SML.NET User Guide

Andrew Kennedy, Claudio Russo, Nick Benton
Microsoft Research Ltd.
Cambridge, U.K.

V1.2 build 1613 of Friday, 02 June 2006

Contents

1 Introduction
1.1 About this document L
1.2 Licence e
1.3 Credits. o oo o
1.4 Mailing list e
Getting started
2.1 Requirements L o e
2.2 Imstallation L o
2.3 Configuration (Optional)
2.4 Example: Quicksort oL
2.5 Demonstration programso

Compiling programs

3.1 Command syntax
3.2 Mapping of module identifiers to files
3.3 Specifying a path for sources 0.
3.4 User-defined mappings e
3.5 Recompilation. o
3.6 Exporting classesto NET,
3.7 Importing classes from .NET
3.8 Output e
3.9 Shell commands.
3.10 Printing types and signatures
3.11 Options o
3.12 Additional assembler options oL
3.13 Avoiding stack overflow oL oL
3.14 Cleaning up« o v e
3.15 Command files and command-line operation
3.16 Summary of commands
3.17 Trouble with the .NET IL assembler ilasm.exe?

S

[B B |

oI oo

CONTENTS

4 Language extensions for .NET

4.1 Namespaces, classes and nesting
4.2 Types . . .
421 Built-in types Lo
4.2.2 Named .NET types.
4.2.3 Array types
424 Nullvalues
4.2.5 Interop typeso
4.3 Objects e
4.3.1 Creating objects
4.3.2 Creating and invoking delegate objects
4.3.3 Casts and cast patterns L oL
4.4 Fields, methods and properties
4.4.1 Fields
4.42 Methods
4.4.3 Overloading and implicit coercions
4.5 Value Types
4.5.1 Boxing and unboxingo Lo
4.5.2 Null values oL
4.6 Enumeration Types. o0
4.7 Storage Types. oo e
4.71 Storagekindso o
4.7.2 Address operators (&) L
4.7.3 Byreftypes
4.8 Defining new .NET types
4.8.1 Class declarations
4.8.2 Class types and functors
4.8.3 Interface declarations
4.8.4 Delegate declarations
4.9 Custom Attributes
4.10 Exporting structureso o L
5 Visual Studio .NET Support
5.1 Licence e
5.2 Requirements L e
5.3 Imstallation o
5.4 Working In Visual Studio
5.4.1 Opening an existing Project
5.4.2 Creating a new Project
5.4.3 Debugging. oo
5.5 Customizing the Package Installer

A Language restrictions
Al Overflow oo
A.2 Non-uniform datatypes.
A.3 Value restriction L oo
A4 Overloading

B The Standard ML Basis Library

18
18
19
19
19
19
20
20
21
21
21
22
23
23
24
25
25
26
26
27
28
28
29
30
31
31
34
34
35
35
37

38
39
39
39
39
39
40
41
41

42
42
42
42
42

43

1 INTRODUCTION 3

C Support for ML-Lex, ML-Yacc and SML/NJ Libraries 43

1 Introduction

SML.NET is a Standard ML compiler [2, 3] for the .NET Common Language
Runtime. Its features are:

Support for all of Standard ML. SML.NET compiles all of SML 97 [2] ex-
cept for some minor omissions documented in Appendix A.

Support for the Basis library. Almost all of the Standard ML Basis Li-
brary [1] is implemented. Omissions and discrepancies are listed in Ap-
pendix B.

Command-line compilation. SML.NET supports traditional compilation from
the command-line.

Interactive compilation environment. Alternatively, you can control the
compiler from an interactive environment. This lets you set and query
options incrementally and to see the signatures of compiled and imported
SML modules.

Support for Visual Studio .NET. This distribution includes an optional,
experimental package for Visual Studio .NET that allows you to edit, build
and debug SML.NET projects from within the development environment;
see Section 5 for an overview and additional installation instructions.

Automatic dependency analysis. In either mode of compilation, the com-
piler requires only the names of root modules and a place to look for
source code. It then does dependency analysis to determine which files
are required and which need recompilation.

Produces verifiable CLR IL. The output of the compiler is verifiable MSIL
(Microsoft Intermediate Language) for the CLR.

Smooth interop with other languages on the CLR. SML.NET extends the
Standard ML language to support safe, convenient use of the NET Frame-
work libraries and code written in other languages for the CLR. SML.NET
can both consume and produce .NET classes, interfaces, delegates, etc.
These extensions are discussed in full in Section 4.

Whole program optimization. SML.NET performs optimizations on a whole
program (or library) at once. It usually produces small executables with
fairly good performance.*

Its limitations are:

1Though this is an early release and the performance variation is very wide. Compared
with SML/NJ, for example, some real programs go four times faster and some go ten times
slower.

1 INTRODUCTION 4

No interactive evaluation. The interactive environment is for compilation
of stand-alone applications or libraries only. SML expressions can not be
evaluated interactively and the use command is not available.?

Whole program optimization. Top-level SML modules are not compiled in-
dividually to .NET object code. Instead, some compilation takes place on
separate modules (type checking, translation to the compiler’s own inter-
mediate form, and some optimizations) but most is deferred until after
the linking together of top-level modules. This improves performance of
the generated code, but significantly increases (re)compilation times. To
give a rough idea, it takes a couple of minutes to recompile a 25,000 line
SML application on a 1.33GHz Athlon with 512MB of RAM.

Only CLR types at boundaries of compiled code. The exposed interfaces
of applications or DLLs compiled by SML.NET may only refer to CLR
types (classes, interfaces, delegates, etc.). They may not expose SML-
specific types (functions, datatypes, records, etc.). In particular, this re-
striction means that one cannot compile an arbitrary SML module into
a DLL for consumption even by other SML.NET programs: the module
must be either linked into the client program at compile-time or use only
CLR types at its interface.

1.1 About this document

This guide is aimed at programmers already familiar with SML. The textbook
by Paulson [3] is an up-to-date introduction to SML’97.

Section 2 describes requirements, installation, and takes you through the
compilation of a simple program. Section 3 presents the compilation environ-
ment. Section 4 describes extensions to Standard ML for interfacing to CLR
libraries and for implementing new CLR classes inside SML. Section 5 docu-
ments the Visual Studio .NET support package.

2For programs that make no use of the language extensions it is possible to develop and
test them using a compiler such as Moscow ML or Standard ML of New Jersey and then to
use SML.NET to produce final executables.

1 INTRODUCTION 5

1.2 Licence

SML.NET COPYRIGHT NOTICE, LICENCE AND DISCLAIMER.

Copyright (©1997-2003 by the University of Cambridge

Permission to use, copy, modify, and distribute this software and its doc-
umentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both the copyright
notice and this permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the University of Cambridge not be used
in advertising or publicity pertaining to distribution of the software without
specific, written prior permission.

The University of Cambridge disclaims all warranties with regard to this
software, including all implied warranties of merchantability and fitness. In no
event shall the University of Cambridge be liable for any special, indirect or con-
sequential damages or any damages whatsoever resulting from loss of use, data
or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of this software.

The SML.NET distribution includes software which is Copyright (©)1989-
1999 by Lucent Technologies. See the file SMLNJ-LICENCE for details.

The (entirely optional) SML.NET binary distribution with Visual Studio
support includes additional software (the Visual Studio packages and an IL as-
sembler) which is Copyright (©2002-2003 Microsoft Research Ltd. See the addi-
tional licence file MSR-EULA for details. The alternative binary and source distri-
butions, that exclude Visual Studio support, are NOT subject to the MSR-EULA.

1.3 Credits

The SML.NET team is Nick Benton, Andrew Kennedy and Claudio Russo. The
compiler also includes code by George Russell. We would like to thank all the
others who have contributed code, support, web space, demos, test cases, gripes
and bug reports both to SML.NET and to its precursor, MLj: Gavin Bierman,
Tom Chothia, Stephen Gilmore, Dave Halls, Bruce McAdam, Chris Reade, John
Reppy, Peter Sestoft, the SML/NJ developers, Tan Stark, Audrey Tan, Team
PLClub, Bent Thomsen, Lone Thomsen, Christian Urban.

1.4 Mailing list

A mailing list for SML.NET users has been set up. To join the list, send mail
to smlnet-users-request@jiscmail.ac.uk. To view the archives of the list,
see http://www.jiscmail.ac.uk/lists/smlnet-users.html.

http://www.jiscmail.ac.uk/lists/smlnet-users.html

2 GETTING STARTED 6

2 Getting started

2.1 Requirements

Microsoft Windows. You can use any of Windows 98, ME, NT4.0, 2000, XP
Home or XP Professional to run the compiler. We generally recommend
Windows 2000 or XP, and some of the server-side parts of .NET require
the Server or Professional versions of those operating systems.

.NET Framework. Available from http://msdn.microsoft.com/net. The
Redist includes the runtime, libraries and tools (notably an assembler)
required to run SML.NET. The SDK includes full documentation, sam-
ples, and other tools (e.g. a disassembler and stand-alone verifier) which
you may find useful. Visual Studio .NET is also useful if you wish to
write parts of your applications in Cf or VB. In particular, you can de-
sign user interfaces graphically and then link the autogenerated code with
SML.NET code.

An editor. The SML.NET compiler is not an integrated development environ-
ment, so, unless you install the optional support for Visual Studio .NET
(Section 5), you will need a text editor. Typically you will run the editor
concurrently with the SML.NET compilation environment.

SML/NJ compiler (optional). The SML.NET compiler was developed us-
ing Standard ML of New Jersey (SML/NJ). If you wish to build the
SML.NET compiler from sources then you will need SML/NJ version 110,
obtainable from http://cm.bell-labs.com/cm/cs/what/smlnj.

2.2 Installation

To install SML.NET, simply unpack the distribution smlnet.tar.gz to obtain
a directory smlnet. The compiler can be run directly from the bin subdirectory
but for convenience you may want to extend PATH with this directory.
IMPORTANT: To avoid problems, please unpack your distribution to a path
that does not contain spaces, eg. C:\smlnet but not C:\Program Files\smlnet.
We hope to lift this restriction in a future release.

On Windows 98 and Windows ME, if the compiler is installed somewhere
other than C:\smlnet then you must also set SMLNETPATH to that directory.

