
Artificial Intelligence I

Dr Mateja Jamnik

Computer Laboratory, Room FC18

Telephone extension 63587

Email: mj201@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/mj201/

Notes III: problem-solving by planning; knowledge represe nta-
tion and reasoning

Copyright c©Sean Holden 2002-2009.

Introduction to planning

We now look at how an agent might construct a plan enabling it to
achieve a goal.

Aims:

• to examine the difference between, on the one hand, problem-
solving by search, which we have already addressed, and on the
other hand, specialised planning algorithms;

• to look in detail at the basic partial-order planning algorithm.

Reading: Russell and Norvig, chapter 11.

Problem solving is different to planning

In search problems we:

• Represent states: and a state representation contains every-
thing that’s relevant about the environment.

• Represent actions: by describing a new state obtained from a
current state.

• Represent goals: all we know is how to test a state either to see
if it’s a goal, or using a heuristic.

• A sequence of actions is a ‘plan’: but we only consider se-
quences of consecutive actions.

Problem solving is different to planning

Representing a problem such as: ‘obtain a copy of the course text
book’ is hopeless:

• There are far too many possible actions at each step.

• A heuristic can only help you rank states. In particular it does not
help you ignore useless actions.

• We are forced to start at the initial state, but you have to work out
how to get the book—that is, go to the library, borrow it from a
friend etc—before you can start to do it.



Planning algorithms work differently

Difference 1:

• planning algorithms use a language, often First-Order Logic (FOL)
(or a subset of FOL) to represent states, goals, and actions;

• states and goals are described by sentences;

• actions are described by stating their preconditions and their ef-
fects.

So if you know the goal includes (maybe among other things)

Have(AI book)

and action Borrow(x) has an effect Have(x) then you know that
a plan including

Borrow(AI book)

might be good.

Planning algorithms work differently

Difference 2:

• Planners can add actions at any relevant point at all, not just at
the end of a sequence starting at the start state.

• This makes sense: I may determine that Have(Car keys) is a
good state to be in without worrying about what happens before
or after finding them.

• By making an important decision, like requiring Have(Car keys),
early on we may reduce branching and backtracking.

• State descriptions are not complete—Have(Car keys) describes
a class of states—and this adds flexibility.

Planning algorithms work differently

Difference 3:

It is assumed that most elements of the environment are indepen-
dent of most other elements.

• A goal including several requirements can be attacked with a
divide-and-conquer approach.

• Each individual requirement can be fulfilled using a subplan...

• ...and the subplans then combined.

This works provided there is not significant interaction between the
subplans.

Running example: gorilla-based mischief

We will use the following simple example problem, which as based
on a similar one due to Russell and Norvig.

The intrepid little scamps in the Cambridge University Roof-Climbing
Society wish to attach an inflatable gorilla to the spire of a famous
College. To do this they need to leave home and obtain:

• An inflatable gorilla: these can be purchased from all good joke
shops.

• Some rope: available from a hardware store.

• A first-aid kit: also available from a hardware store.

They need to return home after they’ve finished their shopping.

How do they go about planning their jolly escapade?



Logical inference is different to planning

This problem could certainly be attacked using situation calculus:

Start state:
At(Home, S0) ∧ ¬Have(Gorilla, S0)

∧ ¬Have(Rope, S0)

∧ ¬Have(Kit, S0)

Goal:

∃s At(Home, s) ∧ Have(Gorilla, s)

∧ Have(Rope, s)

∧ Have(Kit, s)

Logical inference is different to planning

Operators:

Have(Gorilla,Result(a, s)) ⇐⇒

(Have(Gorilla, s) ∧ a 6= Drop(Gorilla))

∨ (At(JokeShop, s) ∧ a = Buy(Gorilla))

It is possible to use automated logical inference to obtain a sequence
of actions.

Unfortunately this is highly inefficient.

We need to restrict the language, and we need to use a special-
purpose planning algorithm rather than a general theorem-prover.

The STRIPS language

STRIPS: “Stanford Research Institute Problem Solver” (1970).

States: are conjunctions of ground literals with no functions.

At(Home) ∧ ¬Have(Gorilla)

∧ ¬Have(Rope)

∧ ¬Have(Kit)

Goals: are conjunctions of literals where variables are assumed ex-
istentially quantified.

At(x) ∧ Sells(x,Gorilla)

A planner finds a sequence of actions that makes the goal true when
performed. This is different to a theorem-prover.

The STRIPS language

STRIPS uses operators specifying:

• An action description: what the action does.

