
Artificial Intelligence I

Dr Mateja Jamnik

Computer Laboratory, Room FC18

Telephone extension 63587

Email: mj201@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/mj201/

Notes IV: introduction to machine learning with artificial n eural
networks

Copyright c©Sean Holden 2002-2009.

Supervised Learning with Neural Networks

We now look at how an agent might learn to solve a general problem
by seeing examples.

Aims:

• to present an outline of supervised learning as part of AI;

• to introduce much of the notation and terminology used;

• to introduce the classical perceptron, and to show how it can be
applied more generally using kernels;

• to introduce multilayer perceptrons and the backpropagation al-
gorithm for training them.

Reading: Russell and Norvig, chapters 18 and 19.

An example

A common source of problems in AI is medical diagnosis.

Imagine that we want to automate the diagnosis of an embarrassing
disease (call it D) by constructing a machine:

Machine

1 if the patient suffers from D
0 otherwise

Measurements taken from the
patient, e.g. heart rate, blood pressure,
presence of green spots etc.

Could we do this by explicitly writing a program that examines the
measurements and outputs a diagnosis?

Experience suggests that this is unlikely.

An example, continued...

Let’s look at an alternative approach. Each collection of measure-
ments can be written as a vector,

xT = (x1 x2 · · · xn)

where,

x1 = heart rate
x2 = blood pressure
x3 = 1 if the patient has green spots

0 otherwise
...

and so on

An example, continued...

A vector of this kind contains all the measurements for a single pa-
tient and is generally called a feature vector or instance.

The measurements are usually referred to as attributes or features.
(Technically, there is a difference between an attribute and a feature
- but we won’t have time to explore it.)

Attributes or features generally appear as one of three basic types:

• continuous: xi ∈ [a, b] where a, b ∈ R;

• binary: xi ∈ {0, 1} or xi ∈ {−1, +1};

• discrete: xi can take one of a finite number of values, say xi ∈
{v1, . . . , vp}.

An example, continued...

Now imagine that we have a large collection of patient histories (m
in total) and for each of these we know whether or not the patient
suffered from D.

• The ith patient history gives us an instance xi.

• This can be paired with a single bit—0 or 1—denoting whether or
not the ith patient suffers from D. The resulting pair is called an
example or a labelled example.

• Collecting all the examples together we obtain a training sequence,

s = ((x1, 0), (x2, 0), (x3, 1), . . . , (xm, 0))

An example, continued...

In the form of machine learning to be emphasised here, we aim to
design a learning algorithm which takes s and produces a hypothesis
h.

Learning Algorithms h

Intuitively, a hypothesis is something that lets us diagnose new pa-
tients.

But what’s a hypothesis?

What’s a hypothesis?

• Denote by X the set of all possible instances.

X = {x|x is a possible instance}

• Then a hypothesis h could simply be a function from X to {0, 1}.

h : X → {0, 1}

• In other words, h can take any instance and produce a 0 or a 1,
depending on whether (according to h) the patient the measure-
ments were taken from is suffering from D.

But what’s a hypothesis?

There are some important issues here, which are effectively right at
the heart of machine learning. Most importantly: the hypothesis h

can assign a 0 or a 1 to any x ∈ X.

• This includes instances x that did not appear in the training se-
quence.

• The overall process therefore involves rather more than memo-
rising the training sequence.

• Ideally, the aim is that h should be able to generalize. That is, it
should be possible to use it to diagnose new patients.

But what’s a hypothesis?

In fact we need a slightly more flexible definition of a hypothesis.

A hypothesis is a function from X to some suitable set Ω

h : X → Ω

because:

• there may be more than two classes:

Ω = {No disease, Disease D1, Disease D2, . . . , Disease Dc}

• or, we might want h to indicated how likely it is that the patient
has disease D

Ω = [0, 1]

where 0 denotes ‘definitely does have the disease’ and 1 denotes
‘definitely does not have it’. h(x) = 0.75 might for example denote
that the patient is reasonably certain to have the disease.

But what’s a hypothesis?

• One way of thinking about the previous case is in terms of prob-
abilities:

h(x) = Pr(x is in class 1)

• We may have Ω = R. For example if x contains several recent
measurements of a currency exchange rate and we want h(x) to
be a prediction of what the rate will be in 10 minutes time. Such
problems are generally known as regression problems.

Types of learning

The form of machine learning described is called supervised learn-
ing. This introduction will concentrate on this kind of learning. In
particular, the literature also discusses:

1. Unsupervised learning.

2. Learning using membership queries and equivalence queries.

3. Reinforcement learning.

Some further examples

• Speech recognition.

