
1

Expectations and Reality
in Large-Scale,

Widely Distributed Systems

Jean Bacon

University of Cambridge Computer Laboratory

2

Outline
• problems and some thoughts on why we have them
• what’s solved? what’s hard? what’s new?
• categories of large-scale distributed system
• promising approaches
• research experience at Cambridge
• still to be solved?

Work-in-Progress highlighted throughout

3

Costly Failures - 1

• UK Stock Exchange - share trading system
- abandoned 1993, cost £400M

• CA automated childcare support
- pended 1997, cost $300M

• US tax system modernisation
- scrapped 1997, cost $4B

• UK ASSIST, statistics on welfare benefits
- terminated 1994, cost £3.5M

4

Costly Failures - 2

• London Ambulance Service Computer Aided Despatching
(LASCAD)
scrapped 1992, cost £7.5M, 20 lives lost in 2 days,
tracking of all ambulances, GIS, automatic allocation,
event-driven, rule-based approach

– unrealistic schedule
– lowest bidder selected, had no experience
– backup system not checked
– no testing/overlap with old system
– users not consulted during design, lacked confidence
– simple programming error: storage not deallocated

5

Why high public expectation?

Web experience
e.g. general information services
e.g. online banking
e.g. airline reservation
e.g. conference management
e.g. online shopping and auction

Properties: read mostly, server model, client-server paradigm,
closely coupled, synchronous interaction,
single-purpose, private sector

6

Public Sector Systems
healthcare, police, social services, immigration, passports,

vehicle-drivers licensing

• large scale
• bespoke and complex
• many types of client (many roles)
• web portal interface, but not weblike service model
• long timescale, high cost
• legislation and government policy

7

Some Legal/Policy Requirements - 1

“patients may specify who may see, and not see, their
electronic health records (EHRs)”

“only the doctor with whom the patient is registered (for
treatment) may e.g. prescribe drugs, read the patients
EHR, etc.”

“the existence of certain sensitive components of EHRs must
be invisible, except to explicitly authorised roles”

8

Some Legal/Policy Requirements - 2

“buses should run to time and bus operators will be punished
if published timetables are not met.”

so bus operators refuse to cooperate in traffic monitoring,
even though monitoring could show that delay is often not
their fault.

9

Data Protection Legislation

Gathered data that identifies individuals must not be stored:
CCTV cameras: software must not recognise people and store identities

with images

Vehicle number plate recognition: must not be associated with people then
stored with identities

Police records: accusations that are not upheld? (e.g. Soham murders)

UK Freedom of Information Act: Jan 2005, should we design with
disclosure in mind?

10

Rapid Development of Technology

• Can’t ever design a “second system”, it’s always possible
to do more next time

• Rapid obsolescence - incremental growth is difficult

• But big-bang deployment is a bad idea

design for incremental deployment

11

New technologies to incorporate

• Mobile workers in healthcare, police, utilities etc.
Integration of wired and wireless networks

• Integration of camera and sensor data

12

Outline
• problems and some thoughts on why we have them
• what’s solved? what’s hard? what’s new?
• categories of large-scale distributed system
• promising approaches
• research experience at Cambridge
• still to be solved?

Work-in-Progress highlighted throughout

13

Structures for Large-Scale Systems

1. Federated administration domains
– integration of databases
– integration of sensor networks

2. Independent, external services
3. Detached, ad-hoc groups

14

1. Federated administration domains

• security: firewall-protected
• names administered (services, principals, roles, ….)
• policies specified e.g. for authorisation,

plus some external policies to satisfy government policy,
legal and institutional requirements

• high familiarity, high trust

The second half of this talk relates to this structure

15

Examples
• national healthcare services:

many hospitals, clinics, primary care practices.
external services – e.g. national EHR

• national police services:
52 county police forces,
external services e.g. DVLA, court-case workflow

• global company:
branches in London, Tokyo, New York, Berlin, Paris ..

• active city:
fire, police, ambulance, healthcare services.
mobile workers
sensor networks e.g. for traffic monitoring

16

2. Independent, external services

• naming and authentication
client-domain-related and/or of individuals via certification authorities

• authorisation policies
related to client roles and/or individual principals

• need for: charging, accounting, audit
a basis for mutual trust (service done, client paid)

• trust
based on evidence of behaviour,
clients exchange experiences, services monitor and record
assume full connectivity, e.g. with CAs, so can authenticate/identify

Examples: e-science (grid) services, for computation (e.g. XenoServices)
and databases (e.g. astronomical, medical, transport)