• A precondition: what must be true before the operator can be
used. A conjunction of positive literals.

• An effect : what is true after the operator has been used. A con-
junction of literals.



The STRIPS language

For example:

Go(y)

At(x),Path(x, y)

At(y),¬At(x)

Op(Action: Go(y),

Pre: At(x) ∧ Path(x, y)

Effect: At(y) ∧ ¬At(x))

All variables are universally quantified.

The space of situations

Standard search algorithms could be used with STRIPS to construct
sequences of actions working forward from the start state. This is:

• a situation space planner;

• a progression planner. It searches from initial state to goal.

A regression planner exploits the new language by searching back-
ward from the goal.

This can still be too inefficient.

The space of plans

Alternatively we can search in plan space:

• start with an empty plan;

• operate on it to obtain new plans;

• continue until we obtain a plan that solves the problem.

Operations on plans can be:

• adding a step;

• instantiating a variable;

• imposing an ordering that places a step in front of another;

• and so on.

The space of plans

Incomplete plans are called partial plans.

Refinement operators add constraints to a partial plan.

All other operators are called modification operators.



Representing a plan: partial order planners

When putting on your shoes and socks:

• it does not matter whether you deal with your left or right foot first;

• it does matter that you place a sock on before a shoe, for any
given foot.

It makes sense in constructing a plan, not to make any commitment
to which side is done first if you don’t have to.

Representing a plan: partial order planners

Principle of least commitment : do not commit to any specific choices
until you have to. This can be applied both to ordering and to instan-
tiation of variables.

A partial order planner allows plans to specify that some steps must
come before others but others have no ordering.

A linearision of such a plan imposes a specific sequence on the ac-
tions therein.

Representing a plan: partial order planners

A plan consists of:

1. A set {S1, S2, . . . , Sn} of steps. Each of these is one of the avail-
able operators.

2. A set of ordering constraints. An ordering constraint Si < Sj de-
notes the fact that step Si must happen before step Sj. Si < Sj <

Sk and so on has the obvious meaning. Si < Sj does not mean
that Si must immediately precede Sj.

3. A set of variable bindings v = x where v is a variable and x is
either a variable or a constant.

4. A set of causal links or protection intervals Si
c
→ Sj. This denotes

the fact that the purpose of Si is to achieve the precondition c for
Sj.

Representing a plan: partial order planners

The initial plan has:

• two steps, called Start and Finish;

• a single ordering constraint Start < Finish;

• no variable bindings;

• no causal links.

In addition to this:

• the step Start has no preconditions, and its effect is the start
state for the problem;

• the step Finish has no effect, and its precondition is the goal;

• neither Start or Finish has an associated action.



Solutions to planning problems

A solution to a planning problem is any complete and consistent par-
tially ordered plan.

Complete: each precondition of each step is achieved by another
step in the solution.

A precondition c for S is achieved by a step S ′ if:

1. the precondition is an effect of the step

S ′ < S and c ∈ Effects(S ′)

and;

2. there is no other step that can cancel the precondition:

no S ′′ exists where S ′ < S ′′ < S and ¬c ∈ Effects(S ′′)

Solutions to planning problems

Consistent: no contradictions exist in the binding constraints or in
the proposed ordering. That is:

1. for binding constraints, we never have v = X and v = Y for dis-
tinct constants X and Y ;

2. for the ordering, we never have S < S ′ and S ′ < S.

An example of partial-order planning

Returning to the roof-climber’s shopping expedition.

Here is the basic approach:

• start with only the Start and Finish steps in the plan;

• at each stage add a new step;

• always add a new step such that a currently non-achieved pre-
condition is achieved;

• backtrack when necessary.

An example of partial-order planning

Here is the initial plan:

Start

Finish

At(Home) ∧ Sells(JS,G)∧ Sells(HS,R) ∧ Sells(HS,FA)

At(Home) ∧ Have(G) ∧ Have(R) ∧ Have(FA)

Thin arrows denote ordering.



An example of partial-order planning

There are two actions available:

Go(y)

At(y),¬At(x)

Buy(y)

At(x),Sells(x, y)

Have(y)

At(x)

A planner might begin, for example, by adding a Buy(G) action in
order to achieve the Have(G) precondition of Finish.

Note: the following order of events is by no means the only one
available to a planner. It has been chosen for illustrative purposes.

An example of partial-order planning

Start

Buy(G)

At(x),Sells(x,G)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)

Thick arrows denote causal links.

