Dr Mateja Jamnik

Computer Laboratory, Room FC18
Telephone extension 63587
Email: mj201@cl.cam.ac.uk
http://www.cl.cam.ac.uk/users/mj201/

Notes IV: introduction to machine learning with artificial neural networks

Copyright ©Sean Holden 2002-2009

An example

A common source of problems in Al is medical diagnosis.
Imagine that we want to automate the diagnosis of an embarrassing disease (call it D) by constructing a machine:

Could we do this by explicitly writing a program that examines the measurements and outputs a diagnosis?

Experience suggests that this is unlikely.

We now look at how an agent might learn to solve a general problem by seeing examples.

Aims:

- to present an outline of supervised learning as part of Al;
- to introduce much of the notation and terminology used;
- to introduce the classical perceptron, and to show how it can be applied more generally using kernels;
- to introduce multilayer perceptrons and the backpropagation algorithm for training them.

Reading: Russell and Norvig, chapters 18 and 19.
An example, continued...

Let's look at an alternative approach. Each collection of measurements can be written as a vector,

$$
\mathbf{x}^{T}=\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right)
$$

where,

```
\(x_{1}=\) heart rate
\(x_{2}=\) blood pressure
\(x_{3}=1\) if the patient has green spots
    0 otherwise
:
    and so on
```

A vector of this kind contains all the measurements for a single patient and is generally called a feature vector or instance.

The measurements are usually referred to as attributes or features. (Technically, there is a difference between an attribute and a feature

- but we won't have time to explore it.)

Attributes or features generally appear as one of three basic types:

- continuous: $x_{i} \in[a, b]$ where $a, b \in \mathbb{R}$;
- binary: $x_{i} \in\{0,1\}$ or $x_{i} \in\{-1,+1\}$;
- discrete: x_{i} can take one of a finite number of values, say $x_{i} \in$ $\left\{v_{1}, \ldots, v_{p}\right\}$.

Now imagine that we have a large collection of patient histories (m in total) and for each of these we know whether or not the patient suffered from D.

- The i th patient history gives us an instance x_{i}.
- This can be paired with a single bit-0 or 1-denoting whether or not the i th patient suffers from D. The resulting pair is called an example or a labelled example.
- Collecting all the examples together we obtain a training sequence,

$$
\mathbf{s}=\left(\left(\mathbf{x}_{1}, 0\right),\left(\mathbf{x}_{2}, 0\right),\left(\mathbf{x}_{3}, 1\right), \ldots,\left(\mathbf{x}_{m}, 0\right)\right)
$$

An example, continued..

In the form of machine learning to be emphasised here, we aim to design a learning algorithm which takes s and produces a hypothesis h.

Intuitively, a hypothesis is something that lets us diagnose new patients.

But what's a hypothesis?

What's a hypothesis?

- Denote by X the set of all possible instances.

$$
X=\{\mathbf{x} \mid \mathbf{x} \text { is a possible instance }\}
$$

- Then a hypothesis h could simply be a function from X to $\{0,1\}$.

$$
h: X \rightarrow\{0,1\}
$$

- In other words, h can take any instance and produce a 0 or a 1, depending on whether (according to h) the patient the measurements were taken from is suffering from D.

There are some important issues here, which are effectively right at the heart of machine learning. Most importantly: the hypothesis h can assign a 0 or a 1 to any $\mathrm{x} \in X$.

- This includes instances x that did not appear in the training sequence.
- The overall process therefore involves rather more than memorising the training sequence.
- Ideally, the aim is that h should be able to generalize. That is, it should be possible to use it to diagnose new patients.

But what's a hypothesis?

In fact we need a slightly more flexible definition of a hypothesis.
A hypothesis is a function from X to some suitable set Ω

$$
h: X \rightarrow \Omega
$$

because:

- there may be more than two classes:
$\Omega=\left\{\right.$ No disease, Disease D_{1}, Disease D_{2}, \ldots, Disease $\left.D_{c}\right\}$
- or, we might want h to indicated how likely it is that the patient has disease D

$$
\Omega=[0,1]
$$

where 0 denotes 'definitely does have the disease' and 1 denotes 'definitely does not have it'. $h(\mathbf{x})=0.75$ might for example denote that the patient is reasonably certain to have the disease.