2.3 Configuration (Optional)

SML.NET is designed to support multiple versions of the .NET Framework,
as determined by the values of two environment variables: FrameworkDir and
FrameworkVersion. If these variables are undefined, SML.NET will infer their
values by running the helper program bin\getsysdir.exe. When defined,
FrameworkDir should specify the machine’s installation directory for all ver-
sions of the .NET Framework, and FrameworkVersion the particular version of
the NET Framework that you wish to target (FrameworkVersion must name
a subdirectory of FrameworkDir.) Typical settings might be:

set FrameworkDir=C:\WINDOWS\Microsoft.NET\Framework
set FrameworkVersion=v1.1.4322

http://msdn.microsoft.com/net
http://cm.bell-labs.com/cm/cs/what/smlnj

2 GETTING STARTED 7

WARNING: It is strongly recommended that you clean your project when-
ever you change to a different version of the .NET Framework (See Section
3.14).

NB: the Framework environment variables are pre-defined when you start a
Visual Studio .NET 200z Command Prompt, so running SML.NET from
the shell will automatically target the correct .NET Framework for that version
of Visual Studio.

2.4 Example: Quicksort

To test its operation on a demonstration program, run SML.NET in command-
line mode as shown below:

C:\smlnet>bin\smlnet -source:demos\sort Sort
SML.NET 1.0
Analysing dependencies...done.

Linking modules...done.

Compiling whole program...done.
Compilation succeeded: output in Sort.exe
C:\smlnet>

This tells SML.NET to compile a top-level SML structure called Sort, assumed
to be found in the directory specified (demos\sort) in a file called Sort.sml,
and to produce an executable with the name Sort.exe. If this is the first time
that any SML.NET program has been compiled, then you will notice that most
of the Basis library is compiled too.

Alternatively, first enter the interactive compilation environment:

C:\smlnet>bin\smlnet
SML.NET 1.0
\

Then type the commands that follow the \ prompts below:

\ source demos\sort

\ export Sort

\ make

Analysing dependencies...done.

Linking modules...done.

Compiling whole program...done.
Compilation succeeded: output in Sort.exe

\ run 20

Before sorting: 60 37 14 91 68 45 22 99 76 53 30 7 84 61 ... 23
After sorting: 7 14 15 22 23 30 37 38 45 46 53 60 61 68 ... 99
\ quit

C:\smlnet>

The source command tells the compiler where to look for SML source files,
which by default have the extensions .sml (for structures and functors) and
.sig (for signatures). The export command specifies the name of a top-level
SML structure to be exported as a .NET class in the executable. Then make

2 GETTING STARTED 8

tells SML.NET to compile and link the program. The compiler will put the
output in a file Sort.exe, and the assembler source in a file Sort.il. Finally
run executes the program with the arguments specified.

Just to prove that we really have compiled a self-contained .NET program,
from a command prompt type

C:\smlnet>Sort 10

Before sorting: 30 7 84 61 38 15 92 69 46 23
After sorting: 7 15 23 30 38 46 61 69 84 92

C:\smlnet>

If you have installed the .NET Framework SDK you can type-check the
output using the verifier and look at it using the disassembler:

C:\smlnet>peverify Sort.exe

Microsoft (R) .NET Framework PE Verifier
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

All Classes and Methods in Sort.exe Verified

C:\smlnet>ildasm Sort.exe

Most of the classes listed by ildasm were generated by SML.NET to implement
SML code, but Sort is special, as it was listed explicitly as a parameter to
export. At its simplest, export is followed by a comma-separated list of top-
level SML structures, each of which will be ezported as a class with the same
name. The signature of each structure determines what will appear in the class.
Functions are exported as static methods, and other values are exported as
static read-only fields. There are strong restrictions on the types of functions
and values that can be exported, described in detail in Section 4.

For this example, there is just one exported function, called main, which by
convention identifies the entry point for an executable, as is the case in C¥.

2.5 Demonstration programs

The distribution comes with a few more demos. Explore the demos subdirectory
for details and documentation.

3 COMPILING PROGRAMS 9

3 Compiling programs

In this section we discuss in detail the compilation environment provided by
SML.NET.

Within the environment you can type help or just ? to get a list of available
commands. For details on a particular command, type help command.

3.1 Command syntax

In general a command consists of an alphabetic keyword optionally followed by
parameters separated by commas. The case of keywords is ignored. Parameters
representing file or directory names must be enclosed in quotes if they include
spaces.

Most commands set or extend the value of some setting such as a path or
filename. For these the current setting can be queried by typing the command
followed by ‘?’. For example, log? displays the filename currently used for
logging compiler messages.

3.2 Mapping of module identifiers to files

A multiple module SML.NET program usually consists of a collection of top-
level SML structures and signatures, each stored in a separate file. In contrast
to other compilation managers, SML.NET does not require the programmer
to list explicitly the files making up a project. Instead, given the location of
SML-defined structures and types to be exported as classes (using export) and
a means of mapping SML signature, structure and functor identifiers onto file
names, SML.NET determines automatically which files it must compile.

The most straightforward way to operate is to put each structure strid into
a file called strid.sml, each functor funid into a file called funid.sml, and each
signature sigid into a file called sigid .sig. Users of Moscow ML will be familiar
with this pattern. The compiler then just starts its dependency analysis from
the root structures specified using the export command.

PITFALL: SML.NET will not infer dependencies that are not there in the
source. Thus if your project includes file State.sml, containing

structure State = struct
val state = ref (NONE: string option)
end

file Effect.sml, containing

structure Effect = struct
val _ = State.state := SOME "initialised!"
end

and file Main.sml, containing

structure Main = struct
fun main() = case !State.state of NONE => 1 | SOME s => (print s;0)
end

3 COMPILING PROGRAMS 10

then exporting Main alone will drag in State, but will not drag in the purely
side-effecting initialisation code in Effect.sml. Note that Main does not ref-
erence Effect (either directly or indirectly via the referenced entity State).
To force the evaluation of Effect, you must add an explicit reference to the
Effect structure, for instance by inserting a vacuous local open Effect in
end declaration to Main:

structure Main = struct

local open Effect in end

fun main() = case !State.state of NONE => 1 | SOME s => (print s;0)
end

3.3 Specifying a path for sources

By default, the compiler looks for source files in the working directory. The
command

source directory , ... , directory

specifies a comma-separated list of directories to search for source files. The
directory names are normalized with respect to the directory current at the
time source is executed, and if source is already set then new directories are
appended. To display the current path type source?, and to restore the default
behaviour (using the working directory) type source.

3.4 User-defined mappings ’structure, signature, functor

Sometimes it may be necessary to put SML entities in files not conforming to
the default naming conventions. In this case, you can define your own mapping
from structure, functor or signature identifier to filename. The commands

structure strid=filename , ... , strid=filename
signature sigid=filename , ... , sigid=filename
functor funid=filename , ... , funid=filename

let you do this. The filenames are normalized with respect to the directory
current when the command is issued, and repeated use of the commands extend
the existing mapping.

Multiple entities can be mapped to the same file, in which case the file must
contain top-level module bindings for each of those entities.

To find out what file a particular module maps to (whether through explicit
mapping or the source path and default naming convention), use the commands:

structure strid?
signature sigid?
functor funid?

3.5 Recompilation

When a source file is changed and make or remake is invoked, SML.NET will
recompile that file and, if necessary, any other files that depend on it. This
propagation will only happen if the result of elaborating the entity has changed

3 COMPILING PROGRAMS 11

(in essence, its type). If a recompiled structure matches an unchanged signature
then no modules which depend on it will be recompiled.

Command make compiles the current project, but links and assembles only
if the sources have changed or the target does not exist.

Command remake compiles the current project, but re-links and re-assembles
even when the sources have not changed and the target already exists.

3.6 Exporting classes to .NET

The export command indicates to the compiler which top-level SML structures
are to be exposed as public classes in the compiled executable or library. The
syntax of export is the following:

export strid(=classname), ... , strid{(=classname)

By default, structures are exported as top-level classes with names match-
ing that of the SML.NET structure. For example, the command export S, M
generates two public classes S and M. These names can be overridden, typically
to introduce a namespace. For example,

export S=MyLib.Classl, M=MyLib.Class2

will produce two classes Class1 and Class2 in namespace MyLib.
Executables must have an entry point. By default, the compiler looks for an
exported structure with a function called main or Main with one of the following

types:

val main : wunit -> unit
val main : unit -> int
val main : string option array option -> unit
val main : string option array option -> int

These types correspond to those accepted by the C¥# compiler for main.

3.7 Importing classes from .NET

In order to import classes from .NET libraries and code written in other lan-
guages it is necessary to name the assemblies (roughly speaking, DLLs) that are
required. This is done using the reference command:

reference libname, ... , libname
The 1ib command:
1lib directory , ... , directory

allows a path for searching for .d11ls to be specified. SML.NET follows the
same rules as C* in searching for assemblies:

1. The working directory.
2. The .NET system directory.

3. The directories set by the 1ib command.

3 COMPILING PROGRAMS 12

4. The directories set in the LIB environment variable.

Many useful system assemblies are referenced by the config.smlnet script
run from the bin directory when SML.NET starts up. If you prefer not to
reference all of these, the minimal set of references actually required to compile
structures in the Basis is mscorlib.d1l and System.d11l.

3.8 Output ’out, target, run, log

The compiler can be instructed to produce an executable (.exe) or a shared
library (.d11) with the following commands:

target library
target exe

The default is to produce executables, in which case the compiler expects to
find some exported structure containing a suitable main function.

By default, the name of the output is X.exe, for executables whose main
function is in structure X, or X.d11 for DLLs whose first exported structure is
X. This name can be overridden by typing out name. The syntax out X.exe
and out X.d11l combines the action of target and out in a single command.

To run a successfully-compiled executable from within the compilation en-
vironment, type

run args

where args are the arguments passed to the executable.
You can log the compiler messages to a file by typing log filename. To turn
logging off just type log.

3.9 Shell commands

From within the compilation environment you can issue shell commands using
the syntax

cmd command
It is also possible to change the working directory from within the environment:
cd directory

The syntax cd? queries its current value.

3.10 Printing types and signatures

The command
type longid

provides type and signature information for any entities with the name longid.
These entities may be value bindings, types, structures or exceptions and may
come from external .NET .DLLs, the SML Basis or the current project. type
provides a primitive, but extremely useful, form of online documentation for
use during program development. It is particularly convenient for checking how
SML.NET views libraries written in other languages.