Here, the new Buy step achieves the Have(G) precondition of Finish

Thick arrows can be thought of as having a thin arrow underneath.

An example of partial-order planning

The planner can now introduce a second causal link from Start to
achieve the Sells(x,G) precondition of Buy(G).

Start

Buy(G)

At(JS),Sells(JS,G)

Finish

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)

At(Home),Have(G),Have(R),Have(FA)

An example of partial-order planning

The planner’s next obvious move is to introduce a Go step to achieve
the At(HS) precondition of Buy(G).

Start

Buy(G)

At(JS),Sells(JS,G)

Go(JS)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)At(x)



An example of partial-order planning

Initially the planner can continue quite easily in this manner:

• Add a causal link from Start to Go(JS) to achieve the At(x)
precondition.

• Add the step Buy(R) with an associated causal link to the Have(R)
precondition of Finish.

• Add a causal link from Start to Buy(R) to achieve the Sells(HS,R)
precondition.

An example of partial-order planning

Start

Buy(G)

At(JS),Sells(JS,G)

Go(JS)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)At(Home)

Buy(R)

At(HS),Sells(HS,R)

At this point it starts to get tricky...

The At(HS) precondition in Buy(R) is not achieved.

An example of partial-order planning

Start

Buy(G)

At(JS),Sells(JS,G)

Go(JS)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)At(Home)

Buy(R)

Sells(HS,R),At(HS)

Go(HS)

At(x)

¬At(x)

The At(HS) precondition is easy to achieve.

But if we introduce a causal link from Start to Go(HS) then we risk
invalidating the precondition for Go(JS).

An example of partial-order planning

A step that might invalidate (sometimes the word clobber is em-
ployed) a previously achieved precondition is called a threat.

A planner can try to fix a threat by introducing an ordering constraint.

c

cc

¬c

¬c

¬c

Threat Demotion Promotion



An example of partial-order planning

The planner could backtrack and try to achieve the At(x) precondi-
tion using the existing Go(JS) step.

Start

Buy(G)

At(JS),Sells(JS,G)

Go(JS)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)At(Home)

Buy(R)

Go(HS)

At(JS)

¬At(JS)

Sells(HS,R),At(HS)

This involves a threat, but one that can be fixed using promotion.

The algorithm

plan partial_order_plan(start,finish,ops)
{

plan=empty_plan(start,finish);

while(true)
{
if (solution(plan))

return plan;
else
{

(step,pre)=get_subgoal(plan);
choose_op(plan,ops,step,pre);
resolve_threats(plan);

}
}

}

The algorithm

(step,pre) get_subgoal(plan)
{

pick some step from steps in plan for which
a precondition pre is not yet achieved;

return (step,pre);
}

The algorithm

choose_op(plan,ops,step,pre)
{

choose S from ops or current steps in plan
having effect pre;

if (no S exists)
fail;

include a causal link from S to step in the plan;
include S < step in the plan;
if(S doesn’t yet appear in the plan)
{
add S;
add Start < S < Finish;

}
}



The algorithm

resolve_threats(plan)
{

for (all steps S threatening some causal link from
S’ to S’’)
{
choose

1. add S < S’ to the plan (promotion)
2. add S’’ < S’ to the plan (demotion)

if (the plan is not consistent)
fail;

}
}

Possible threats

If at any stage an effect ¬At(x) appears, is it a threat to At(JS)?

Such an occurrence is called a possible threat and an algorithm can
be made to deal with it in three different ways:

1. use an equality constraint to resolve immediately;

2. use an inequality constraint to resolve immediately;

3. leave the choice of x’s value until later.

Introduction to knowledge representation and reasoning

We now look briefly at how knowledge about the world might be
represented and reasoned with.

Aims:

• To introduce semantic networks and frames for knowledge repre-
sentation.

• To see how inheritance can be applied as a reasoning method.

• To look at the use of rules for knowledge representation, along
with forward chaining and backward chaining for reasoning.

Reading: The Essence of Artificial Intelligence, Alison Cawsey. Pren-
tice Hall, 1998.

Knowledge representation

The “manipulation of knowledge” seems to be at the heart of what
we as intelligent beings do.

To try to model this process in an agent we:

• represent knowledge using symbol structures, and;

• perform formalised versions of reasoning.

This means that we need carefully specified languages for the rep-
resentation of knowledge.



Requirements for a knowledge representation language

First, we need representational adequacy .

Can I represent the pieces of knowledge I need to?

Propositional logic might well fail this test, although predicate logic
seems better and is indeed a standard tool.