But what's a hypothesis?

- One way of thinking about the previous case is in terms of probabilities:

$$
h(\mathbf{x})=\operatorname{Pr}(\mathbf{x} \text { is in class } 1)
$$

- We may have $\Omega=\mathbb{R}$. For example if x contains several recent measurements of a currency exchange rate and we want $h(\mathbf{x})$ to be a prediction of what the rate will be in 10 minutes time. Such problems are generally known as regression problems.

Types of learning

The form of machine learning described is called supervised learning. This introduction will concentrate on this kind of learning. In particular, the literature also discusses:

1. Unsupervised learning.
2. Learning using membership queries and equivalence queries.
3. Reinforcement learning.

- Speech recognition.
- Deciding whether or not to give credit.
- Detecting credit card fraud.
- Deciding whether to buy or sell a stock option.
- Deciding whether a tumour is benign.
- Data mining - that is, extracting interesting but hidden knowledge from existing, large databases. For example, databases containing financial transactions or loan applications.
- Deciding whether driving conditions are dangerous.
- Automatic driving. (See Pomerleau, 1989, in which a car is driven for 90 miles at 70 miles per hour, on a public road with other cars present, but with no assistance from humans!)
- Playing games. (For example, see Tesauro, 1992 and 1995, where a world class backgammon player is described.)

Extracting what we have so far, we get the following central ideas:

- A collection X of possible instances x .
- A collection $\Omega=\left\{\omega_{1}, \ldots, \omega_{c}\right\}$ of classes to which any instance can belong. In some scenarios we might have $\Omega \subseteq \mathbb{R}$.
- A training sequence containing m labelled examples,

$$
\mathbf{s}=\left(\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right),\left(\mathbf{x}_{3}, y_{3}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right)
$$

with $\mathbf{x}_{i} \in X$ and $y_{i} \in \Omega$ for $i=1, \ldots, m$.

- A learning algorithm L which takes s and produces a hypothesis $h: X \rightarrow \Omega$. We can write,

$$
h=L(\mathbf{s}) .
$$

What have we got so far?

But we need some more ideas as well:

- We often need to state what kinds of hypotheses are available to L.
- The collection of available hypotheses is called the hypothesis space and denoted \mathcal{H}.

$$
\mathcal{H}=\{h: h \text { is available to } L\}
$$

- Some learning algorithms do not always return the same $h \in$ \mathcal{H} for each run on a given sequence s . In this case $L(\mathrm{~s})$ is a probability distribution on \mathcal{H}.

What's the 'right' answer?

- We may sometimes assume that there is a 'correct' function that governs the relationship between the xs and the labels.
- This is called the target concept and is denoted c. It can be regarded as the 'perfect' hypothesis, and so we have $c: X \rightarrow \Omega$.
- This is not always a sufficient way of thinking about the problem...

The learning algorithm never gets to know exactly what the 'correct' relationship between instances and classes is - it only ever gets to see a finite number m of examples. So:

- generalization corresponds to the ability of L to pick a hypothesis h which is 'close' in some sense to the 'best possible';
- however we have to be careful about what 'close' means here.

For example, what if some instances are much more likely than others?

How can generalization performance be assessed?

- Model the generation of training example using a probability distribution \mathbb{P} on $X \times \Omega$.
- All examples are assumed to be independent and identically distributed (i.i.d.) according to \mathbb{P}.
- Given a hypothesis h and any example (x, y) we can introduce a measure $L(h,(\mathbf{x}, y))$ of the error that h makes in classifying that example.
- For example the following definitions for L might be appropriate:

$$
\begin{aligned}
& L(h,(\mathbf{x}, y))=I(h(\mathbf{x}) \neq y) \text { for a classification problem } \\
& L(h,(\mathbf{x}, y))=(h(\mathbf{x})-y)^{2} \text { when } \Omega \subseteq \mathbb{R}
\end{aligned}
$$

Generalization performance

A reasonable definition of generalization performance is then

$$
\operatorname{er}(h)=\mathbb{E}_{(\mathbf{x}, y) \in \mathbb{P}}(L(h,(\mathbf{x}, y)))
$$

In the case of the definition of L for classification problems given in the previous slide this gives

$$
\begin{aligned}
\operatorname{er}(h) & =\mathbb{E}_{(\mathbf{x}, y) \in \mathbb{P}}(I(h(\mathbf{x}) \neq y)) \\
& =\mathbb{P}(h(\mathbf{x}) \neq y))
\end{aligned}
$$

In the case of the definition for L given for regression problems, $\operatorname{er}(h)$ is the expected square of the difference between true label and predicted label.