3 COMPILING PROGRAMS 13

3.11 Options

There are a large number of compiler options available. They are turned on
and off using on option and off option and can be queried using option?.
(Alternative syntax: option+ or just option to enable, and option- to disable).
We document the most useful options here:

debug Emit debugging information (default: off). If enabled, some symbol and
line number information is generated in the assembler file, and the /debug
option is passed onto the .NET assembler.

debug.exnlocs Exception line number information (default: on). If enabled, the compiler
will insert appropriate code into the output so that when SML exceptions
appear at top level the runtime reports the SML structure and line number
where the exception was raised.

debug.symFromLoc Emit truncated source expressions as the symbolic names for their values
in debug builds (default: off). This can be useful for viewing the values
of intermediate expressions when debugging.

sml.seqwithtype Sequential withtype declaration (default: off). The Standard requires
that multiple bindings in the withtype clause associated with datatype
declarations are interpreted simultaneously. It is arguably more useful to
interpret them sequentially, as does SML/NJ.

warn.value Non-generalised type variable warnings (default: on). These are displayed
whenever SML’s value restriction prevents the generalisation of a type in
a val binding (see Section A.3 for more details).

warn.match Non-exhaustive match warnings (default: on). These are displayed when
a case or handle does not handle all possible values and so could result
in the Match exception being thrown.

warn.bind Non-exhaustive bind warnings (default: on). These are displayed when a
val binding can result in the Bind exception being thrown.

verbose Verbose compiler messages (default: off).

3.12 Additional assembler options

It is sometimes necessary, or just convenient, to be able to pass extra command-
line options to the assembler. The ilasm command takes a comma separated
list of additional options with their values, if any. For instance:

ilasm CLOCK, KEY=keyFile.snk

instructs ilasm.exe to report timings and generate a signed assembly using
the key pair in file keyFile.snk when next invoked by the compiler (see the
ilasm.exe documentation). These settings correspond to the concrete shell
command ilasm.exe ... /CLOCK /KEY=keyFile.snk Note that the
extra options are passed to ilasm in addition to any options already implied by
other SML.NET settings. The commands ilasm and ilasm? reset and query
the current options.

3 COMPILING PROGRAMS 14

3.13 Avoiding stack overflow

By default, under Windows, CLR executables receive a fixed, and fairly low,
ceiling on the amount of stack space they can use during execution. This can
pose a problem for some functional programs that rely heavily on deep, non-tail
recursive call patterns.

Fortunately, the Windows system utility editbin.exe can be used to modify
an executable so that it demands a higher ceiling for the stack. For example

editbin /stack:100000000 Sort.exe

sets a (huge) ceiling of ca. 100MB. See the editbin documentation for more
details.

3.14 Cleaning up

The SML.NET compiler will cache information (assembly metadata, sml object
files and dependency information) in sub-directory bin of the distribution and
subdirectories .smlnetdep and .smlnetobj of each directory on the source path.

To delete this information, use the clean.bat script; clean scrubs the ba-
sis directories, everything cached in bin and in the current directory and its
subdirectories. Thus executing clean from C:>\smlnet should return the dis-
tribution to a pristine state.

Use this script when you suspect the compiler has got itself confused (rare,
but possible). With this release, we do not recommend you have more than
one SML.NET process going at the same time, especially if the projects under
compilation share source code other than the basis.

3.15 Command files and command-line operation

A sequence of compiler commands can be collected together in a file name . smlnet
and then executed simply by typing @name. Inside name.smlnet the commands
must be separated by newlines. A single command can be split over several lines
provided that the splits occur following commas. This is useful for commands
that specify lists of items.

The special command file config.smlnet, located in the compiler bin direc-
tory, is interpreted when the compiler is run. It is a useful place to set options
appropriate to all projects.

It is also possible to execute compiler commands directly from the command
line, either before entering the compilation environment (to set options such as
source, for example) or without entering the environment at all (to build an
executable, for example). Simply precede the command names with hypens or
slashes, and separate the command from its arguments by a colon instead of a
space. Identifiers at the end of the line are interpreted as inputs to an implicit
make; if any make occurs at all then the compilation environment is not entered.
For example,

C:\smlnet>smlnet -source:demos\sort Sort

will compile our quicksort example to produce a file Sort.exe, and

3 COMPILING PROGRAMS 15

C:\smlnet>smlnet -verbose

will enter the compilation environment in verbose mode.

3.16 Summary of commands

help command
help: command
? command
?: command
help
?
Displays command list or more detailed help on a particular command.

type longid

type:longid
Displays type signatures for entities with name longid (values, types, structures,
and signatures).

source directory , ... , directory
source: directory , ... , directory
source?
source

Extends, queries or resets path in which source files are searched for.

structure strid=filename , ... , strid=filename
structure: strid=filename , ... , strid=filename
structure strid?
structure: strid?
structure?
structure

Extends, queries or resets mapping of structures to files.

signature sigid=filename , ... , sigid=filename
signature: sigid=filename , ... , sigid=filename
signature sigid?
signature: sigid?
signature?
signature

Extends, queries or resets mapping of signatures to files.

functor funid=filename , ... , funid=filename
functor: funid=filename , ... , funid=filename
functor funid?
functor: funid?
functor?
functor

Extends, queries or resets mapping of functors to files.

make
Compile the current project, linking and assembling only if the sources have
changed or the target does not exist.

3 COMPILING PROGRAMS 16

remake
Recompile the current project, linking and assembling even if the sources have
not changed.

export strid(=classname), ... , strid{(=classname)
export: strid(=classname), ... , strid(=classname)
export?

export

Extends, queries or resets the set of structures to be exported as .NET classes.

reference libname, ... , libname
reference:libname, ... , libname
reference?
reference

Extends, queries or resets the set of external .NET libraries (.d11s) referenced
by the current project.

lib directory , ... , directory
lib:directory , ... , directory
1ib?
1ib

Extends, queries or resets path in which .d11s are searched for.

target exe
target:exe
target library
target:library
target?
Sets or queries whether current project is an executable or a library.

out name

out:name

out name.exe
out:name.exe
out name.dll
out:name.dll
out?

out

Sets, queries or resets file name for compiler output and, optionally, project

type.

run args
Runs the current project (if executable and built) with specified command-line
arguments.

cmd command
cmd : command
Runs the specified shell command.

cd directory
cd: directory
cd?
Sets or queries the current working directory.

3 COMPILING PROGRAMS 17

log filename
log: filename
log
Sets compilation log file and starts logging, or stops logging.

on option

on: option

option+

option

off option

off: option

option—

option?
Where option is one of debug, debug.exnlocs, debug.symfromloc,
sml.seqwithtype, warn.value, warn.match, warn.bind, verbose. Sets, re-
sets or queries the associated compiler flag.

ilasm option(=value), ... , option{=value)
ilasm: option(=value), ... , option{=value)
ilasm?
ilasm

Extends, queries or resets the additioanl options passed to the .NET assembler,
ilasm. Useful for signing assemblies, adding resources such as icons, etc.

@name
Executes commands from file name.smlnet.

3.17 Trouble with the .NET IL assembler ilasm.exe?

There is a bug in the 1.0 and 1.1 versions of ilasm.exe, the IL assembler used
by SML.NET: the debug information in an IL. method can be associated with
at most one source file. In SML.NET target code, due to inlining, a target
method will often be associated with more than one source file. To avoid the
assembler bug, SML.NET prefers to use its own version of the assembler in
bin\ilasm.exe. If, for some reason, this private ilasm.exe does not work
on your machine you can simply delete it from the bin directory. In that
case, SML.NET will use the ilasm from your .NET Framework installation.
In addition, as a less satisfactory workaround, in debug mode, SML.NET will
produce a dummy source file (with extension *.m1) containing the concatenation
of all sources referenced from the executable. It is this dummy file, not the
original code, that is referenced by the debugger and should be used for setting
breakpoints (but this can be rather confusing to the user).

The executable bin\ilasm. exe is Copyright (©)2002-2003 Microsoft Research
Ltd. and is covered by a separate licence in file MSR-EULA. If you are not happy
with the terms of this licence, simple delete the executable bin\ilasm.exe.

4 LANGUAGE EXTENSIONS FOR .NET 18

4 Language extensions for .NET

A significant aspect of the SML.NET compiler is its support for seamless inter-
operation with other .NET languages and libraries. The approach taken is the
following:

e Where possible, map .NET features into equivalent SML features. For
example, static methods are mapped to top-level function bindings in
SML.

e Where there is no obvious equivalent, extend the SML language. For ex-
ample, new .NET classes can be defined within SML using a new classtype
construct.

The sections which follow describe the extensions in detail. Each section
is accompanied by small example programs illustrating a single feature. These
live in directories displayed on the right of the section heading.

4.1 Namespaces, classes and nesting ’samples\structures‘

If one ignores the class hierarchy and instance fields and methods (i.e. a non-
object-oriented fragment of .NET), then .NET classes can be seen (and are
used) as a minimal module system, providing a way of packaging together static
fields, methods, and nested classes that are logically related. Namespaces in
.NET provide a further level of structuring, grouping together many classes
into a single group. We model both using the SML module system.

Top-level namespaces (e.g. System) are reflected in SML.NET as top-level
structures, with nested namespaces (e.g. System.Drawing) reflected as sub-
structures (e.g. structure Drawing inside structure System).

Classes are reflected in SML.NET as three separate bindings:

e as type identifiers (see Section 4.2.2),

e as values of function type used to construct instances of the class (see
Section 4.3.1), and

e as structures containing value bindings that reflect static fields and meth-
ods (see Sections 4.4.1 and 4.4.2) and substructure bindings for nested
classes.

For example, within the namespace System.Threading (reflected as a struc-
ture Threading inside a top-level structure System) the class Mutex is mapped
to an SML type identifier Mutex, to a value identifier Mutex, and to a structure
Mutex.

Namespaces and classes interpreted as structures can be manipulated like
any other structure in SML: they can be rebound, constrained by a signature?,
passed to functors, and opened.

Opening of namespaces-as-structures through open is analogous to C¥’s using
construct. However, when used with classes-as-structures the open mechanism
is more powerful, permitting unqualified access to static fields and methods.
Also, nested namespaces become visible as structures.

3This is not supported in the initial release

4 LANGUAGE EXTENSIONS FOR .NET 19

NET type C? type SML.NET type
System.Boolean bool bool
System.Byte byte Word8.word
System.Char char char
System.Double double real
System.Single float Real32.real
System.Int32 int int
System.Int64 long Int64.int
System.Int16 short Intl16.int
System.SByte sbyte Int8.int
System.String string string
System.UInt16 ushort Word16.word
System.UInt32 uint word
System.UInt64 ulong Word64.word
System.Exception | System.Exception | exn
System.0Object object object

Table 1: Correspondence between types in .NET and SML.NET

4.2 Types

4.2.1 Built-in types ’ samples\builtintypes ‘

Table 1 lists .NET types (in C* notation and as fully-qualified .NET type names)
that have direct equivalents in SML.NET. Amongst .NET types only the usual
SML Basis types have equality status and can be passed as arguments to SML’s
polymorphic equality operator =, that is all those in Table 1 except for real,
Real32.real and exn.

