An Architecture for Distributed OASIS Services

John H. Hine!>*, Walt Yao?**, Jean Bacon?, and Ken Moody?>

1 School of Mathematical and Computing Sciences
Victoria University of Wellington
? Computer Laboratory
University of Cambridge

Abstract. Role based access control promises a more flexible form of
access control for distributed systems. Rather than basing access solely
on the identity of a principal the decision also takes into account the
roles that the principal currently holds. We present a distributed archi-
tecture that supports the OASIS role based access control model. The
OASIS model is based on certificates held by the client and validated by
credential records held by servers. We wish to replicate and distribute
the credential records to support high availability and reduce latency for
certificate validation. Protocols are presented for maintaining replicated
credential databases and coping with both server and network failures.

1 Introduction

Role based access control promises a more flexible form of access control for dis-
tributed systems. Rather than basing access solely on the identity of a principal
the decision also takes into account the roles that the principal currently holds.
This set of roles can change dynamically. Indeed the identity of the principal
and the roles held can be thought of as constituting a protection domain [6].
Proponents of role based access control also argue that a formal representation
of roles can significantly improve the management of access control policies [9,
2,11].

The concept that a principal should hold access control rights dates from
the development of capabilities [10]. The key problem with roles or capabilities
when compared with access control lists is the management of the distributed
representation of access control rights. To date there have been few designs for
role based access control that have adequately addressed this issue. In [2] the au-
thors describe a limited cgi-script based system for an organisational web server.
In [3] and [4] the authors describe an Open Architecture for Secure Interworking

* The work described here was undertaken while John H. Hine was a visiting re-
search fellow in the Computer Laboratory, Cambridge University. The work was
supported by the U.K. Engineering and Physical Sciences Research Council, grant
no. GR/M37592.

** Walt Yao was supported by the U.K. Engineering and Physical Sciences Research
Council, grant no. GR/M75686.

Services, OASIS, a proposal for a more general design of a role based access
control system.

In this paper we present a distributed architecture for the OASIS service.
The distributed architecture increases availability and reduces latency. Both fea-
tures are critical to the successful deployment of role based access control into
real systems. We present a protocol using weak consistency that is sufficient
for maintaining the integrity of the access control policies; also a protocol for
recovering from a server crash or network partition is presented.

The following two sections provide an overview of OASIS, its major compo-
nents and operation. We then present the design of a distributed architecture
to support OASIS services. This is followed by consideration of the implications
of server failure and network partition faults. We conclude with a summary of
additional work that remains to be undertaken.

2 Policy, Roles, Certificates and Credentials

A claimed advantage of role based access control is the management of access
control policy. OASIS includes a Role Definition Language (RDL) for the rep-
resentation of policy. RDL supports the formal specification of the requirements
for all aspects of role membership: entry, retention and revocation. RDL speci-
fied policy can be translated into a compact form for interpretation by OASIS
servers. A full discussion of RDL is beyond the scope of this paper. See [3] and
[4] for details.

For our purposes it suffices to note that access control policy specifies the
necessary requirements for:

1. The entry of a principal into a role and continued possession of that role.

2. The allocation, by one principal to another, of entry to a role and the sub-
sequent revocation of that role.

3. A principal’s use of a role to access a service.

A principal requests entry to a role by presenting an OASIS server with the
prerequisite credentials. If the server is satisfied it grants the principal entry
to the requested role by returning a role membership certificate (RMC). The
RMC validates membership in the role and may subsequently be presented to
an OASIS aware service as part of the access control process.

It is important to note that the access control policy specifies both pre-
conditions for role entry and conditions which must remain true for a role to
remain valid. For example, it may be required for the principal Susan to hold
the role DOCTOR-ON-DUTY in order to be admitted to the role WARD-CHARGE-
DOCTOR. We would also expect that for Susan to continue in the role WARD-
CHARGE-DOCTOR she must also retain the role DOCTOR-ON-DUTY. The formal
nature of RDL allows OASIS to represent these dependencies as a proof tree
ensuring that if a certificate becomes invalid other certificates depending on it
will also be invalidated. For example if Susan loses the role DOCTOR-ON-DUTY
her certificate for role WARD-CHARGE-DOCTOR would also become invalid. Role

membership certificates may be parameterised. We would expect the certificate
for WARD-CHARGE-DOCTOR to be parameterised by the ward identifier.

OASIS also enables a principal holding a suitable role to request auxiliary
credentials that can be passed to a third party. In requesting an auxiliary cre-
dential the principal may specify pre-conditions, such as roles held, for its use.
These are then built into an auziliary credential certificate (ACC), taking ad-
vantage of OASIS’s existing functionality. The principal may also introduce an
arbitrary decision process in deciding which other principals will be passed the
ACC. Such a credential may be used by the recipient to obtain entry to addi-
tional roles provided the specified pre-conditions are met.

We will use an example to demonstrate the flexibility of auxiliary credentials.
Some authority such as a hospital or government health service might issue Susan
with an auxiliary credential, doctor, asserting her medical qualifications. The
auxiliary credential certificate would be valid only when used in conjunction with
some authenticated principal representing Susan, for example at a workstation
whose reader held her personal ID-card. Once issued the ACC would be retained
across sessions and so allow the DOCTOR-ON-DUTY role to be entered whenever
Susan logged in.

These auxiliary credentials, which can be used for traditional delegation
amongst other purposes, were referred to as delegation certificates in [4]. Spe-
cific to each ACC the issuer retains a revocation certificate, which allows the
credential to be revoked at any time. The mechanism allows an appropriate au-
thority to issue and withdraw credentials that control role entry on the basis of
alternative decision making processes, possibly external to the computer based
system.