Problems encountered in practice

In practice there are various problems that can arise:

- Measurements may be missing from the x vectors.
- There may be noise present.
- Classifications in s may be incorrect.

The practical techniques to be presented have their own approaches to dealing with such problems. Similarly, problems arising in practice are addressed by the theory.

The initial development of linear discriminants was carried out by Fisher in 1936, and since then they have been central to supervised learning.

Their influence continues to be felt in the recent and ongoing development of support vector machines, of which more later...

The perceptron: a review

The perceptron: a review
We have a two-class classification problem in \mathbb{R}^{n}.

We output class 1 if $f(\mathbf{x}) \geq 0$, or class 2 if $f(\mathbf{x})<0$.

The primal perceptron algorithm
}

```
```

```
\(\eta \in \mathbb{R}^{+}, \mathbf{w}^{(0)} \leftarrow \mathbf{0}, w_{0}^{(0)} \leftarrow 0, k=0, R=\max _{i}\left\|\mathbf{x}_{i}\right\|\).
```

```
\(\eta \in \mathbb{R}^{+}, \mathbf{w}^{(0)} \leftarrow \mathbf{0}, w_{0}^{(0)} \leftarrow 0, k=0, R=\max _{i}\left\|\mathbf{x}_{i}\right\|\).
do
do
\{
\{
    for (each example in s )
    for (each example in s )
    \{
    \{
        if \(\left(y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right) \leq 0\right)\)
        if \(\left(y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right) \leq 0\right)\)
        \{
        \{
            \(\mathbf{w}=\mathbf{w}+\eta y_{i} \mathbf{x}_{i}\)
            \(\mathbf{w}=\mathbf{w}+\eta y_{i} \mathbf{x}_{i}\)
            \(w_{0}=w_{0}+\eta y_{i} R^{2}\)
            \(w_{0}=w_{0}+\eta y_{i} R^{2}\)
            \(k=k+1\)
            \(k=k+1\)
        \}
        \}
    \}
    \}
while (mistakes are made in the for loop) return \(\mathrm{w}, w_{0}\).
```

return w, w_{0}.

```
```

return w, w_{0}.

```

\section*{Dual form of the perceptron algorithm}

If we set \(\eta=1\) then the primal perceptron algorithm operates by adding and subtracting misclassified points \(\mathbf{x}_{i}\) to an initial \(\mathbf{w}\) at each step.

As a result, when it stops we can represent the final w as
\[
\mathbf{w}=\sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{x}_{i}
\]

Note:
- the values \(\alpha_{i}\) are positive and proportional to the number of times \(\mathrm{x}_{i}\) is misclassified;
- if s is fixed then the vector \(\boldsymbol{\alpha}^{T}=\left(\begin{array}{llll}\alpha_{1} & \alpha_{2} & \cdots & \alpha_{m}\end{array}\right)\) is an alternative representation of \(w\).

The perceptron algorithm does not converge if s is not linearly separable. However Novikoff proved the following:

Theorem 1 If s is non-trivial and linearly separable, where there exists a hyperplane ( \(\mathrm{w}_{\text {optimum }}, w_{\text {optimum }}\) ) with \(\left\|\mathrm{w}_{\text {optimum }}\right\|=1\) and
\[
y_{i}\left(\mathbf{w}_{\text {optimum }}^{T} \mathbf{x}_{i}+w_{\text {optimum }}\right) \geq \gamma
\]
for \(i=1, \ldots, m\), then the perceptron algorithm makes at most
\[
\left(\frac{2 R}{\gamma}\right)^{2}
\]
mistakes.

Dual form of the perceptron algorithm
Using these facts, the hypothesis can be re-written
\[
\begin{aligned}
h(\mathbf{x}) & =\operatorname{sgn}\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right) \\
& =\operatorname{sgn}\left(\left(\sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{x}_{i}\right)^{T} \mathbf{x}+w_{0}\right) \\
& =\operatorname{sgn}\left(\sum_{i=1}^{m} \alpha_{i} y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{x}\right)+w_{0}\right)
\end{aligned}
\]
```