4.2.2 Named .NET types ’samples\namedtypes‘

Any named .NET type (class, value type, enumeration, interface or delegate)
can be referred to from within SML.NET using the same syntax as in C#. This
syntax works because of the interpretation of .NET namespaces as nested struc-
tures, discussed above. For example:

type XMLParser = string -> System.Xml.XmlDocument

4.2.3 Array types ’ samples\arrays ‘

Single-dimensional .NET arrays behave almost exactly like SML arrays: their
size is fixed at time of creation, indexing starts at zero, equality is based on
identity not value, and an exception is raised on out-of-bounds access or up-
date. Therefore the SML type constructor array corresponds to .NET’s type
constructor []. (But see Section 4.2.4 for a discussion of null-valued arrays).

The .NET exception System.IndexOutOfRangeException corresponds to
the SML exception Subscript.

Some, but not all, array types inherit from the class System. Array, so you
can invoke methods on values of these array type and cast their array values

4 LANGUAGE EXTENSIONS FOR .NET 20

to and from class types. The restriction is that the element type must be an
interop input type in the sense of Section 4.2.5.

4.2.4 Null values ’samples\option‘

In .NET, variables with class or array types (known collectively as reference
types) are allowed to take on the value null in addition to object or array
instances. Operations such as method invocation, field access and update, and
array access and update, raise NullReferenceException if their main operand
is null.

SML does not have this notion, and values must be bound explicitly when
created. Thus operations such as assignment, indirection, and array access and
update are inherently safer than the corresponding operations on .NET. We
wished to retain this safety in our extensions to SML, and so interpret a value
of NET reference type as “non-null instance”.

Nevertheless, when a .NET field of reference type is accessed from SML or a
value of reference type is returned from an external method invoked by SML, it
may have the value null and this must be dealt with by the SML code. Also,
it should be possible to pass null values to .NET methods and to update .NET
fields with the null value. Fortunately the SML basis library already defines a
type that suits this purpose perfectly:

datatype ’a option = NONE | SOME of ’a

The valOf function (of type ’a option -> ’a) can be used to extract the
underlying value, raising Option when passed NONE.

We interpret values of .NET reference type that cross the border between
SML and .NET as values of an option type. For example, the method Join in
class System.String has the C* prototype:

public static string Join(string separator, string[] value);

This maps to an SML function with signature

val Join : string option*string option array option->string option

4.2.5 Interop types

We will use the term interop type for the types described in the previous sections
and new .NET types defined inside SML.NET code. Interop types can be used
in SML extensions such as casts, overloading, implicit coercions, and (with
additional restrictions) in exported structures.

A special case of an interop type is an interop input type. Input types
describe values that might be passed into SML.NET from external .NET classes,
and therefore must assume the possibility of null values for reference types.

To be precise, an interop type is one of the following:

1. A NET value type (primitive or struct).
Examples: int, System.DateTime.

4 LANGUAGE EXTENSIONS FOR .NET 21

2. A NET class, interface or delegate type defined externally or from within
SML.NET code by _classtype or _interfacetype (see Sections 4.8.1

and 4.8.3). Examples: string, System.IEnumerable, System.EventHandler.

3. An array whose element type is an interop input type. Examples: string
option array, System.DateTime array.

4. Possibly-null versions of either of the above. Examples: string option
array option, System.EventHandler option array option.

A type is an interop input type if it is one of (1) or (4) above.

4.3 Objects

4.3.1 Creating objects

In C¥, instances of a class are created using the syntax
new classCargy,. .., arg,)

where arg; are the arguments to one of the constructors defined by the class.
We avoid the need for any new syntax in SML.NET by binding the class
name itself to the constructor function. If there is more than one constructor,
then the binding is overloaded (see Section 4.4.3).
Constructors can be used as first-class values, and implicit coercions are
applied using the same rules as for methods (see below). For example:

val fonts =
map System.Drawing.Font [("Times", 10.0), ("Garamond", 12.0)]

4.3.2 Creating and invoking delegate objects ‘ samples\delegates‘

NET and Cf support a kind of first-class function called a delegate. A delegate
object is an instance of a named delegate type that wraps up a method and (in
the case of instance methods) its context. Delegate types are mapped to two
SML bindings: the type itself, just as with class types, and a function binding
for the delegate constructor, which takes an SML function as its only argument.
For example, suppose that the following delegate type was declared in C*:

public delegate int BinaryOp(int x, int y);

This is reflected as an SML type BinaryOp and a function with signature
val BinaryOp : ((int*int)->int) -> BinaryOp
used to construct delegate objects from SML functions. For example:

val adder = BinaryOp(op+)

To actually apply a delegate to some arguments, you simple use its (virtual)
Invoke method:

4 LANGUAGE EXTENSIONS FOR .NET 22

val 3 = adder.#Invoke(1,2)

Every delegate has an implicitly defined Invoke method (C* actually employs
syntactic sugar that calls this method under the hood).

Delegates are reference types with base class
System.MulticastDelegate. Thus they come equipped with a suite of meth-
ods, beyond the crucial Invoke method discussed here (see the NET documen-
tation).

4.3.3 Casts and cast patterns

A new syntax is introduced to denote Ct-style casts:

It can be used to cast an object up to a superclass:

open System.Drawing
val ¢ = SolidBrush(System.Color.get_Red()) :> Brush

Explicit coercions are sometimes required when passing .NET objects to SML
functions and constructors, as coercions are only applied implicitly when invok-
ing .NET methods.

The same syntax can also be used to cast an object down to a subclass,
with System.InvalidCastException thrown if the actual class of the object
is not compatible. A safer alternative that combines downcasting with C*’s is
construct is the use of :> inside SML patterns:

pat > ty

This can be used to provide a construct similar to type-case found in some
languages. For example, this code from demos\xq\Xmlinterop.sml switches
on the type of an XmlNode:

fun nodetoxmldata (n : XmlNode) =
case n of
elem :> XmlElement =>
let val SOME name = elem.#get_Name ()
val first = elem.#get_FirstChild()
val children = gather (first, [])
in SOME (Elem(name, List.mapPartial nodetoxmldata children))
end

| data :> XmlCharacterData =>
let val SOME s = data.#get_Data()
in SOME (C(stringtoscalar s))
end

| _ => NONE

The pattern id :> ty matches only when the examined expression has the class
type ty, in which case the identifier id is bound to the expression casted down
to type ty.

Cast patterns can be used like any other pattern. They can appear in val
bindings, as in

4 LANGUAGE EXTENSIONS FOR .NET 23

val x :> System.Windows.Forms.Window = y

to give an effect similar to downcasting in expressions but raising SML’s Bind
exception when the match fails. They can also be used in exception handlers,
such as

val result = (f y)
handle e :> System.Security.SecurityException => 0

in order to handle (and possibly deconstruct) NET exceptions. The order in
which handlers appear is important. In the example below, the exception type
DivideByZeroException is a subclass of
ArithmeticException so if the handlers were switched the second handler
would never be reached.

fun test x = (do_some_stuff x)
handle y :> ArithmeticException => f y
| _ :> DivideByZeroException => g x

Finally, the behaviour of C*’s e is c can be emulated by

case e of _ :> c => true | _ => false

4.4 Fields, methods and properties

Static (per-class) fields and methods are mapped to value and function bindings
in SML located in the structure corresponding to their class. For example, the PI
static field in the System.Math class, accessed from C* using System.Math.PI,
maps to a value binding for PI in the SML structure System.Math accessed
using the same syntax. Likewise, the Cos static method in the same class is
mapped to a value binding of Cos in the structure System.Math.

Non-static (instance) fields and methods are handled specially through new
syntax for field access and method invocation:

exp.#name

Here exp is an SML expression with a .NET object type, and name is the name
of an instance field or method.

Properties are really just C* syntactic sugar formalizing the commonplace
“get /set” design pattern. No special support is provided in SML.NET, so they
must be accessed through their underlying methods which have the names get_P
and set_P for a property called P.

We now describe how field and method types are mapped into SML.

4.4.1 Fields ’samples\fields‘

Immutable .NET fields (readonly and const in C¥) are given types as explained
in Section 4.2, using option to denote the possibility of null values for objects
or arrays. For example, a field declared in CF using

public static string language_name = "C#";

4 LANGUAGE EXTENSIONS FOR .NET 24

is interpreted as having type string option.
For the most part, mutable fields can be treated as if they had SML ref

types: they can be deferenced using ! and assigned to using :=. So fields
declared by
class C {

public static int counter; // static
public int size; // instance

}

can be used as if it is an SML reference cell whose contents have type int. For
example:

C.counter := !C.counter + 1
fun size (x:C) = !(x.#size)

In fact, mutable fields are given special types that are a generalization of
Standard ML’s ref type constructor (see Section 4.7.)

Every mutable field also gives rise to a type binding of the same name. You
should think of this as a new kind of SML reference type; in reality, it just
abbreviates a particular storage type describing this kind of field (see Section
4.7.)

val counterRef : C.counter = C.counter
val c : C= ...
val sizeRef : C.size = c.#size

4.4.2 Methods ’ samples\methods ‘

.NET method types are interpreted as follows. First, void methods are con-

sidered as having unit result type; similarly methods that take zero arguments

have unit argument type. Second, .NET supports multiple arguments directly

but SML does not, so methods with multiple arguments are given a single tuple

argument type. Finally, when arguments and results are objects or arrays, their

types are interpreted using the option type constructor as described earlier.
Consider the following method from class System.String:

public static string[] Split(char[] separator, int count);

Its type is interpreted as

val Split : char array option * int -> string option array option

and can be called using an ordinary function application:

fun split(c:char array,i:int) = valOf(System.String.Split(SOME c, i))

Here is an example of instance method invocation:

(* Create an object *)

val xmldoc = XmlDocument ()

(* Invoke an instance method on it *)
val _ = xmldoc.#Load(filename)

4 LANGUAGE EXTENSIONS FOR .NET 25

4.4.3 Overloading and implicit coercions ’samples\overloading

.NET permits the overloading of methods: the definition of multiple methods
with the same name within a single class. The methods are distinguished by
their argument types. Furthermore, C* and other languages support implicit
coercion of arguments in method invocations. The combination of these features
can lead to ambiguity, which C¥ resolves statically by picking the most specific
method with respect to an ordering on argument types, rejecting a program if
there is no unique such method.

SML.NET allows implicit coercions on method invocation using C*’s ref-
erence widening coercions together with an additional coercion from T to T
option for any .NET reference type 7. We do not allow C*’s numeric widening
coercions to be implicit as the ‘spirit of SML’ is to use explicit conversions such
as Int64.fromInt for these.

