
Robert Brady  October 2007  Page 1

The Software Development Process

A personal view

Dr Robert Brady

CTO, Brady plc

Science Park

Cambridge

r.brady@bradyplc.com

Key references:
 “Debugging the Development Process”
S Maguire, Microsoft Press

“Showstopper”
G Pascal Zachary, Macmillan



Robert Brady  October 2007  Page 2

The three most important things in software
development

1.  Bugs

2.  Bugs

3.  Bugs

My agenda today:-

• Why is software development hard?
 
• Managing the code
 
• Development team ground-rules

• Making the management decision to ship
 



Robert Brady  October 2007  Page 3

 

 

 

 

 

 

 Why is software development hard?



Robert Brady  October 2007  Page 4

 How to lose $70bn

 

 In the late 1980s, IBM lost $70 billion of stock-market value,
and gave an entire market away to a previously small
company called Microsoft.

 According to the popular book “Big Blues”, this was,
amongst other things, because it couldn’t write software
effectively.

 But IBM “did it right”. It followed all the standard rules taught
in computer science courses at the time:

• Get the design right before you write the code

• Write complete documentation

• Get it right first time

• Use formal methods, design walk-throughs etc. to satisfy
yourself that the code is bug-free

 

 So what went wrong?

 



Robert Brady  October 2007  Page 5

 Size is important
 
 Bytes
 
 100b -1kb Typical punch-card program
 (The IBM development method was
 probably developed for this type of

 program)
 
 2kb-10kb Typical software module
 Typical computer science project(?)
 
 16kb Operating system of Sinclair Spectrum
 
 200Kb Our first software product – 1986
 
 18 Mb Human Genome – active code

 (30k genes * protein size 800)
 
 64Mb Xbox RAM
 
 100Mb Our current software product (code)
 
 750Mb Human genome - including rubbish code
 (3 x 109 base-pairs)
 
 1Gb – 2 Gb Windows 2000 with associated products
 
 40Gb Storage on small laptop
 



Robert Brady  October 2007  Page 6

 
 How size affects the basic assumptions

 

  Punch-card
program

 2kb of code  Large
program

 Complete the design
in advance

 Almost
essential

 Difficult  Too complex -
not possible

 Complete the
documentation in
advance

 Highly
desirable

 Difficult  Too complex -
not possible

 Prove it is bug-free  Very difficult
mathematical
challenge

 Too complex -
not possible

 Too complex -
not possible

 “Right first time”  A worthy goal  Too complex -
not possible

 Too complex -
not possible

 
 
 Conclusion: bugs are inevitable



Robert Brady  October 2007  Page 7

 
 
 
 
 
 IBM’s depressing research on bugs
 
 There are lots and lots of very obscure bugs that are very
hard to find.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

105 Years     mean time to failure (log scale) 10 days

Number of
bugs (log
scale)
UNSCALED

Bugs in unnamed mainframe
operating system



Robert Brady  October 2007  Page 8

 
 
 
 
 
 
 
 
 
 

 Managing the code



Robert Brady  October 2007  Page 9

Waterfall model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Design

 
 Deploy

 
 Code

 
 Test



Robert Brady  October 2007  Page 10

 
 

 Strengths and pitfalls of the Waterfall Model
 
 
 Good for small modules or sub-units, particularly if you can
have simple and well-specified interface.
 
• IBM implemented this model by having DIFFERENT

people in each stage. This gave people posh-sounding
job titles (“Analyst” etc.), but caused very bad
communication that killed their projects.

• Like Microsoft, we have a policy: “We do not have any
programmers” We have developers. They are responsible
for seeing the whole thing through.



Robert Brady  October 2007  Page 11

 The “Prototype” Model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 “Playcode” it

 
 Amend or reject it

 
 Test and deploy it

 
 Review it



Robert Brady  October 2007  Page 12

 
 

 Strengths and pitfalls of the “Prototype” model
 
 
• Good where there are significant project risks or

unknowns - e.g. external software, new techniques or
methods, or can’t decide between alternatives.

 
• Not very predictable (a big problem in contracted

developments)



Robert Brady  October 2007  Page 13

 The “evolutionary” model
 - what everyone does in practice

 (whatever they call it)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 This “evolutionary” model is needed where there are
complex interactions between the work of different
developers (or the work of the same developer over time).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Waterfall
model

changes

 Prototyping
 model

changes

 Small Bug-
fixes

 Integration;
manual and
automated

tests

 Review for
release

 
 Deploy



Robert Brady  October 2007  Page 14

 
 
 
 
 
 
 
 
 
 
 

 Development team ground-rules
 



Robert Brady  October 2007  Page 15

 A quiz
 
 You are the manager of a small (2 person) software
development/test team. They come to you with a problem
and a proposed solution. Do you approve it?
 