$\boldsymbol{\alpha}^{(0)} \leftarrow \mathbf{0}, w_{0}^{(0)} \leftarrow 0, R=\max _{i}\left\|\mathbf{x}_{i}\right\|$.
do
\{
for (each example in s)
\{
if $\left(y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right) \leq 0\right)$
\{
$\alpha_{i}=\alpha_{i}+1$
$w_{0}=w_{0}+y_{i} R^{2}$
\}
\}
\}
while (mistakes are made in the for loop)
return $\boldsymbol{\alpha}, w_{0}$.

```

There are many problems a perceptron can't solve.


The classic example is the parity problem.

\section*{Mapping to a bigger space}

But what happens if we add another element to \(\mathbf{x}^{T}=\left(x_{1} x_{2}\right)\) ?
For example we could use \(\mathbf{x}^{T}=\left(\begin{array}{ll}x_{1} & x_{2}\end{array} x_{1} x_{2}\right)\).



Mapping to a bigger space
\[
\begin{aligned}
h(\mathbf{x}) & =\operatorname{sgn}\left(w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{1} x_{2}\right) \\
& =\operatorname{sgn}\left(w_{0}+w_{1} \phi_{1}(\mathbf{x})+w_{2} \phi_{2}(\mathbf{x})+w_{3} \phi_{3}(\mathbf{x})\right) \\
& =\operatorname{sgn}\left(\mathbf{w}^{T} \mathbf{\Phi}(\mathbf{x})+w_{0}\right)
\end{aligned}
\]
where
\[
\left.\left.\begin{array}{rl}
\phi_{1}(\mathbf{x}) & =x_{1} \\
\phi_{2}(\mathbf{x}) & =x_{2} \\
\phi_{3}(\mathbf{x}) & =x_{1} x_{2} \\
\mathbf{\Phi}(\mathbf{x})^{T} & =\left(\begin{array}{ll}
\phi_{1}(\mathbf{x}) & \phi_{2}(\mathbf{x})
\end{array} \phi_{3}(\mathbf{x})\right.
\end{array}\right)\right)
\]

In \(\mathbb{R}^{3}\) a perceptron can easily solve this problem.

This is an old trick, and the functions \(\phi_{i}\) can be anything we like.
Example: In a multilayer perceptron
\[
\phi_{i}(\mathbf{x})=\frac{1}{1+\exp \left(-\left(\mathbf{w}_{i}^{T} \mathbf{x}+w_{i 0}\right)\right)}
\]
where \(\mathbf{w}_{i}\) is the vector of weights and \(w_{i 0}\) the bias associated with hidden node \(i\).

Note however that for the time being the functions \(\phi_{i}\) are fixed, whereas in a multilayer perceptron they are allowed to vary as a result of varying the \(\mathbf{w}_{i}\) and \(w_{i 0}\).

\section*{Mapping to a bigger space}

We can now use a perceptron in the high-dimensional space, obtaining a hypothesis of the form
\[
h(\mathbf{x})=\operatorname{sgn}\left(\sum_{i=1}^{d} w_{i} \phi_{i}(\mathbf{x})+w_{0}\right)
\]
where the \(w_{i}\) are the weights from the hidden nodes to the output node.

So:
- start with x ;
- use the \(\phi_{i}\) to map it to a bigger space;
- use a (linear) perceptron in the bigger space.


\section*{Mapping to a bigger space}

What happens if we use the dual form of the perceptron algorithm in this process?

We end up with a hypothesis of the form
\[
h(\mathbf{x})=\operatorname{sgn}\left(\sum_{i=1}^{m} \alpha_{i} y_{i} \boldsymbol{\Phi}\left(\mathbf{x}_{i}\right)^{T} \boldsymbol{\Phi}(\mathbf{x})+w_{0}\right)
\]
where \(\Phi(\mathrm{x})\) is the vector
\[
\Phi(\mathbf{x})^{T}=\left(\phi_{1}(\mathbf{x}) \phi_{2}(\mathbf{x}) \cdots \phi_{d}(\mathbf{x})\right)
\]

Notice that this introduces the possibility of a tradeoff of \(m\) and \(d\).
The sum has (potentially) become smaller.
The cost associated with this is that we may have to calculate \(\boldsymbol{\Phi}\left(\mathrm{x}_{i}\right)^{T} \boldsymbol{\Phi}\) several times.

This suggests that it might be useful to be able to calculate \(\boldsymbol{\Phi}\left(\mathbf{x}_{i}\right)^{T} \boldsymbol{\Phi}(\mathbf{x})\) easily.

In fact such an observation has far-reaching consequences.