We do not allow ambiguity to be resolved by Cf-style most specific method
rules, as these interact unpleasantly with type inference: our intention is to
have typing rules and an inference algorithm such that a program is accepted
iff there is a unique resolution of all the method invocations (with respect to
the rules). Use of the ‘most specific’ rule during inference can lead to type
variables becoming bound, and hence ambiguities far from the point of the
rule’s application being resolved in unexpected ways.

4.5 Value Types ‘ samples\valuetypes

.NET provides support for an extensible set of unboxed, structured values called
value types (C¥’s structs). Consider the C* declaration of lightweight, integer
pairs:

public struct Pair {
public int x; /* mutable! */
public int y; /* mutable! */
/* constructor */
public Pair(int i,int j){x = 1i; y = j;2}
/* functional swap, returns a new pair */
public Pair swap(){return new Pair(y,x);}
/* destructive swap, modifies ‘this’ pair */
public void invert(){int t; t = x; x = y; y = t; return;}

Value types, like ordinary classes, can have fields and instance methods.
However, because value types are sealed (cannot be subclassed), they do not
need to be boxed on the heap (otherwise used to provide uniform representa-
tions); nor do they need to carry run-time type descriptors (used to support
checked downcasts and virtual method invocation). For the most part, you can
view instances of value types as structured primitive types. Indeed, primitive
type such as int are value types. Every value type derives from the base class
System.ValueType. Value types are passed by value, or copying semantics, not
by reference.

In SML.NET, you can use the same syntax for accessing fields and invoking
methods on a value of value type as for objects of reference types. So for a

4 LANGUAGE EXTENSIONS FOR .NET 26

pair p, p-#x, !(p.#x), p.#swap() are all legal. Method invocation works at
primitive types too, eg. 1.#ToString().

In SML.NET, invoking on a value type first copies the value, takes the ad-
dress of the copy and then passes this address as the “this” argument of the
method. Similary, accessing a mutable field of some value first copies that value.
This ensures that values are effectively immutable in SML.NET, a basic require-
ment for the implementation of a functional language. Thus p.#invert() has
no effect on the value of p, nor does let val r = p.#x in r := 1 end. The
expressions do have side-effects, but they cannot alter p.

Some value types do have mutable semantics, perhaps employing mutable
instance fields that are updated by instance methods. Our copying semantics
implies that these updates cannot be observed (since they mutate a tempo-
rary copy of the value, not the original value itself). To cater for such types,
SML.NET supports an alternative invocation semantics. In addition to invok-
ing directly on a value, SML.NET lets you invoke on any kind of SML.NET
reference to a value type. Thus, (ref p).#invert() and, more usefully,

let val r = ref (Pair(1,2)) in r.#invert();!r end,

which returns the modified value Pair(2,1), are both legal. This works as
expected for fields too:

let val r = ref (Pair(1,2)) in (r.#x) := 3;!r end

returns the modified value Pair(3,2).

This mechanism applies to all of the storage kinds of SML.NET (see Sec-
tion 4.7). By accessing fields or invoking methods on expressions of type
(ty,kind)reference, you can, if required, mutate: static fields of classes,
mutable instance fields of objects and value types and even arbitrary addresses.

4.5.1 Boxing and unboxing

.NET provides a uniform object model, allowing any value of value type to be
viewed at type object (and thus stored in collection classes, etc.). In detail,
every value type has a corresponding bozed representation of proper class type
System.ValueType and, by subtyping, System.Object.

Bozxing a value allocates a new, appropriately tagged, object on the heap
and copies that value into the object. In SML.NET, the boxed form of a
value type is obtained by an wupcast, eg. p:>System.0Object, to some suitable
CLR reference type. The supertype is typically System.0Object, but may be
System.ValueType. Boxing casts work for primitive types too, eg. 1:>object.

Unbozing an object extracts a value from a heap allocated object (but re-
quires a dynamic type check). In SML.NET this is achieved by a downcast from
some object type to a value type. For instance, for obj : System.Object, the
expressions obj:>Pair and obj:> int unbox the underlying value, returning a
value. Note that, like any other downcast, these involve a dynamic test and can
fail, raising System.InvalidCastException.

4.5.2 Null values

In SML.NET, every non-primitive value type has an implictly defined null
value, bound in the structure of that same name (eq. Pair.null is equivalent to

4 LANGUAGE EXTENSIONS FOR .NET 27

Pair(0,0)); The null value is provided in case the value type has no associated
.NET constructor: it can be used to initialise a reference prior to setting up its
state. For example:

let val r = ref Pair.null
in
(r.#x)
(r.#y)

'r

1;
2;

end

returns the value Pair(1,2), but without calling a constructor.

4.6 Enumeration Types

In .NET, an enumeration type is a distinct value type, declared with a set of
named constants of that type. Every enumeration derives from proper class type
System.Enum. Each enumeration type has an underlying (signed or unsigned)
integral type, equivalent to one of the SML.NET types IntN.int or WordN.word
for N € {8,16,32,64}.

In SML.NET, a .NET enumeration type is imported as a pseudo datatype of
the same name. The datatype has a single, unary constructor, named after the
type, that constructs an enum from a value of the underlying type. The named
constants of the enumeration are imported as equivalently named constant con-
structors, abbreviating particular applications of the proper constructor. The
derived constructors are bound in a separate structure, named after the enu-
meration type. The proper constructor and its derived constant constructors
can be used in patterns as well as expressions.

For example, values of the C* enumeration type:

public enum MyEnum { A , B, C= A}

may be manipulated in SML.NET as follows:

type enum = MyEnum
fun fromInt i = MyEnum i
fun toInt (MyEnum i) = i

fromString "B" = MyEnum.B
fromString "C" = MyEnum.C
fromString s = MyEnum (valOf (Int.fromString s))

fun toString MyEnum.A = "A"
| toString MyEnum.B = "B"
| toString MyEnum.C = "C" (* this case is redundant ! *)
| toString (MyEnum i) = Int.toString i
fun fromString "A" = MyEnum.A
|
[
|

Whether in a pattern or expression, the constructor MyEnum. A is completely
equivalent to writing MyEnum O instead.

Enumerations, like other primitive types, are also value types: their values
can be cast to and from System.Enum, System.ValueType and
System.0Object, and can also have methods invoked on them.

4 LANGUAGE EXTENSIONS FOR .NET 28

Note that, in .NET, the constants defined for an enumeration type are not
necessarily exhaustive of the possible range of values, nor are they required to
name distinct values. This feature distinguishes .NET enumeration types from
the familiar SML pattern of defining an n-valued enumeration by declaring a
datatype with n distinct, constant constructors.

4.7 Storage Types ’ samples\references

Standard ML has a minimalist type system that supports only one kind of
mutable storage cell, ty ref, with the following interface:

type ty ref

val ref : ty -> ty ref

val ! : ty ref > ty

val := ¢ (ty ref * ty) —-> unit

Operationally, the expression ref exp evaluates exp of type ty to some value v,
allocates a new object containing a single field storing v on the heap and returns
a handle to that object of type ty ref; ! and := read and write the contents of
the field. References have identity and may be tested for equality using SML’s
equality predicate = :(’’a * ’’a) -> bool.

SML.NET compiles values of type ty ref to an instance of a private class
with a single mutable instance field of type ty. However, the CLR provides
a much wider range of mutable structures: static fields of classes, instance
fields of heap allocated multi-field objects and instance fields of stack allocated
value types. The CLR even provides a general address type to support call-by-
reference parameter passing (Cﬁ’s ref and out parameters). For interoperation
with .NET libraries, SML.NET has to support these kinds of storage as well.

In SML.NET, all of these types are described as particular instantiations of a
more general type constructor, (ty,kind) reference. Unlike SML’s ref type
constructor, this type constructor takes two type parameters. The first simply
describes the type of the value stored in the cell. The second parameter is a
pseudo (or phantom) type that identifies the particular kind of storage cell. The
kind of a storage cell describes its physical representation and thus the precise
runtime instructions needed to implement reads and writes.

The advantage of introducing a parametric notion of storage cell, indexed
by kind, is that it allows SML.NET to treat ! and := as generic operations,
polymorphic, as in ML, in the contents of a storage cell but also polymorphic
in the physical representation of that cell. To achieve this, we generalise the
Standard ML types of these operations to the following kind-polymorphic types
in SML.NET:

val ! : (ty,kind) reference -> ty
val := : ((ty,kind) reference * ty) -> unit

In practice, this means that you can use the same familiar notation (! and
:=) to manipulate all kinds of storage cells, even though they compile to rather
different runtime instructions.

4.7.1 Storage kinds

The kind parameter of a storage cell of type (ty,kind) reference can take
one of the following forms:

4 LANGUAGE EXTENSIONS FOR .NET 29

heap: used for ordinary Standard ML references, this kind describes a single-
field, ML allocated object. Standard ML’s primitive ty ref type con-
structor is defined as an abbreviation for the SML.NET reference type:

type ty ref = (ty,heap) reference

Thus Standard ML’s ref function, that allocates a new ref cell, actually
has type:

val ref ty -> ty ref
= ty -> (ty,heap) reference

(classty, fieldname)static: used for a static field, this kind describes a sta-
tic field by the name of the class and the name of the field.

(classty, fieldname)field: used for an instance field, this kind describes the
superclass of the object classty in which the field fieldname is defined
(the sort of the class is enough to identify whether this is a field of heap
allocated .NET object or a field of a .NET value type (C# “struct” type).

address: used to describe the address of a storage cell. An address can point to
the interior of an ML ref, to a static field, a stack-allocated local variable
(e.g. from C¥), an instance field of a heap allocated object or an inlined
value type. Addresses are an abstraction of all of the above storage types.

Bear in mind that storage cells of different kinds have distinct types and are
thus not type compatible, e.g. it is a static type error to create a list containing
both an integer heap reference and an integer static field reference (because the
kinds of the references are not unifiable).

Address kinds are used to describe the type of C* call-by-reference ref and
out parameters, and typically occur in the (argument) types of imported meth-
ods. Because an address can refer to a value on the stack, whose lifetime is
limited to that of its enclosing stack frame, values of address type and instance
fields of value types are subject to certain data-flow restrictions, described in
detail in Section 4.7.3.

4.7.2 Address operators (&)

It is possible to take the address of any kind of storage cell (including another
address reference) using the SML.NET primitives:

type ty & = (ty,address) reference
val & : (ty,kind) reference -> ty &
= (ty,kind) reference -> (ty,address) reference

The & function allows you to pass any kind of SML.NET storage cell (including
an SML ref) to a C* method expecting a call-by-reference parameter (marked
as ref or out in C*) by taking, and then passing, the address of that cell.