17

3. Detached, ad-hoc groups

• e.g. connected by wireless
• can’t assume trusted third-parties (CAs) accessible
• can’t assume knowledge of names and roles, identity likely to be by

key/pseudonym
• new identities can be generated (by detected villains)

• parties need to decide whether to interact
• each has a trust policy and a trust engine
• each computes whether to proceed – policy is based on:

- accumulated trust information
(from recommendations and evidence from monitoring)

- risk (resource-cost) and likelihood of possible outcomes

18

trust
formation

request (p, ..)entity
recognition

policy

p

P

P, request

decision

decision

trust
calculator

risk
evaluator

evidence
manager

interaction
monitor

observations

re
qu

es
t a

na
ly

se
r

access
control

P
P

P

request

request
evidence

Simplified SECURE Trust Model

19

Outline
• problems and some thoughts on why we have them
• what’s solved? what’s hard ? what’s new?
• categories of large-scale distributed system
• promising approaches
• research experience at Cambridge
• still to be solved?

Work-in-Progress highlighted throughout

20

Promising Approaches for Large-Scale Systems
• Roles for scalability
• Parametrised roles for expressiveness
• RBAC for services, service-managed objects, including the

communication service
• Policy specification and change management
• Policy-driven system management

• Asynchronous, loosely-coupled communication
publish/subscribe for scalability
event-driven paradigm for ubiquitous computing

• Database integration – how best to achieve it?

And don’t forget:
• Mobile users
• Sensor network integration

21

Opera Group – research themes
(objects policy events roles access control)

• Access Control (OASIS RBAC)
Open Architecture for Securely Interworking Services

• Policy expression and management
• Event-driven systems (CEA, Hermes)

EDSAC21: event-driven, secure application control for the
21st Century

• Trust and risk in global computing (EU SECURE)
• TIME: Traffic Information Monitoring Environment

see: www.cl.cam.ac.uk/Research/SRG/opera
for people, projects, publications for download

22

Access Control

23

Motivating example: a national Electronic Health Record
(EHR) service. Police and Social Services are similar

• MUST protect EHRs from journalists, insurance
companies, family members etc.

• access policy defined both nationally and locally
• generic scalable policy => RBAC
• exception of individuals is allowed by law,

(all doctors except my uncle Fred Smith)
“Patients’ Charter” => parametrised roles

• may need to express relationships between parameters
treating-doctor (doctor-id, patient-id)

24

Access Control: Requirements / Motivation

• large scale
=> role based access control (RBAC)

• potentially widely distributed systems
• heterogeneous components, developed independently but

must interoperate
=> service-level policy agreements (SLAs)

(which roles authorise their activators to use which
services?) negotiated within and between domains

• incremental deployment

25

OASIS RBAC

• OASIS services name their clients in terms of roles

• OASIS services specify policy in terms of roles
- for role entry (activation)
- for service invocation (authorisation, access control)

both in Horn clause form

26

OASIS model of role activation

a role activation rule is of the form:
condition1, condition2, ….. |- target role

where the conditions can be
- prerequisite role
- appointment credential
- environmental constraint
all are parametrised

27

OASIS role (continued) membership rules

as we have seen, a role activation rule:
cond1*, cond2, cond3*, ….. |- target role

role membership rule:
the role activation conditions that must remain true, e.g.*
for the principal to remain active in the role

monitored using event-based middleware
another contributor to an active security environment

28

OASIS model of authorisation

An authorisation rule is of the form:
condition1, condition2, ….. |- access

where the conditions can be
- an active role
- an environmental constraint
all are parametrised

29

access control

policy

A Service Secured by OASIS Access Control

principal role
entry policy

OASIS
-secured
service

credential records
(active roles’ status)

RMC = role membership certificate
= role entry
= use of service

credentials

RMC

RMC

Check persistent credentials and
environmental constraints

Check environmental constraints

monitoring
heartbeats or change events

30

Active Security Environment
Monitoring membership rules of active roles

service A

CRRMC

service B

CRRMC

service C

CRRMC

ECR ECR

heartbeats or
status-change

events

RMC = role membership certificate
CR = credential record
ECR = external credential record

a prerequisite role
for service C’s role

a prerequisite role
for service C’s role

31

Event-based Systems

Asynchronous Communication

32

Event-Driven Systems (1)

Cambridge Event Architecture (CEA), 1995 -
• extension of O-O middleware, typed events
• federated event systems:

gateways/contracts/XML
• applications:

multimedia presentation control, pervasive environments
(active house, active city, active office),
tracking mobile entities (active badge technology),
telecommunications monitoring and control

33

Event-Driven Systems (2)