 Problem
 
• We need to implement 10 features. We have reviewed

the designs, we now need to code and test them.

• Time is very tight. We will have to pull out all the stops
to do it by the contracted deadline of next month

• John (the developer) is the best person to do the
coding

• Richard (the test engineer) is the best person to do the
testing

 
 Proposed solution
 

• John and Richard work closely together to accelerate
the development phase

• John codes the features and makes quick releases to
Richard during development

• Richard provides testing feedback during development

• After this development phase, the software goes into
the normal release cycle for testing/bugfix

 



Robert Brady  October 2007  Page 16

 If you approve the plan
 
• You will send a message to your developers that bugs

don’t matter – you can “throw them over the wall” and
someone else will find them for you

• You will accelerate developers who produce sloppy
code and slow down developers who produce good
code

• The process will be inefficient, eg
o the developer has a rough idea which areas will

be buggy, he can home in on these
o The developer has tools (“debuggers”) to find

bugs which the tester doesn’t have
o The developer will have to constantly

communicate with the tester on what’s changed,
this slows them both down

o The tester will be inefficient because silly bugs will
stop him running his automated tests

• When you get to the original deadline
o your project will probably have all the features
o but the product probably won’t work well enough

to run the automated tests, so you cannot ship
o You won’t be able to advise the customer of the

new ship date, because the automated tests don’t
work and they might (or might not) uncover
something when they do run

o It will be too late to take corrective action



Robert Brady  October 2007  Page 17

 
 If you reject the plan (developer has to test his code
before release)
 
• Your team will be forced to make the hard project

decisions, eg
o Go back to the design stage for feature number 3

– can we implement it more simply?
o Cut feature number 6 – it’s not strictly in the

specification
o Advise the customer there is a risk. Does he want

a delay or does he want feature number 7 in a
later release?

o Request more resources (a long shot…)

 
• Your team will work more efficiently

o The tester will always work on code that is
basically stable (so he can develop his regression
tests etc.)

o The developer will be rewarded for producing
quality code, not for producing features that
destabilise the product

• Your team will be able to plan the project
o If a feature is in the product then it will “basically

work”
o The team (and you) can now monitor progress
o You can get test results and customer feedback

early on the features you have implemented
o Management can make the decision to ship with

a more predictable freeze-time



Robert Brady  October 2007  Page 18

Making the management decision to ship



Robert Brady  October 2007  Page 19

Standard quality engineering decision

Release at time of lowest total cost

“Handbook of software quality engineering”

How many bugs when you release?

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of bugs when released

T
o

ta
l 

c
o

s
t

Loss of reputation etc.

Cost of reaching quality target before release
Total cost



Robert Brady  October 2007  Page 20



Robert Brady  October 2007  Page 21

Windows NT version 1

Probably released at lowest cost point (as above)

5.6M lines of code

1 bug for every 10 lines = 560K bugs to fix
1 bug for every 100 lines = 56K bugs to fix

Management’s major activity was prioritising bugs
• Showstopper (always fixed)
• Priority 1 (fixed except in late stages of release)
• Priority 2 (deferred)

Date Release “Serious or showstopper” bugs

12 Oct 1992 Beta 1 2,000 known on release

8 Mar 1993 Beta 2 0 known on release

263 found in first 6 days

26 Jul 1993 Final 0 showstoppers known at release

Reference: “Showstopper” (G Pascal Zachary)



Robert Brady  October 2007  Page 22

The decision to ship (3)

My personal view

Avoid the “first release” syndrome altogether if
possible

- Make the first release very small
- Make regular upgrades (SP or beta versions)
- Typically monthly or quarterly releases
- Each release contains only small changes

Essential to limit risks OF EACH RELEASE
- Invest in automated regression tests
- The risk of each change is the primary focus
- Manage higher risk changes by breaking them up

eg Separate the code from existing code
eg Have the ability to switch the risky part on/off
eg implement a big change in smaller bits

Get real customers for each release
- Forces focus on what the customer really requires
- Gets real-world feedback that no lab can reproduce
- Problems? Add to automated regression tests

Criterion for each release
- “better than the previous”
- Pass automated regression tests
- Pass manual tests of new functionality