Definition \(2 A\) kernel is a function \(K\) such that for all vectors x and y
\[
K(\mathbf{x}, \mathbf{y})=\boldsymbol{\Phi}(\mathbf{x})^{T} \boldsymbol{\Phi}(\mathbf{y})
\]

Note that a given kernel naturally corresponds to an underlying collection of functions \(\phi_{i}\). Ideally, we want to make sure that the value of \(d\) does not have a great effect on the calculation of \(K(\mathbf{x}, \mathbf{y})\). If this is the case then
\[
h(\mathbf{x})=\operatorname{sgn}\left(\sum_{i=1}^{m} \alpha_{i} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)+w_{0}\right)
\]
is easy to evaluate.

We can use
\[
K(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{T} \mathbf{y}\right)^{p}
\]
or
\[
K(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{T} \mathbf{y}+c\right)^{p}
\]
to obtain polynomial kernels.
In the latter case we have \(\binom{n+p}{p}\) features that are monomials up to degree \(p\), so the decision boundary obtained using \(K\) as described above will be a polynomial curve of degree \(p\).
\(\underline{K e r n e l s: ~ a n ~ e x a m p l e ~}\)


\section*{Gradient descent}

An alternative method for training a basic perceptron works as follows. We define a measure of error for a given collection of weights. For example
\[
E(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{m}\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}
\]
where the sgn has not been used. Modifying our notation slightly so that
\[
\begin{aligned}
\mathbf{x}^{T} & =\left(\begin{array}{lllll}
1 & x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right) \\
\mathbf{w}^{T} & =\left(\begin{array}{lllll}
w_{0} & w_{1} & w_{2} & \cdots & w_{n}
\end{array}\right)
\end{aligned}
\]
gives
\[
E(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{m}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2}
\]

\section*{Gradient descent}
\(E(\mathbf{w})\) is parabolic and has a unique global minimum and no local minima. We therefore start with a random w and update it as follows:
\[
\mathbf{w}_{i+1}=\mathbf{w}_{i}-\left.\eta \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}\right|_{\mathbf{w}_{i}}
\]
where
\[
\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}=\left(\frac{\partial E(\mathbf{w})}{\partial w_{0}} \frac{\partial E(\mathbf{w})}{\partial w_{1}} \cdots \frac{\partial E(\mathbf{w})}{\partial w_{n}}\right)^{T}
\]
and \(\eta\) is some small positive number.
The vector
\[
-\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}
\]
tells us the direction of the steepest decrease in \(E(\mathbf{w})\).

Note that this gives us a simple recipe for deriving a candidate learning algorithm for any (differentiable) error function \(E(\mathbf{w})\).

But beware:
- If \(E(\mathbf{w})\) has multiple minima-perhaps several local minima as well as one or more global minima-then we may fall into any of them, depending on the starting point. We will see an example of this later...
- While we can obtain a simple algorithm this way, more sophisticated methods may converge considerably faster.

\section*{Simple feedforward neural networks}
- We continue using the same notation as previously.
- Usually, we think in terms of a training algorithm \(L\) finding a hypothesis \(h\) based on a training sequence s
\[
h=L(\mathbf{s})
\]
and then classifying new instances \(\mathbf{x}\) by evaluating \(h(\mathbf{x})\).