• Deciding whether or not to give credit.

• Detecting credit card fraud.

• Deciding whether to buy or sell a stock option.

• Deciding whether a tumour is benign.

• Data mining - that is, extracting interesting but hidden knowledge
from existing, large databases. For example, databases contain-
ing financial transactions or loan applications.

• Deciding whether driving conditions are dangerous.

• Automatic driving. (See Pomerleau, 1989, in which a car is driven
for 90 miles at 70 miles per hour, on a public road with other cars
present, but with no assistance from humans!)

• Playing games. (For example, see Tesauro, 1992 and 1995,
where a world class backgammon player is described.)

What have we got so far?

Extracting what we have so far, we get the following central ideas:

• A collection X of possible instances x.

• A collection Ω = {ω1, . . . , ωc} of classes to which any instance can
belong. In some scenarios we might have Ω ⊆ R.

• A training sequence containing m labelled examples,

s = ((x1, y1), (x2, y2), (x3, y3), . . . , (xm, ym))

with xi ∈ X and yi ∈ Ω for i = 1, . . . , m.

• A learning algorithm L which takes s and produces a hypothesis
h : X → Ω. We can write,

h = L(s).

What have we got so far?

But we need some more ideas as well:

• We often need to state what kinds of hypotheses are available to
L.

• The collection of available hypotheses is called the hypothesis
space and denoted H.

H = {h : h is available to L}

• Some learning algorithms do not always return the same h ∈
H for each run on a given sequence s. In this case L(s) is a
probability distribution on H.

What’s the ‘right’ answer?

• We may sometimes assume that there is a ‘correct’ function that
governs the relationship between the xs and the labels.

• This is called the target concept and is denoted c. It can be re-
garded as the ‘perfect’ hypothesis, and so we have c : X → Ω.

• This is not always a sufficient way of thinking about the problem...

Generalization

The learning algorithm never gets to know exactly what the ‘correct’
relationship between instances and classes is - it only ever gets to
see a finite number m of examples. So:

• generalization corresponds to the ability of L to pick a hypothesis
h which is ‘close’ in some sense to the ‘best possible’;

• however we have to be careful about what ‘close’ means here.

For example, what if some instances are much more likely than oth-
ers?

Generalization performance

How can generalization performance be assessed?

• Model the generation of training example using a probability dis-
tribution P on X × Ω.

• All examples are assumed to be independent and identically dis-
tributed (i.i.d.) according to P.

• Given a hypothesis h and any example (x, y) we can introduce a
measure L(h, (x, y)) of the error that h makes in classifying that
example.

• For example the following definitions for L might be appropriate:

L(h, (x, y)) = I(h(x) 6= y) for a classification problem
L(h, (x, y)) = (h(x)− y)2 when Ω ⊆ R

Generalization performance

A reasonable definition of generalization performance is then

er(h) = E(x,y)∈P (L(h, (x, y)))

In the case of the definition of L for classification problems given in
the previous slide this gives

er(h) = E(x,y)∈P (I(h(x) 6= y))

= P (h(x) 6= y))

In the case of the definition for L given for regression problems, er(h)
is the expected square of the difference between true label and pre-
dicted label.

Problems encountered in practice

In practice there are various problems that can arise:

• Measurements may be missing from the x vectors.

• There may be noise present.

• Classifications in s may be incorrect.

The practical techniques to be presented have their own approaches
to dealing with such problems. Similarly, problems arising in practice
are addressed by the theory.

(x1, c(x1))

(x2, c(x2))
...

(xm, c(xm))

Examples

Noisy Examples

(x1, 0)

(x2, 1)
...

(xm, 0)

Hypothesis

h ∈ H

Prior Knowledge

Some measurements may be missing

Some xi are available

Noise

Learning Algorithm

NOT KNOWN

Target Concept

c

The perceptron: a review

The initial development of linear discriminants was carried out by
Fisher in 1936, and since then they have been central to supervised
learning.

Their influence continues to be felt in the recent and ongoing devel-
opment of support vector machines, of which more later...

The perceptron: a review

We have a two-class classification problem in R
n.

f(x) = wTx + w0 = 0

We output class 1 if f(x) ≥ 0, or class 2 if f(x) < 0.

The perceptron: a review

So the hypothesis is

h(x) = sgn(f(x)) = sgn(wTx + w0)

where

sgn(y) =

{

+1 if y ≥ 0

−1 otherwise

The primal perceptron algorithm

η ∈ R
+,w(0)← 0, w

(0)
0 ← 0, k = 0, R = maxi ||xi||.

do
{

for (each example in s)
{

if (yi(w
Txi + w0) ≤ 0)

{
w = w + ηyixi

w0 = w0 + ηyiR
2

k = k + 1
}

}
}
while (mistakes are made in the for loop)
return w, w0.