Hermes event service, 2001- 4
work of Peter Pietzuch

• loosely-coupled, publish/subscribe
• widely distributed event-broker network

• over a P2P overlay network
• distributed filtering (optimise use of comms.)
• rendezvous nodes for advertisers/subscribers

34

Hermes Pub/Sub Design

• Event Brokers
– provide middleware functionality
– logical overlay P2P network with content-based routing and filtering
– easily extensible

• Event Clients (Event Publishers
Event Subscribers)

– connect to any Event Broker
publishers advertise,
subscribers subscribe (brokers set up routing state),
publishers publish,
brokers route messages and notify publications to subscribers

– lightweight, language-independent

B

P

S

35

Algorithms I – Topic-Based Pub/Sub

• Type Msg, Advertisements, Subscriptions, Notifications
• Rendezvous Nodes
• Reverse Path Forwarding

– Notifications follow Advs and then the reverse path of Subs

B4

B2

B5

B1

B3

P1

P2

S1

S2

RR

36

• Filtering State
• Notifications follow reverse paths of subscriptions
• Covering and Merging supported

Algorithms II – Content-Based Pub/Sub

B4

B2

B5

B1

B3

P1

P2

S1

S2

RR

37

Implementation

• Actual Implementation
– Java Implementation of Event Broker and Event Clients
– Event Types defined in XML Schema
– Java Language Binding for Events using Reflection

• Implementation within a Simulator
– Large-Scale, Internet-Like Topologies
– up to 104 Nodes so far

38

But pub/sub is not sufficient for general applications

• decouples publishers and subscribers
pubs/subs need not be running at the same time

• publishers are anonymous to subscribers
subs need to know topic(attributes), not pubs’ names and
locations
but receivers may need to know the sender or sender’s role

• only multicast, one-to-many communication
may also need one-to-one

• can’t reply
either anonymously, e.g. to vote, or identified

• efficient notification for large-scale systems
but one-to-one should also be efficient – optimise

Work-in-Progress to generalise Hermes

39

Event-driven systems (3)

Event composition (correlation)
Pietzuch, Shand, Bacon, Middleware 2003,

IEEE Network, Jan/Feb 2004

• composite event service above event brokers
• service instances placed to optimise communication
• FSM recognisers – parallel evaluation
• events have source-specific interval timestamps
• simulations of large-scale systems …in progress

40

Bottom-up and/or Top-Down?
• Can we express all we require by bottom-up composition

of primitive events?
• Do we also need high-level models of context?

e.g. maps, plans, mathematical models - YES
• What can users be expected to express?
• How is the top-down, bottom-up gap bridged and high-

level requirements converted into event subscriptions?

Work-in-Progress

41

aggregation,
inference,

storage, control

sensor clusters

Integrating sensor networks (1)

Event Communication and Composition

Application

device control

devices

event flow
control flow

Event
Databases

Application Context models

42

Integrating sensor networks (2)

• heterogeneous sensors abstracted into events
• inaccuracies masked – data cleansing?
• value aggregation?
• timestamping?
• real-time delivery guaranteed?

e.g. traffic monitoring via IR, acoustics, counting
applications subscribe to:
“car-event (…)”, “bus-event (#4, …..)”, “taxi-event (….)”

Work-in-Progress

43

Integrating databases with pub/sub
• note: continuous queries require recording of individual

queries and individual response, one-to-one.
• instead: databases advertise events:

event type (<attribute-type>) based on virtual relations
• clients subscribe and are notified of occurrences
• we use PostgreSQL - active predicate store

Work-in-Progress

44

Motivating Example – Police IT

• Fred Smith is suspected of masterminding a nationwide
terrorist organisation.

• As well as looking up his past database records, the
investigators subscribe, in all counties, to advertised
database events specifying his name as an attribute.

• Triggers are set in the databases so that any future entries
that are made, relating to his movements and activities,
will be notified automatically and immediately to those
investigating him.

45

Securing pub/sub using RBAC
At the event client level – use RBAC
• domain-level authorisation policy indicates, for event types and

attributes, the roles that can advertise/publish and subscribe
• inter-domain subscription is negotiated, as for any other service
• note that spamming is prevented – only authenticated roles can use the

pub/sub service to advertise/publish

At the event-broker level – use encryption
• are all the event brokers trusted?

if not, some may not be allowed to see (decrypt) some (attributes of)
some messages.
this affects content-based routing.

Work-in-Progress

46

Outline
• problems and some thoughts on why we have them
• what’s solved? what’s hard? what’s new?
• categories of large-scale distributed system
• promising approaches
• research experience at Cambridge
• still to be solved?

Work-in-Progress highlighted throughout