- Usually with neural networks the training algorithm provides a vector w of weights. We therefore have a hypothesis that depends on the weight vector. This is often made explicit by writing
\[
\mathbf{w}=L(\mathbf{s})
\]
and representing the hypothesis as a mapping depending on both w and the new instance x , so
\[
\text { classification of } \mathbf{x}=h(\mathbf{w} ; \mathbf{x})
\]

First, let's look at the general case.
We have a completely unrestricted feedforward structure:


For the time being, there may be several outputs, and no specific layering is assumed.

For each node:

- \(w_{j i}\) connects node \(i\) to node \(j\).
- \(a_{j}\) is the weighted sum or activation for node \(j\).
- \(g\) is the activation function.
- \(z_{j}=g\left(a_{j}\right)\).

In addition, there is often a bias input for each node, which is always set to 1 .

This is not always included explicitly; sometimes the bias is included by writing the weighted summation as
\[
a_{j}=\sum_{i} w_{i j} x_{i}+w_{j 0}
\]
where \(w_{j 0}\) is the bias for node \(j\).

Backpropagation: the general case

As usual we have:
- instances \(\mathbf{x}^{T}=\left(x_{1}, \ldots, x_{n}\right)\);
- a training sequence \(\mathbf{s}=\left(\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right)\).

We also define a measure of training error
\[
E(\mathbf{w})=\text { measure of the error of the network on } \mathrm{s}
\] where w is the vector of all the weights in the network.

Our aim is to find a set of weights that minimises \(E(\mathbf{w})\).

How can we find a set of weights that minimises \(E(\mathbf{w})\) ?
The approach used by the backpropagation algorithm is very simple:
1. begin at step 0 with a randomly chosen collection of weights \(\mathrm{w}_{0}\); 2. at the \(i\) th step, calculate the gradient \(\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}\) of \(E(\mathbf{w})\) at the point \(\mathbf{w}_{i}\);
3. update the weight vector by taking a small step in the direction of the gradient
\[
\mathbf{w}_{i+1}=\mathbf{w}_{i}-\left.\alpha \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}\right|_{\mathbf{w}_{i}}
\]
4. repeat this process until \(E(\mathbf{w})\) is sufficiently small.

In order to do this we have to calculate
\[
\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}
\]

Often \(E(\mathbf{w})\) is the sum of separate components, one for each example in s
\[
E(\mathbf{w})=\sum_{p=1}^{m} E_{p}(\mathbf{w})
\]
in which case
\[
\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}=\sum_{p=1}^{m} \frac{\partial E_{p}(\mathbf{w})}{\partial \mathbf{w}}
\]

We can therefore consider examples individually.

Place example \(p\) at the inputs and calculate the values \(a_{j}\) and \(z_{j}\) for all the nodes. This is called forward propagation.

We have
\[
\begin{aligned}
\frac{\partial E_{p}(\mathbf{w})}{\partial w_{j i}} & =\frac{\partial E_{p}(\mathbf{w})}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{j i}} \\
& =\delta_{j} z_{i}
\end{aligned}
\]
where we've defined
\[
\delta_{j}=\frac{\partial E_{p}(\mathbf{w})}{\partial a_{j}}
\]
and used the fact that
\[
\frac{\partial a_{j}}{\partial w_{j i}}=\frac{\partial}{\partial w_{j i}}\left(\sum_{k} z_{k} w_{j k}\right)=z_{i}
\]

So we now need to calculate the values for \(\delta_{j} \ldots\)

\section*{Backpropagation: the general case}

When \(j\) is not an output unit we have
\[