Novikoff’s theorem

The perceptron algorithm does not converge if s is not linearly sep-
arable. However Novikoff proved the following:

Theorem 1 If s is non-trivial and linearly separable, where there ex-
ists a hyperplane (woptimum, woptimum) with ||woptimum|| = 1 and

yi(w
T
optimumxi + woptimum) ≥ γ

for i = 1, . . . ,m, then the perceptron algorithm makes at most
(

2R

γ

)2

mistakes.

Dual form of the perceptron algorithm

If we set η = 1 then the primal perceptron algorithm operates by
adding and subtracting misclassified points xi to an initial w at each
step.

As a result, when it stops we can represent the final w as

w =
m
∑

i=1

αiyixi

Note:

• the values αi are positive and proportional to the number of times
xi is misclassified;

• if s is fixed then the vector α
T = (α1 α2 · · · αm) is an alternative

representation of w.

Dual form of the perceptron algorithm

Using these facts, the hypothesis can be re-written

h(x) = sgn
(

wTx + w0

)

= sgn

(

m
∑

i=1

αiyixi

)T

x + w0

= sgn

(

m
∑

i=1

αiyi

(

xT
i x
)

+ w0

)

Dual form of the perceptron algorithm

α
(0)← 0, w

(0)
0 ← 0, R = maxi ||xi||.

do
{

for (each example in s)
{

if (yi(w
Txi + w0) ≤ 0)

{
αi = αi + 1
w0 = w0 + yiR

2

}
}

}
while (mistakes are made in the for loop)
return α, w0.

Mapping to a bigger space

There are many problems a perceptron can’t solve.

The classic example is the parity problem.

Mapping to a bigger space

But what happens if we add another element to xT = (x1 x2)?

For example we could use xT = (x1 x2 x1x2).

−0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1

x2

0

0.5

1

0

0.5

1

0

0.5

1

x1x2

x1
 *

 x
2

In R
3 a perceptron can easily solve this problem.

Mapping to a bigger space

h(x) = sgn(w0 + w1x1 + w2x2 + w3x1x2)

= sgn(w0 + w1φ1(x) + w2φ2(x) + w3φ3(x))

= sgn(wTΦ(x) + w0)

where

φ1(x) = x1

φ2(x) = x2

φ3(x) = x1x2

Φ(x)T = (φ1(x) φ2(x) φ3(x))

wT = (w1 w2 w3)

Mapping to a bigger space

This is an old trick, and the functions φi can be anything we like.

Example: In a multilayer perceptron

φi(x) =
1

1 + exp(−(wT
i x + wi0))

where wi is the vector of weights and wi0 the bias associated with
hidden node i.

Note however that for the time being the functions φi are fixed, whereas
in a multilayer perceptron they are allowed to vary as a result of vary-
ing the wi and wi0.

Mapping to a bigger space

x1

x2

xn

sgn
(

∑d

i=1
wiφi(x) + w0

)

...

...

φd(x)

φ3(x)

φ2(x)

φ1(x)

Mapping to a bigger space

We can now use a perceptron in the high-dimensional space, obtain-
ing a hypothesis of the form

h(x) = sgn

(

d
∑

i=1

wiφi(x) + w0

)

where the wi are the weights from the hidden nodes to the output
node.

So:

• start with x;

• use the φi to map it to a bigger space;

• use a (linear) perceptron in the bigger space.

Mapping to a bigger space

What happens if we use the dual form of the perceptron algorithm in
this process?

We end up with a hypothesis of the form

h(x) = sgn

(

m
∑

i=1

αiyiΦ(xi)
TΦ(x) + w0

)

where Φ(x) is the vector

Φ(x)T =
(

φ1(x) φ2(x) · · · φd(x)
)

Notice that this introduces the possibility of a tradeoff of m and d.

The sum has (potentially) become smaller.

The cost associated with this is that we may have to calculate Φ(xi)
TΦ(x)

several times.

Kernels

This suggests that it might be useful to be able to calculate Φ(xi)
TΦ(x)

easily.

In fact such an observation has far-reaching consequences.

Definition 2 A kernel is a function K such that for all vectors x and
y

K(x,y) = Φ(x)TΦ(y)

Note that a given kernel naturally corresponds to an underlying col-
lection of functions φi. Ideally, we want to make sure that the value
of d does not have a great effect on the calculation of K(x,y). If this
is the case then

h(x) = sgn

(

m
∑

i=1

αiyiK(xi,x) + w0

)

is easy to evaluate.