For instance, given the C* swap function:

public static void swap(ref int i, ref int j){
int temp = i; i = j; j = temp; return;

}

4 LANGUAGE EXTENSIONS FOR .NET 30

which is imported with SML.NET type:

val swap : int & * int & -> unit

Then we can swap the contents of two (ML) references as follows:

val (ra,rb) = (ref 2,ref 3)
val _ = swap(& ra,& rb)
val (ref 3,ref 2) = (ra,rb)

Operationally, taking the address of a storage cell returns the address of the
particular field storing its contents; taking the address of an address is simply
the identity.

4.7.3 Byref types

The various kinds of storage in SML.NET fall into two categories: storage cells
whose representations are first-class values of the CLR and storage cells whose
representations are second-class CLR addresses. References of kind address
and, less obviously,
(classty, fieldname)field, where classty is a value type (not a proper class
type), belong to this second category. In SML.NET, these are collectively called
byref types.

In the CLR, an address can, amongst other things, be the address of a value
allocated on the call-stack (e.g. an imported address of Cf local variable), or
the address of a field of a value on the stack (e.g. an imported address of a
field of a Cf local variable). Such an address is only valid for the lifetime of
the stack frame from which it was taken. To prevent such ephemeral addresses
from being read or written outside their lifetime (when they are unsafe dangling
pointers), the CLR imposes restrictions on values of address type: they cannot
be stored in static fields or instance fields of CLR values or objects *. Because
SML.NET’s byref storage types compile to CLR addresses, which must obey
the CLR’s rules, byref values and types can only be used in limited ways. In
detail, SML.NET imposes the following restrictions:

e A value of byref type must not occur as a free variable of any function or
class declared within its scope (this includes anonymous functions).

A byref type cannot be used as the argument type of a datatype or ex-
ception constructor.

A tuple (or record) cannot contain a field of byref type, unless that tuple
is the immediate argument to a method or constructor.

A structure expression may not export a value of byref type.

A function may take a value of byref type as an argument, but not a tuple
containing a component of byref type.

e A method may take a single byref as an argument, and may also take a
tuple containing a component of byref type.

4Aside from these restrictions, addresses can be passed to other methods, supporting
Pascal-style call-by-reference passing of local variables.

4 LANGUAGE EXTENSIONS FOR .NET 31

A function or method may not return values of byref type.

e When matching a structure to a signature, the implementation of any
opaque type in that signature may not be a byref type.

e A byref type may not be used as the type of an argument to an SML.NET
class constructor or as the type of any value bound in the optional local
declaration of an SML.NET class declaration. This restriction will be
lifted in a later release of the SML.NET compiler.

e Finally, to ensure the above properties are preserved by SML’s type in-
stantiation of polymorphic values and parameterised type constructors,
type arguments, whether explicit or inferred, cannot be byref types, nor
may they be kinds describing byref types. Exceptions to this rule: !, :=
and & (which are known to be safe) may be instantiated at kinds describing
byrefs. °

4.8 Defining new .NET types

4.8.1 Class declarations ’samples\classtype

The mechanisms described so far give the SML programmer access to .NET
libraries, but they do not support the creation of new class libraries, nor do
they allow for the specialisation of existing .NET classes with new methods
coded in SML. For this we introduce a new construct whose syntax is shown
below.

dec := _classtype ({attributes;})(Lemod] ({attributess}))
class-name pat (: superdecs)
with (local dec in) (methoddecs) end

superdec := ty | ty exp
superdecs ::= superdec | superdec , superdecs
methoddec ::= ({attributes}){ [mmod]) method-name pat = exp
| ({attributes})([mmod])method-name : ty
methoddecs ::= methoddec | methoddec and methoddecs

This introduces a new class type class-name defined by the following ele-
ments:

e The optional, and typically absent, attributes; and attributess list any
class or constructor attributes (see Section 4.9). °

e The optional class modifier in ¢cmod can be abstract or sealed and has
the same meaning as in C*.

5In SML.NET, the values !, := and & should not be rebound by the user, but this is
currently not enforced by the compiler.

6You must explicitly write a (possibly) empty [cmod] phrase to indicate any constructor
attributes; this avoids ambiguities in the grammar.

4 LANGUAGE EXTENSIONS FOR .NET 32

e The expression class-name pat acts as a ‘constructor header’, with pat
specifying the formal argument (or tuple of arguments) to the constructor.
Any variables bound in pat are available throughout the remainder of the
class type construct.

Unlike C*, multiple constructors are not supported; a future enhancement
might allow additional constructors to be expressed as invocations of a
‘principal’ constructor.

e The optional superdecs specifies the superclass that class-name extends
and any interfaces that it implements. The superclass clause (which must
occur first, if at all) contains an argument (or tuple of arguments) exp
to pass to the superclass (ty) constructor. If absent, this defaults to
System.0Object (). The remaining types in a superdecs clause must be
(distinct) interfaces.

e dec is a set of SML declarations that are local to a single instance of the
class.

e The optional methoddecs is a simultaneous binding of instance method
declarations, defined using a syntax similar to that of ordinary functions,
but with optional qualifiers final and protected preceding the method
identifiers. An abstract method is declared by omitting is implementation,
but declaring its type. An abstract method may have an optional, explicit
abstract qualifier. Note that methods may have attributes and that
abstract methods must have function types.

The class definition is bound within its own body, allowing recursive ref-
erences via this; the methods of a class can have types that mention the
class type itself. 7

In keeping with tradition, and to demonstrate that classes are usable in SML.NET
without reference to .NET libraries, Figure 1 presents a variation on the classic
coloured-point example.

Notice the absence of any direct support for field declarations. Instead, the
declarations following local are evaluated when a class instance is created but
are accessible from the method declarations for the lifetime of the object. In
this example we have mimicked private mutable fields using ref bindings (x
and y), with initial values provided by arguments to the constructor (xinit
and yinit). The methods, which may be mutually recursive (as suggested
by the and separator), can refer both to these arguments and to the bindings
introduced by local.

The ColouredPoint class derives from the Point class, passing two of its
constructor arguments straight on to its superclass constructor. It has no local
declarations and a new method that simply returns its colour.

Because the declarations are local to the class instance, it is not possible to
gain access to the corresponding declarations for other instances of the class. In
C*¥, private fields for other instances can be accessed directly, for example, to
implement an equals method. In SML.NET, this can be emulated by providing
appropriate ‘get’ and ‘set’ methods for the fields.

"Direct mutual recursion between class declarations is not yet supported in this release,
but can be simulated using forward declarations of abstract classes.

4 LANGUAGE EXTENSIONS FOR .NET 33

structure PointStr =
struct
_classtype Point(xinit, yinit)
with local
val x = ref xinit
val y = ref yinit

in
getX O = !x
and getY () = !y
and move (xinc,yinc) = (x := !x+xinc; y := ly+yinc)

and moveHoriz xinc = this.#move (xinc, 0)
and moveVert yinc = this.#move (0, yinc)
end

_classtype ColouredPoint(x, y, c¢) : Point(x, y)
with
getColour () = c : System.Drawing.Color
and move (xinc, yinc) = this.##move (xinc*2, yinc*2)
end
end

Figure 1: Coloured points in SML.NET

The special identifier this has the same meaning as in C, referring to the
object on which a method was invoked. It is used in Point to define horizontal
and vertical movement using the more general move method.

The C* language provides a syntax (base) which allows a method overridden
by a subclass to invoke the method that it is overriding. Instead, we provide a
syntax

exp . ##method-name ‘

that can be used only within a class definition on objects of that same class,
and means “invoke method method-name in the superclass, ignoring any over-
riding of the method in the current class”. It is used in ColouredPoint to
redefine move using the move method defined in Point, making coloured points
“faster movers” than plain points. By the magic of virtual method dispatch, the
moveHoriz and moveVert inherited by coloured points also inherit this speed
increase.

As mentioned in Section 4.4.3, .NET allows overloading of methods. We
support this in _classtype declarations in order to extend existing .NET classes
that include overloaded methods. No special syntax is required: the method
name is simply repeated in separate declarations, as in the example below:

_classtype C ()
with
m(x:int) = ...process ints...
and m(x:string option) = ...process Strings...
end

4 LANGUAGE EXTENSIONS FOR .NET 34

functor Wrapper(type T) =
struct

_classtype W(x : T)

with

get() = x

end

fun wrap (x : T)

fun unwrap (w : W)
end

W(x)
w.#get ()

structure IntListWrapper = Wrapper(type T = int list)
structure IntFunWrapper = Wrapper(type T = int->int)

Figure 2: Using functors

4.8.2 Class types and functors ’samples\classfunctor

At present, the CLR does not support parametric polymorphism. We therefore
restrict the types of methods in classes to be monomorphic. However, using
SML’s functor construct, it is still possible to parameterise classes on types and
values. Figure 2 gives an example.

When applied to a particular type T, the functor provides a new class type
W and functions wrap and unwrap that convert values between T and W. The
class types IntListWrapper.W and IntFunWrapper.W can then be used to pass
around objects that wrap up SML values of type int list and int->int. (If
one wished to use these wrapper classes to, for example, store SML values in
.NET collections, one would also have to include a hash function and equality
test in the class.)

4.8.3 Interface declarations ’samples\interfaces

SML.NET users may declare their own interface types. The syntax of interface
declarations is similar to that of classtype declarations, but more restricted.
An interface type must have no constructor, no local declarations, no superdec
declaring a superclass and base constructor, and no concrete method implemen-
tations:

dec := _interfacetype ({attributes})
interface-name(: superdecs)
with (methoddecs) end

superdec ::== ty
superdecs ::= superdec | superdec , superdecs
methoddec == ({attributes})({ [mmod] ymethod-name : ty
methoddecs ::= methoddec | methoddec and methoddecs

The methods of an interface type, but not its super declarations, may make
recursive references to that interface type. ©

8Direct mutual recursion between interface declarations is not yet supported in this release,
but it can be simulated using forward declarations of interfaces.

4 LANGUAGE EXTENSIONS FOR .NET 35

4.8.4 Delegate declarations ’ samples\delegates

SML.NET users may declare their own delegate types. The syntax of delegate
declarations uses a concise form of classtype declaration:

dec :== _classtype ({attributes})
delegate-name of ty

e The optional, and typically absent, attributes lists any class attributes (see
Section 4.9).

e The type argument ty of a delegate must be an SML function type.

A delegate declaration declares the type delegate-name; the delegate con-
structor delegate-name of (higher-order) type ty -> classname; and implicitly
declares an Invoke instance method of the (function) type ty.

For example, the Binary0Op delegate class of Section 4.3.2 may be declared
within SML.NET as:

_classtype BinaryOp of (int*int)->int

This simultaneously declares the type constructor BinaryOp, the (higher-
order) class constructor val BinaryOp: ((int*int) -> int) -> BinaryOp
and the implicit Invoke method of type (int*int)-> int.