Requirements for a knowledge representation language

Or more subtly:

Can I represent the pieces of knowledge I need to in such a way
that reasoning can be automated?

English is excellent and highly expressive in representing knowl-
edge:

“Ophelia believes that all sensible people dislike eating pies”

However automating reasoning based on English language repre-
sentations is just about impossible at present.

How would we write a program that takes this statement and when
told “Neddy is really jolly sensible” and “Neddy is a funny sort of
person” infers that “Ophelia believes Neddy dislikes eating pies”?

Requirements for a knowledge representation language

On the other hand:
person(neddy)

sensible(neddy)

∀x sensible(x) ∧ person(x) → (∀y pie(y) → dislikes(x, y))

is something for which reasoning can be automated.

Syntax and semantics

In addition to needing an expressive language, the language needs
to be clearly defined:

• Syntax: defining when a statement in the language is well-formed.

• Semantics : specifying what a statement in the language means.

English is again not good here from the point of view of automation.
Logic is again preferable.

If possible, we also want the representation to be natural in the sense
that it is reasonably easy to understand and deal with.



Syntax and semantics

The world

Representation

Conclusion

Result

Reasoning

Translate

Translate

To translate confidently we need
well-defined syntax and semantics

Does

pie?
he’s just taken a dislike to an individual
mean Neddy dislikes all pies, or that

dislikes(neddy,pie)

Inferential adequacy and inferential efficiency

We also need to know that we can infer the things of interest:

• It is not always possible, and it’s certainly not desirable, to store
all knowledge as explicit facts.

Knowing that “all dogs smell bad” should allow us to infer that
“fido smells bad” etc. We don’t want to store a piece of knowledge
for every possible dog.

• However, more complex inferences are likely to take longer.

So as usual, there is a trade-off.

Frames and semantic networks

Frames and semantic networks represent knowledge in the form of
classes of objects and relationships between them:

• the subclass and instance relationships are emphasised;

• we form class hierarchies in which inheritance is supported and
provides the main inference mechanism;

• as a result inference is quite limited;

• we need to be extremely careful about semantics.

The only major difference between the two ideas is notational.

Example of a semantic network

Ear problems

Rock musician Classical musician

Musician

Person

Head

Left arm

Right arm

has

has

has

Instrument

subclass subclass
Quiet

Sheet music

Any

volume

has

hair_length

has

hair_length

volume

Long

Loud

Axe
has

Jake Mayhem

Violet Scroot
has

instance
instance

Oboe

has
subclass



Frames

Frames once again support inheritance through the subclass rela-
tionship.

volume:      loud

has:             ear problems
hairlength:  long

subclass:    Musician

Rock musician Musician

subclass:  Person
has:          instrument

has, hairlength, volume etc are “slots”.

long, loud, instrument etc are “slot values”.

These are a direct predecessor of object-oriented programming lan-
guages.

Defaults

Both approaches to knowledge representation are able to incorpo-
rate defaults:

has:               ear problems
* hairlength:  long

subclass:       Musician

Rock musician Dementia Evilperson

subclass:   Rock musician
hairlength: short
image:       gothic

* volume:       loud

Starred slots are typical values associated with subclasses and in-
stances, but can be overridden.

Multiple inheritance

Both approaches can incorporate multiple inheritance, at a cost:

instanceinstance

Rock musician Classical musician

Cornelius Cleverchap

• what is hairlength for Cornelius if we’re trying to use inher-
itance to establish it?

• this can be overcome initially by specifying which class is inher-
ited from in preference when there’s a conflict;

• but the problem is still not entirely solved—what if we want to
prefer inheritance of some things from one class, but inheritance
of others from a different one?

Other issues

• Slots and slot values can themselves be frames. For example
Dementia may have an instrument slot with the value Electric harp
which itself may have properties described in a frame.

• Slots can have specified attributes. For example, we might spec-
ify that instrument can have multiple values, that each value
can only be an instance of Instrument that each value has a
slot called owned by and so on.

• Slots may contain arbitrary pieces of program. This is known as
procedural attachment. The fragment might be executed to return
the slot’s value, or update the values in other slots etc.



Rule-based systems

A rule-based system requires three things:

1. A set of if-then rules. These denote specific pieces of knowl-
edge about the world.

They should be interpreted similarly to logical implication, rather
than the programming construct. In particular a collection of such
rules doesn’t necessarily imply a sequence.

Such rules denote what to do or what can be inferred under given
circumstances.