Kernels: an example

We can use
K(x,y) = (xTy)p

or
K(x,y) = (xTy + c)p

to obtain polynomial kernels.

In the latter case we have
(

n+p
p

)

features that are monomials up to
degree p, so the decision boundary obtained using K as described
above will be a polynomial curve of degree p.

Kernels: an example

−1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

x1

x2

100 examples, p=10, c=1

−1

0

1

2 −1

0

1

2
−1000

−500

0

500

1000

x2

Weighted sum value

x1
V

al
ue

 (
tr

un
ca

te
d

at
 1

00
0)

Gradient descent

An alternative method for training a basic perceptron works as fol-
lows. We define a measure of error for a given collection of weights.
For example

E(w) =
1

2

m
∑

i=1

(yi − f(xi))
2

where the sgn has not been used. Modifying our notation slightly so
that

xT = (1 x1 x2 · · · xn)

wT = (w0 w1 w2 · · · wn)

gives

E(w) =
1

2

m
∑

i=1

(yi −wTxi)
2

Gradient descent

E(w) is parabolic and has a unique global minimum and no local
minima. We therefore start with a random w and update it as follows:

wi+1 = wi − η
∂E(w)

∂w

∣

∣

∣

∣

wi

where
∂E(w)

∂w
=
(

∂E(w)
∂w0

∂E(w)
∂w1

· · · ∂E(w)
∂wn

)T

and η is some small positive number.

The vector

−
∂E(w)

∂w

tells us the direction of the steepest decrease in E(w).

Gradient descent

Note that this gives us a simple recipe for deriving a candidate learn-
ing algorithm for any (differentiable) error function E(w).

But beware:

• If E(w) has multiple minima—perhaps several local minima as
well as one or more global minima—then we may fall into any of
them, depending on the starting point. We will see an example of
this later...

• While we can obtain a simple algorithm this way, more sophisti-
cated methods may converge considerably faster.

Simple feedforward neural networks

• We continue using the same notation as previously.

• Usually, we think in terms of a training algorithm L finding a hy-
pothesis h based on a training sequence s

h = L(s)

and then classifying new instances x by evaluating h(x).

• Usually with neural networks the training algorithm provides a
vector w of weights. We therefore have a hypothesis that de-
pends on the weight vector. This is often made explicit by writing

w = L(s)

and representing the hypothesis as a mapping depending on both
w and the new instance x, so

classification of x = h(w;x)

Backpropagation: the general case

First, let’s look at the general case.

We have a completely unrestricted feedforward structure:

x1

x2

xn

...

For the time being, there may be several outputs, and no specific
layering is assumed.

Backpropagation: the general case

For each node:

aj =
∑

i wjizi

aj

g(aj)
zj

...

• wji connects node i to node j.

• aj is the weighted sum or activation for node j.

• g is the activation function.

• zj = g(aj).

Backpropagation: the general case

In addition, there is often a bias input for each node, which is always
set to 1.

This is not always included explicitly; sometimes the bias is included
by writing the weighted summation as

aj =
∑

i

wijxi + wj0

where wj0 is the bias for node j.

Backpropagation: the general case

As usual we have:

• instances xT = (x1, . . . , xn);

• a training sequence s = ((x1, y1), . . . , (xm, ym)).

We also define a measure of training error

E(w) = measure of the error of the network on s

where w is the vector of all the weights in the network.

Our aim is to find a set of weights that minimises E(w).

Backpropagation: the general case

How can we find a set of weights that minimises E(w)?

The approach used by the backpropagation algorithm is very simple:

1. begin at step 0 with a randomly chosen collection of weights w0;

2. at the ith step, calculate the gradient ∂E(w)
∂w

of E(w) at the point
wi;

3. update the weight vector by taking a small step in the direction of
the gradient

wi+1 = wi − α
∂E(w)

∂w

∣

∣

∣

∣

wi

4. repeat this process until E(w) is sufficiently small.

Backpropagation: the general case

In order to do this we have to calculate
∂E(w)

∂w
.

Often E(w) is the sum of separate components, one for each exam-
ple in s

E(w) =
m
∑

p=1

Ep(w)

in which case
∂E(w)

∂w
=

m
∑

p=1

∂Ep(w)

∂w

We can therefore consider examples individually.

Backpropagation: the general case

Place example p at the inputs and calculate the values aj and zj for
all the nodes. This is called forward propagation.