\delta_{j}=\frac{\partial E_{p}(\mathbf{w})}{\partial a_{j}}=\sum_{k \in\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}} \frac{\partial E_{p}(\mathbf{w})}{\partial a_{k}} \frac{\partial a_{k}}{\partial a_{j}}
\]
where \(k_{1}, k_{2}, \ldots, k_{q}\) are the \(q\) nodes to which node \(j\) sends a connection:


Then
\[
\frac{\partial E_{p}(\mathbf{w})}{\partial a_{k}}=\delta_{k}
\]
by definition, and
\[
\begin{aligned}
\frac{\partial a_{k}}{\partial a_{j}} & =\frac{\partial}{\partial a_{j}}\left(\sum_{i} w_{k i} g\left(a_{i}\right)\right) \\
& =w_{k j} g^{\prime}\left(a_{j}\right)
\end{aligned}
\]

So
\[
\begin{aligned}
\delta_{j} & =\sum_{k \in\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}} \delta_{k} w_{k j} g^{\prime}\left(a_{j}\right) \\
& =g^{\prime}\left(a_{j}\right) \sum_{k \in\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}} \delta_{k} w_{k j}
\end{aligned}
\]

Summary: to calculate \(\frac{\partial E_{\rho}(\mathbf{w})}{\partial \mathbf{w}}\) for one pattern:
1. Forward propagation: apply \(\mathbf{x}_{p}\) and calculate outputs etc for all the nodes in the network.
2. Backpropagation 1: for outputs \(j\)
\[
\frac{\partial E_{p}(\mathbf{w})}{\partial w_{j i}}=z_{i} \delta_{j}=z_{i} g^{\prime}\left(a_{j}\right) \frac{\partial E_{p}(\mathbf{w})}{\partial z_{j}}
\]
3. Backpropagation 2: For other nodes
\[
\frac{\partial E_{p}(\mathbf{w})}{\partial w_{j i}}=z_{i} g^{\prime}\left(a_{j}\right) \sum_{k} \delta_{k} w_{k j}
\]
where the \(\delta_{k}\) were calculated at an earlier step.

\section*{For the output:}

We have
\[
\begin{aligned}
\frac{\partial E_{p}(\mathbf{w})}{\partial z_{\text {output }}} & =\frac{\partial}{\partial z_{\text {output }}}\left(\frac{1}{2}\left(y_{p}-z_{\text {output }}\right)^{2}\right) \\
& =z_{\text {output }}-y_{p} \\
& =h\left(\mathbf{w} ; \mathbf{x}_{p}\right)-y_{p}
\end{aligned}
\]
and
\[
g^{\prime}(a)=1
\]

SO
\[
\delta_{\text {output }}=h\left(\mathbf{w} ; \mathbf{x}_{p}\right)-y_{p}
\]
and
\[
\frac{\partial E_{p}(\mathbf{w})}{\partial \mathbf{w}_{\text {output } i}}=z_{i}\left(h\left(\mathbf{w} ; \mathbf{x}_{p}\right)-y_{p}\right)
\]

\section*{For the hidden nodes:}

We have
\[
\frac{\partial E_{p}(\mathbf{w})}{\partial \mathbf{w}_{j i}}=z_{i} g^{\prime}\left(a_{j}\right) \sum_{k} \delta_{k} w_{k j}
\]
but there is only one output so
\[
\frac{\partial E_{p}(\mathbf{w})}{\partial \mathbf{w}_{j i}}=z_{i} g\left(a_{j}\right)\left(1-g\left(a_{j}\right)\right) \delta_{\text {output }} w_{\text {output } j}
\]
and we have a value for \(\delta_{\text {output }}\) so
\[
\begin{aligned}
\frac{\partial E_{p}(\mathbf{w})}{\partial \mathbf{w}_{j i}} & =z_{i} g\left(a_{j}\right)\left(1-g\left(a_{j}\right)\right)\left(h\left(\mathbf{w} ; \mathbf{x}_{p}\right)-y_{p}\right) w_{\text {output } j} \\
& =x_{i} z_{j}\left(1-z_{j}\right)\left(h\left(\mathbf{w} ; \mathbf{x}_{p}\right)-y_{p}\right) w_{\text {output } j}
\end{aligned}
\]

\section*{Example: the classical parity problem}

As an example we show the result of training a network with:
- two inputs;
- one output;
- one hidden layer containing 5 units;
- \(\alpha=0.01\);
- all other details as above.

The problem is the classical parity problem. There are 40 noisy examples.

The sequential approach is used, with 1000 repetitions through the entire training sequence.

Example: the classical parity problem


Example: the classical parity problem


Example: the classical parity problem
```

