of constructible functions f and g, with f = O(g) and

g 6= O(f), there is a language in SPACE(g(n)) that is not in

SPACE(f(n)).

Similar results can be established for nondeterministic time and

space classes.

Cambridge Easter 2009

Complexity Theory 64

Consequences

• For each k, TIME(nk) 6= TIME(nk+1).

• P 6= EXP.

• L 6= PSPACE.

• Any language that is EXP-complete is not in P.

• There are no problems in P that are complete under linear time

reductions.

Cambridge Easter 2009

Complexity Theory 65

P-complete Problems

It makes little sense to talk of complete problems for the class P

with respect to polynomial time reducibility ≤P .

There are problems that are complete for P with respect to

logarithmic space reductions ≤L.

One example is CVP—the circuit value problem.

• If CVP ∈ L then L = P.

• If CVP ∈ NL then NL = P.

Cambridge Easter 2009