We have
∂Ep(w)

∂wji

=
∂Ep(w)

∂aj

∂aj

∂wji

= δjzi

where we’ve defined

δj =
∂Ep(w)

∂aj

and used the fact that

∂aj

∂wji

=
∂

∂wji

(

∑

k

zkwjk

)

= zi

So we now need to calculate the values for δj...

Backpropagation: the general case

When j is an output unit this is easy as

δj =
∂Ep(w)

∂aj

=
∂Ep(w)

∂zj

∂zj

∂aj

=
∂Ep(w)

∂zj

g′(aj)

and the first term is in general easy to calculate for a given E.

Backpropagation: the general case

When j is not an output unit we have

δj =
∂Ep(w)

∂aj

=
∑

k∈{k1,k2,...,kq}

∂Ep(w)

∂ak

∂ak

∂aj

where k1, k2, . . . , kq are the q nodes to which node j sends a connec-
tion:

j
aj

g

g

g

g

k1

k2

kp

ak1

ak2

akp

...
...

Backpropagation: the general case

Then
∂Ep(w)

∂ak

= δk

by definition, and

∂ak

∂aj

=
∂

∂aj

(

∑

i

wkig(ai)

)

= wkjg
′(aj)

So

δj =
∑

k∈{k1,k2,...,kq}

δkwkjg
′(aj)

= g′(aj)
∑

k∈{k1,k2,...,kq}

δkwkj

Backpropagation: the general case

Summary: to calculate ∂Ep(w)

∂w
for one pattern:

1. Forward propagation: apply xp and calculate outputs etc for all
the nodes in the network.

2. Backpropagation 1: for outputs j

∂Ep(w)

∂wji

= ziδj = zig
′(aj)

∂Ep(w)

∂zj

3. Backpropagation 2: For other nodes

∂Ep(w)

∂wji

= zig
′(aj)

∑

k

δkwkj

where the δk were calculated at an earlier step.

Backpropagation: a specific example

x1

x2

xn

output

...

...

Backpropagation: a specific example

For the output: g(a) = a.

For the other nodes:

g(a) =
1

1 + exp(−a)

so
g′(a) = g(a)(1− g(a))

Also,

Ep(w) =
1

2
(yp − h(w;xp))

2

E(w) =
1

2

m
∑

p=1

(yp − h(w;xp))
2

Backpropagation: a specific example

For the output:

We have
∂Ep(w)

∂zoutput
=

∂

∂zoutput

(

1

2
(yp − zoutput)

2

)

= zoutput − yp

= h(w;xp)− yp

and
g′(a) = 1

so
δoutput = h(w;xp)− yp

and
∂Ep(w)

∂woutputi
= zi(h(w;xp)− yp)

Backpropagation: a specific example

For the hidden nodes:

We have
∂Ep(w)

∂wji

= zig
′(aj)

∑

k

δkwkj

but there is only one output so

∂Ep(w)

∂wji

= zig(aj)(1− g(aj))δoutputwoutputj

and we have a value for δoutput so

∂Ep(w)

∂wji

= zig(aj)(1− g(aj))(h(w;xp)− yp)woutputj

= xizj(1− zj)(h(w;xp)− yp)woutputj

Putting it all together

We can then use the derivatives in one of two basic ways:

Batch: (as described previously)

∂E(w)

∂w
=

m
∑

p=1

∂Ep(w)

∂w

wi+1 = wi − α
∂E(w)

∂w

∣

∣

∣

∣

wi

Sequential: using just one pattern at once

wi+1 = wi − α
∂Ep(w)

∂w

∣

∣

∣

∣

wi

selecting patterns in sequence or at random.

Example: the classical parity problem

As an example we show the result of training a network with:

• two inputs;

• one output;

• one hidden layer containing 5 units;

• α = 0.01;

• all other details as above.

The problem is the classical parity problem. There are 40 noisy ex-
amples.

The sequential approach is used, with 1000 repetitions through the
entire training sequence.

Example: the classical parity problem

−1 0 1 2
−1

−0.5

0

0.5

1

1.5

2
Before training

x1

x2

−1 0 1 2
−1

−0.5

0

0.5

1

1.5

2
After training

x1
x2

Example: the classical parity problem

−1
0

1
2

−1

0

1

2
0

0.2

0.4

0.6

0.8

1

x1

Before training

x2

N
et

w
or

k
ou

tp
ut

−1

0

1

2

−1

0

1

2

0

0.5

1

x1

After training

x2
N

et
w

or
k

ou
tp

ut

Example: the classical parity problem

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10
Error during training

63