Unlike ordinary SML function types, delegates can be exported in the sense
of Section 4.10, providing a rudimentary way of inter-operating at the level of
first-class functions.

4.9 Custom Attributes ’ samples\attributes

SML.NET, like C¥, enables programmers to use and declare new forms of cus-
tom meta-data using attribute classes. Programmers can annotate SML.NET
code with instances of attribute classes, whether these classes were imported
or declared within SML.NET itself. These attribute values may be retrieved at
run-time using reflection.

The standard example is that a framework might define a
HelpAttribute attribute class that can be placed on certain program elements
(such as classes and methods) to provide documentation displayed in meta-data
aware class browsers.

Here’s a simple attribute class defined in C*.

public class CSharpAttribute : System.Attribute {
public CSharpAttribute(){}
public string Property {... set{...};}
public string Field = null;

};

In SML.NET, a new attribute class is defined by declaring a class that ex-
tends System.Attribute, eg:

4 LANGUAGE EXTENSIONS FOR .NET 36

_classtype MLAttribute(s:string option):System.Attribute()
with ToString () = s end;

Attributes can be attached to certain, but by no means all, declarations in
an SML.NET program using attribute expressions.

An SML.NET attribute expression is an essentially static description of the
data required to construct the corresponding instance of the attribute class when
demanded to do so by reflection. Syntactically, an attribute expression is simply
an application of an instance constructor of some attribute class to an n-tuple
of constant arguments (n > 0). For instance, we might annotate another class,
MLClass (), as follows:

_classtype {MLAttribute("this is a class attribute"),
MLAttribute("this is another class attribute")}
[J {MLAttribute("this is a constructor attribute")}
MLClass ()
with
{MLAttribute("this is a method attribute")} method () = ()
end

An attribute expression may be further modified by a sequence of (mutable)
field and property initialisers, again supplied with constant values. The initialis-
ers are executed in order, just after the instance is constructed by reflection.

For instance, attribute instances of the above CSharpAttribute type may
be qualified as follows:

CSharpAttribute() where Field = SOME "field-value" end,
CSharpAttribute() where Property(SOME "property-value") end,
CSharpAttribute() where
Field = SOME "field-value",
Property(SOME "property-value")
end,
(*NB: in named arguments, we use the name of the property,
not the name of the set method *)

Ignoring any type annotations used to resolve overloading, constant values
must be literals or values immediately constructed from literals, of the follow-
ing SML.NET types’: string (and string option), char, bool, Word8.word,
Int16.int, int, Int64.int, Real32.real, real, any imported enumeration
type, or System. Type'’

The precise grammar of attribute expressions is given below:

attributes := {(attexpseq)}
atterp := exp (where namedargs end)
attexpseq := attexp | attexp , attexpseq
namedarg := fieldname = exp | propertyname exp
namedargs ::= namedarg | namedarg , namedargs

9The supported attribute argument types are the ones required by the CLS (.NET’s Com-
mon Language Subset).
10system. Type arguments are not supported in this release.

4 LANGUAGE EXTENSIONS FOR .NET 37

Imported attribute classes will typically have named as well as positional
parameters but attribute classes declared in SML.NET can only ever have po-
sitional parameters, corresponding to the arguments of the (sole) class con-
structor. This is simply a consequence of our design: SML.NET’s _classtype
declarations cannot explicitly declare named fields or properties.

In the current release, attribute expressions may only be placed on classes,
class constructors, methods, interfaces, interface methods, delegate classes and
delegate constructors. C* provides rather more places for attributes, most no-
tably assembly and parameter attributes; if there is sufficient demand, we may
extend SML.NET’s coverage further.

PITFALL: C! assumes all attribute class names have the suffix Attribute
and allows the programmer to omit the suffix from attribute expressions; In
SML.NET, we make no such assumption, but require the full name of the at-
tribute class in attribute expressions.

4.10 Exporting structures

By default, all SML.NET declarations are private to the generated executable
or DLL. In order to make declarations available outside — even simply to expose
an entry point — it is necessary to export selected top-level structures using the
compiler’s export command.

In the current version of the compiler it is only possible to export structures
whose signature can be mapped directly back to .NET types. The following
rules are applied for export:

e Top-level SML structures are exported as .NET classes, possibly in some
namespace if specified by the export command.

e Value bindings with function type are exported as static methods. A
function type is exportable if

— Its result type is an exportable type.

— Its argument type is either unit, an exportable input type, or a tuple
of exportable input types. An argument type, or tuple component,
may also be the address of an exportable input type (akin to C*’s
ref and out parameters).

e Value bindings with exportable types are exported as static read-only
fields.

e (lass, interface and delegate type declarations are exported as .NET
(nested) classes, if:

— The type of the constructor argument is either unit, an exportable
input type, or a tuple of exportable input types (as for functions).

— The methods all have exportable types (as for functions).

e A type is an exportable type if it is an interop type (see Section 4.2.5)
that does make not use of non-exported class, interface or delegate types.
A type is an exportable input type if it is an interop input type (see Sec-
tion 4.2.5) that does not make use of non-exported class, interface or
delegate types.

5 VISUAL STUDIO .NET SUPPORT 38

e All other bindings are non-exportable.
Here is a contrived example:

structure S = struct
_classtype Counter(init) with
local val privateRef = ref init
in
current () = !privateRef
and setToCurrent (i:int &) = i := (!privateRef)
end
val x = 5
val y = "I’'m a string"
val ¢ = Counter(5)
fun f(x) = x+1
fun prnl(x) = case x of NONE => () | SOME s => print (s ~ "\n")
end

This will be exported as a .NET class S with the following C* pseudo-signature:

public sealed class S {
public class Counter {
public Counter(int init);
public virtual int current();
public virtual void setToCurrent(ref int i);
}
public static readonly int x;
public static readonly string y;
public static readonly C c;
public static int f(int x);
public static void prln(string x);

A future release of SML.NET will support the export of arbitrarily nested
structures, merging classes and substructures with equivalent names on export.
This will provide a convenient way to define classes with both instance and
static methods, thus mirroring the semantics of class import.

5 Visual Studio .NET Support

Depending on your choice of download, your distribution may include an exper-
imental Visual Studio .NET package for SML.NET. This package extends the
Visual Studio Development Environment with SML specific editor and project
support. Installation of this package is optional and at your own risk.

The SML editor provides code colouring, bracket matching, syntax checking,
Intellisense on both .NET and SML.NET libraries and even interactive type
inference ''. An SML.NET project is just a C++ Makefile project that invokes
the SML.NET batch compiler. It can participate in Visual Studio multi-project
solutions. The package includes simple wizards for creating new SML.NET
projects and project items. As usual, a project may be built in a Debug or

L All implemented in a pure SML.NET, masquerading as a classic COM component.

5 VISUAL STUDIO .NET SUPPORT 39

Release configuration. Debug executables may be run under the Visual Studio
source code debugger. Although by no means perfect, the debug experience has
improved substantially over SML.NET 1.1 and is worth another visit.

5.1 Licence

The Visual Studio package is Copyright (©2002-2003 Microsoft Research Ltd.
and is covered by a separate licence in file MSR-EULA. Please take the time to
read the licence before installing the package.

5.2 Requirements

The package requies the .NET Framework 1.0 or 1.1 (1.1 is recommended for
debugging), and an edition of Visual Studio .NET 2002, 2003 or 2005 (other-
wise known as versions 7.0, 7.1 and 8.0) that includes C++ support, such as
Professional or Academic editions. The Express editions of Visual Studio .NET
2005 are, unfortunately, not suitable.

5.3 Installation

To install SML.NET for Visual Studio, simply run the executable install.exe
included in the distribution. By default, it installs the SML.NET support,
using the highest version of the CLR, for the highest version of VS currently
installed on your machine. Run install /help for more options that allow
you to override the inferred defaults. To uninstall, run uninstall.bat or just
install.exe /u.

5.4 Working In Visual Studio

This section is a very brief guide to working with SML.NET projects in Visual
Studio .NET.

5.4.1 Opening an existing Project

The distribution comes with a sample Visual Studio Solution. This is a graphi-
cal, multi-language Game Of Life application: the user interface is written in Cf
(project Client producing executable Client.exe) but the Game Of Life algo-
rithm is written in SML.NET (project Server producing library Server.dl1l).

Start VS and open the sample solution file Life2002.sln,
Life2003.sln, or Life2005.sln (as appropriate for your version of VS) from
the directory vs\demo\Life in your distribution. You should be able to com-
pile the solution out of the box, choose Build—Solution. To run the solution,
you may need to first manually set the startup project to be the C# Client
project (For some reason, VS sometimes assumes that the startup project is
the Server library, but this is a .d11 and cannot be run). One way to set the
startup project: in the Solution Explorer Window, right-click on the Client
and select Set as Startup Project. Now choose Debug—Start to run the
application. You should see a small Life application window appear; in the
application, select File—Go to start the animation.

After running the project, try editing file Server.sml in the Server sources.
The SML code should appear in colour in the editor window. If not, something

5 VISUAL STUDIO .NET SUPPORT 40

went wrong with your installation. Edit the code; any syntax errors will be
underlined with red squigglies (and displayed in the Task List). After you have
have built the project at least once, you will be able to use Intellisense on SML
identifiers, see type and build errors in the Task List window, set breakpoints
in the margin of source code, etc. Note that Intellisense will only work if the
source file participated in the most recent build. Also, Intellisense will only
work against libraries referenced in the most recent build.

The file Server.sml contains some comments suggesting things to try in the
Visual Studio editor. See the Visual Studio Documentation for more details on
using the Visual Studio Editor.

5.4.2 Creating a new Project

Start Visual Studio .NET. Choose File—New—Project In the New
Project dialog box, supply a name and location for your new project. In the
Project Types pane, open the folder SML.NET Projects. In the Tem-
plates pane, double-click on the SML.NET Application icon. (The other
icon selects a library, or .d11, project). This should create the new project.

Now select View—Solution Explorer You should see a new tab with an
SML.NET project (the icon actually says it is a C++ project, but never mind).
Click on the name.sml file in the Solution Explorer tab. If it appears in the
editor with coloured syntax, all is well.

You can now build (Build—Build Project) and run (Debug—Start) the
project. When run, the skeleton application does nothing but exit.

New source files may be added to the project by choosing
Project—Add New Item ..., providing a name for the file, expanding the
Visual C++ tree'?, selecting the SMIL.NET subtree, and then selecting the
appropriate SML Template.