2. A collection of facts denoting what the system regards as cur-
rently true about the world.

3. An interpreter able to apply the current rules in the light of the
current facts.

Forward chaining

The first of two basic kinds of interpreter begins with established
facts and then applies rules to them.

This is a data-driven process. It is appropriate if we know the initial
facts but not the required conclusion.

Example: XCON—used for configuring VAX computers.

In addition:

• we maintain a working memory, typically of what has been in-
ferred so far;

• rules are often condition-action rules, where the right-hand side
specifies an action such as adding or removing something from
working memory, printing a message etc;

• in some cases actions might be entire program fragments.

Forward chaining

The basic algorithm is:

1. find all the rules that can fire, based on the current working mem-
ory;

2. select a rule to fire. This requires a conflict resolution strategy ;

3. carry out the action specified, possibly updating the working mem-
ory.

Repeat this process until either no rules can be used or a “halt” ap-
pears in the working memory.

Example

dry_mouth
working

Working memory

Condition−action rules

dry_mouth −> ADD thirsty
thirsty −> ADD get_drink
get_drink AND no_work −> ADD go_bar
working −> ADD no_work
no_work −> DELETE working

Interpreter



Example

Progress is as follows:

1. The rule
dry mouth → ADD thirsty

fires adding thirsty to working memory.

2. The rule
thirsty → ADD get drink

fires adding get drink to working memory.

3. The rule
working → ADD no work

fires adding no work to working memory.

4. The rule

get drink AND no work → ADD go bar

fires, and we establish that it’s time to go to the bar.

Conflict resolution

Clearly, in any more realistic system we expect to have to deal with
a scenario where two or more rules can be fired at any one time:

• which rule we choose can clearly affect the outcome;

• we might also want to attempt to avoid inferring an abundance of
useless information.

We therefore need a means of resolving such conflicts.

Conflict resolution

Common conflict resolution strategies are:

• prefer rules involving more recently added facts;

• prefer rules that are more specific. For example

patient coughing → ADD lung problem

is more general than

patient coughing AND patient smoker → ADD lung cancer.

This allows us to define exceptions to general rules;

• allow the designer of the rules to specify priorities;

• fire all rules simultaneously—this essentially involves following all
chains of inference at once.

Reason maintenance

Some systems will allow information to be removed from the working
memory if it is no longer justified.

For example, we might find that

patient coughing

and
patient smoker

are in working memory, and hence fire

patient coughing AND patient smoker → ADD lung cancer

but later infer something that causes patient coughing to be with-
drawn from working memory.

The justification for lung cancer has been removed, and so it should
perhaps be removed also.



Pattern matching

In general rules may be expressed in a slightly more flexible form in-
volving variables which can work in conjunction with pattern match-
ing.

For example the rule

coughs(X) AND smoker(X) → ADD lung cancer(X)

contains the variable X.

If the working memory contains coughs(neddy) and smoker(neddy)
then

X = neddy

provides a match and

lung cancer(neddy)

is added to the working memory.

Backward chaining

The second basic kind of interpreter begins with a goal and finds a
rule that would achieve it.

It then works backwards, trying to achieve the resulting earlier goals
in the succession of inferences.

Example: MYCIN—medical diagnosis with a small number of condi-
tions.

This is a goal-driven process. If you want to test a hypothesis or you
have some idea of a likely conclusion it can be more efficient than
forward chaining.

Example

get drink
no work

thirsty
no work

Goal

go bar

working

Working memory

dry mouth
no work

dry mouth
working

To establishgo bar we have to
establishget drink andno work.
These are the new goals.

Try first to establishget drink. This
can be done by establishingthirsty.

thirsty can be established by establishing
dry mouth. This is in the working memory
so we’re done.

Finally, we can establishno work by
establishingworking. This is in the working
memory so the process has finished.

Example with backtracking

If at some point more than one rule has the required conclusion then
we can backtrack.

Example: Prolog backtracks, and incorporates pattern matching. It
orders attempts according to the order in which rules appear in the
program.

Example: having added

up early → ADD tired

and
tired AND lazy → ADD go bar

to the rules, and up early to the working memory:



Example with backtracking

get drink
no work

thirsty
no work

Attempt to establishgo bar
by establishingtired and
lazy.

This can be done by establishing

We can not establishlazy
and so we backtrack and try a
different approach.

up early andlazy.

tired
lazy

lazy
up early

lazy

up early is in the working memory
so we’re done.

Goal

go bar

Working memory

Process proceeds as before

working

dry mouth
no work

dry mouth
working
up early
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