Every new project includes an SML.NET script, script.smlnet, as a project
item. This script is passed to the batch compiler in both debug and release builds
and should be used to set any additional compiler options, like referencing ad-
ditional assemblies, including additional SML source directories, etc.

For example, to reference the assemblies in files filenamey, ..., filename,,
add the following line to script.smlnet:
reference filename; ,..., filename,

(Under VS2003 and higher, the project tree will also contain a References
node, but it is completely ignored by SML.NET and should not be used to
reference assemblies.)

To include additional SML source in directories dirnamey, ..., dirname,
add the following line to file script.smlnet:
source dirnamey ,..., dirname,

Each project also includes with a README.html file with some hints and
handy links to the online SML Basis documentation (which you can browse
within VS) and the online SML.NET manual (also included in the distribution).

Note that you can easily customize the project Build, Rebuild and Clean
actions by editing the project’s properties; select the NMake property subtree
and edit the NMake command line properties.

12SML.NET projects masquerade as C+-+ makefile projects.

5 VISUAL STUDIO .NET SUPPORT 41

5.4.3 Debugging

SML.NET is able to produce symbolic debug information for use by the Vi-
sual Studio Debugger (and other CLR debuggers such as the free source code
debugger available in the NET SDK).

For some entertainment, open a Life solution, select the Debug configura-
tion (Build—Configuration Manager ... —Debug), and build the solution
again (see Section 5.4.1). Now set a breakpoint by clicking the grey margin in
some SML file (some good locations are marked (*BREAK#) in file Server.sml).
Run the application by choosing Debug—Start. After selecting File—Go,
the application should break into the VS source code debugger. The call stack
will probably contain a mixture of C§ and SML.NET stack frames. Clicking
on stack frames will take you to the relevant source code. You can even step
through the program, including stepping through SML.NET source code and
inspecting SML.NET bindings (in their raw, compiled form) on the stack.

Although the situation has improved, the SML.NET compiler does not al-
ways produce enough debug information: control flow, data representations,
identifier names and source locations are frequently altered or obscured by the
various optimisations in the compiler. Even so, the information that does remain
can still be useful in tracking down bugs.

From version 1.2 of the compiler, bindings in the Locals window now enter
and exit scope appropriately. The values of (truncated) sub-expressions, not
just identifiers, may be reported as locals in the Locals window, provided you
rebuild your sources with compiler option on debug.symFromLoc (this is off by
default).

In debug builds, constructed values now have a symbolic tag field derived
from the constructor name. SML.NET stack frames displayed in the Call Stack
will mostly have meaningful, not mangled, source names.

As a convenience, values of heap-allocated SML types (such as tuples, records
and non-flat datatypes) now support additional diagnostic ToString() and
ToString(int depth) virtual methods that can be invoked in the VS Im-
mediate window to inspect their values at runtime (these methods cannot be
called from SML.NET source code.)

Building in a Debug configuration is equivalent to setting the debug flag of
the command-line SML.NET compiler.

WARNING: Debug configurations inhibit many SML.NET optimisations and
produce considerably worse compiled code than Release configurations.
NOTE: Your debug experience is affected by the IL assembler used by your
installation of SML.NET (see Section 3.17 for more details).

5.5 Customizing the Package Installer

The package installer may fail because it cannot locate a tool it requires, so we
have included its SML.NET source code. Should you need to fix the installer,
the code resides in vs\install.sml and vs\RegTools.sml, with build script
vs\install.smlnet. After editing the installer, you can rebuild it as follows.

cd vs;..\bin\smlnet @install.smlnet

Note the installer’s executable is placed in the root directory of the distrib-
ution (not in vs). The installer must reside in this directory to work correctly,

A LANGUAGE RESTRICTIONS 42

as it uses its own location to infer the location of the compiler binaries.

A Language restrictions

A.1 Overflow

The Standard ML Basis library requires certain arithmetic operations to raise
an Overflow exception when the result is not representable (e.g. Int.+, Int.*).
A correct implementation in CLR of these Basis operations would have a perfor-
mance unacceptable in most applications, so it was decided to diverge from the
standard and to raise no exception. If there is sufficient interest, a future release
may include a special version of the Basis in which Overflow is raised. Even
so, this would probably best be used to track down bugs (for instance, turning
an infinite loop into an uncaught exception) and not relied on for production
code.

A.2 Non-uniform datatypes

The SML.NET compiler imposes the restriction that occurrences of parame-
terised datatypes within their own definition are applied to the same type ar-
guments as the definition. In any case datatypes such as

datatype ’a Weird = Empty | Weird of (’ax’a) Weird

are of limited use in the absence of polymorphic recursion.
This restriction will be lifted in a future release of the compiler.

A.3 Value restriction

The definition of SML ’97 specifies that the types of variables in bindings of the
form

val pat = exp

are generalised to allow polymorphism only when ezp is a syntactic value (non-
expansive expression [2, Section 4.7]). SML.NET makes the further restriction
that generalisation can only occur if pat is non-refutable, that is, a match will
always succeed and not raise the Bind exception. (An example of a refutable
binding is val [x] = nil::nil). This restriction is also applied by SML/NJ
version 110 xand it can be argued that it is an omission from the Definition.

SML.NET also prevents generalisation when pat contains ref patterns. This
second restriction will be lifted in a future release.

A.4 Overloading

SML.NET resolves default types for overloaded constants and operators at each
val or fun binding. This is a smaller context than that used by other imple-
mentations but is permitted by the Definition [2, Appendix E]. The following
typechecks under SML/NJ and Moscow ML but not under SML.NET because
x is assumed to have the default type int at the binding of sqr.

B THE STANDARD ML BASIS LIBRARY 43

fun g (x,y) =
let

fun sqr x = x*x
in

sqr (x+2.0) + vy
end

For maximum compatibility with other implementations a future version of
SML.NET will use the largest context permitted.

B The Standard ML Basis Library

A large part of the Standard ML Basis Library is implemented. Online docu-
mentation for the basis library may be found at http://www.standardml.org/
Basis/index.html.

Table 2 lists the structures that exist with omissions and discrepancies de-
tailed (to appear).

C Support for ML-Lex, ML-Yacc and SML/NJ
Libraries

Many people have asked about using SML.NET with some of the extra tools
and libraries which come with SML/NJ. This is usually not hard, but does
involve a certain amount of work writing .smlnet scripts to define entity map-
pings. To avoid everybody having to do this independently, we have included
SML.NETified versions of some of the most popular.

The distribution comes with SML.NET versions of the parser generator tools
ML-Lex and ML-Yacc. The support libraries for ML-Yacc are in directory
smlnet\1lib\parsing and if you wish to incorporate code which has been gener-
ated by ML-Yacc into your project you simply have to place this directory on the
SML.NET source path and execute the smlnet\lib\parsing\sources.smlnet
script to map the required module names to the files in this directory (see the
xq demo for an example of how to do this). The ML-Lex and ML-Yacc tools
themselves can be found in the demos directory, though if you already have
the SML/NJ versions, there’s no particular advantage in running the .NET
executable versions.

Separately, the smlnet\1ib\smlnj-1ib.smlnet script predefines a mapping
from module names to file names that lets you easily use some of the SML/NJ
utility libraries (typically under sml\src\smlnj-1ib\Util, but the precise lo-
cation depends on your SML/NJ installation). This mapping is incomplete in
the current release.

References

[1] E. R. Gansner and J. H. Reppy, editors. The Standard ML Basis Library
reference manual. Cambridge University Press, to appear. In preparation,
online reference available at
http://www.standardml.org/Basis/index.html.

http://www.standardml.org/Basis/index.html
http://www.standardml.org/Basis/index.html

REFERENCES

44

Structure Omissions and discrepancies

top-level no use

Array none

BinIO no getPos*, setPos*, no functional I/O
Bool none

BoolVector,BoolArray
Char=WideChar
CharVector=WideCharVector
CharArray=WideCharArray
CommandLine

Date

General

IEEEReal

Int=Int32

Int8, Int16
FixedInt=LargeInt=Int64
Int{N}Vector,Int{N }Array
I0

List

ListPair

Math

Option

0S

0S.FileSys

0S.Path

0S.Process
Real=Real64=LargeReal
RealVector,RealArray
String=WideString
Substring=WideSubstring
TextIO

Time

Timer

Vector

Word=Word32

Word8, Word16
LargeWord=Word64

Word{N }Vector Word{N }Array

none
Char .max0rd = 65535

none

none

none

none

extended with & type and operation
setRoundingMode only accepts TO_NEAREST
~, %, +, -, div, quot, abs don’t raise Overflow
as above

as above

none

none

none

none

none

none

none

tmpName creates a file, no access with A_EXEC
none

system doesn’t do console I/0

no fromDecimal, toDecimal

none

none

none

no getPos®*, setPos*, no functional I/0
none

only wall-clock time is measured

none

none

none

none

none

Table 2: Basis structures implemented in SML.NET

REFERENCES 45

[2] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Stan-
dard ML (Revised). MIT Press, Cambridge, Mass., 1997.

[3] L. C. Paulson. ML for the Working Programmer. Cambridge University
Press, second edition, 1996.

	Introduction
	About this document
	Licence
	Credits
	Mailing list

	Getting started
	Requirements
	Installation
	Configuration (Optional)
	Example: Quicksort
	Demonstration programs

	Compiling programs
	Command syntax
	Mapping of module identifiers to files
	Specifying a path for sources
	User-defined mappings
	Recompilation
	Exporting classes to .NET
	Importing classes from .NET
	Output
	Shell commands
	Printing types and signatures
	Options
	Additional assembler options
	Avoiding stack overflow
	Cleaning up
	Command files and command-line operation
	Summary of commands
	Trouble with the .NET IL assembler ilasm.exe?

	Language extensions for .NET
	Namespaces, classes and nesting
	Types
	Built-in types
	Named .NET types
	Array types
	Null values
	Interop types

	Objects
	Creating objects
	Creating and invoking delegate objects
	Casts and cast patterns

	Fields, methods and properties
	Fields
	Methods
	Overloading and implicit coercions

	Value Types
	Boxing and unboxing
	Null values

	Enumeration Types
	Storage Types
	Storage kinds
	Address operators (&)
	Byref types

	Defining new .NET types
	Class declarations
	Class types and functors
	Interface declarations
	Delegate declarations

	Custom Attributes
	Exporting structures

	Visual Studio .NET Support
	Licence
	Requirements
	Installation
	Working In Visual Studio
	Opening an existing Project
	Creating a new Project
	Debugging

	Customizing the Package Installer

	Language restrictions
	Overflow
	Non-uniform datatypes
	Value restriction
	Overloading

	The Standard ML Basis Library
	Support for ML-Lex, ML-Yacc and SML/NJ Libraries