3 Overview of OASIS

In this section we look at how a principal interacts with a single OASIS secured
service and how that service manages its role certificates and access control. A
principal is a process or thread acting on behalf of a particular user or organi-
sation. We assume that each principal has been issued with a unique identifier
by an underlying operating system.

Figure 1 shows a single principal interacting with a single service that is
secured with OASIS role based access control. Role entry and access control
are separate functions. As the role entry function issues each role membership
certificate a credential record supporting the RMC is stored for subsequent use
by the access control function.

It is not necessary that the components of Fig. 1 be combined within a single
application. For example, an OASIS aware service has only the access control
function and the secured service. It relies on a separate OASIS service to val-
idate certificates presented to it. At the other end of the spectrum an OASIS
issuing service has responsibility only for managing the access control policy by
performing the role entry function, storing credential records and validating cer-
tificates for various access control functions. Frequently, such an OASIS issuing

Principal |« Role |« Policy
Entry
v
Credentia
Records
OASIS
o ‘ secured
=| Access Control l_> service
- J

Fig. 1. An OASIS service and client.

service will be set up to meet the specialized requirements of an application do-
main in which access to particular functions will be controlled on the basis of
the roles established.

3.1 Role Entry

In most cases a policy will require that an applicant for entry to a role already
holds one or more other roles. The applicant must present appropriate certificates
to prove membership of these roles.

Each principal must be able to obtain its first certificate(s) without presenting
other certificates. Like Kerberos [13] we assume the existence of some form of
initial login server. The user interacts with the login server using a password,
swipecard or similar technology to authenticate the user’s initial principal. Once
authenticated that principal is allowed to enter the role LOGGED-IN-USER and is
granted a LoggedInUser certificate which may be used to enter further roles.

The role entry function will need to verify the principal and certificates as
described below. After the server has confirmed that a certificate is valid and
current the role entry function is able to issue a new membership certificate for
the requested role.

3.2 Certificates

Figure 2 shows the format of a role membership certificate. The first field iden-
tifies the role for which this RMC grants membership. This is followed by a set
of N parameters for this role.

The next field is a certificate identifier (CID) that uniquely identifies this
certificate. The CID has two components, an identifier of the issuing service and
a unique identifier for the certificate within the service. The CID may be used
to create an audit trail of access control decisions. The next field is a credential
record reference (CRR). The combined CID and CRR fields are used by an
access control mechanism to locate the credential record held by the service that

role N agl| ----| argN CID | CRR| signature

Fig. 2. A role membership certificate.

issued the certificate. The CID identifies the issuing service and certificate and
the CRR provides a hint to locate the credential record.

The final field is a digital signature. Each certificate is held by a principal and
may be subject to theft, malicious modification or fabrication. This is guarded
against using a hashing function such as MD5 to sign the certificate [14]. The
issuing OASIS service uses a secret known only to itself in hashing the certificate
to produce the signature. The fields that are hashed include the identity of the
principal. When the certificate is presented for use it is returned to the issuer
for verification. This is done by repeating the hash function and comparing the
result with the signature.

3.3 Credential Records

When an OASIS server issues a role membership certificate or an auxiliary
credential certificate it creates and stores a matching credential record. The cre-
dential record identifies the certificate and holds state relating to its validity.

The structure of stored credential records establishes a proof tree for each
RMC and ACC. Figure 3 demonstrates with a simple example. In this example
we assume that doctor is an auxiliary credential that has been issued to Susan.
Assume that entry to the role DOCTOR-ON-DUTY requires both this auxiliary
credential and the role LOGGED-IN-USER. Susan requests the role DOCTOR-ON-
DUTY by presenting her ACC for doctor and her RMC for LOGGED-IN-USER. This
enables the role entry function and the servers holding the existing credential
records to create the proof tree of Fig. 3. A pointer to the new credential record
is included with the credential records corresponding to the credential doctor
and the role LOGGED-IN-USER. (Note that both of these certificates would be
parameterised with a persistent identifier for the doctor.)

An acyclic credential record graph is created with some of its links point-
ing from the credential record database of one service into the credential record
database of another. To revoke one of its certificates a service locates the corre-
sponding credential record and flags the certificate as invalid; it then finds links
to the credential records of all immediate dependants. These certificates can then
also be revoked. The process continues, recursively collapsing a sub-tree of the
credential record database.

3.4 Role Use

A principal uses a role by presenting one or more role membership certificates
to the access control mechanism when requesting service. Since the certificate

Susan

DOCTOR

Susan

LOGGED-IN-USER

DOCTOR-ON-DUTY

Susan

Fig. 3. The certificates and credentials held by the principal Susan on the left and
their credential tree.

has been held by the principal the access control mechanism must make the
following checks:

1. Authenticate the identity of the principal presenting the certificate.

2. Verify that the certificate has not been tampered with.

3. Verify that the certificate has not been revoked and that all necessary con-
ditions for its use remain true.

The principal may be authenticated using a conventional authentication ser-
vice [8]. The process is completed by referring the certificate and the principal’s
identity to the OASIS service that issued the certificate. The service is identi-
fied from the CID. Each service will only recognize certificates issued by services
which are explicitly identified within its access control policy. The issuing server
recomputes the digital signature using the principal identity supplied. If the sig-
nature is correct it uses the CRR to locate the credential record for the certificate
in order to ensure that it has not been revoked.

Once the certificate and principal have been verified the access control mech-
anism uses the identity of the principal, the certified role, and any parameters
included in the certificate to determine whether or not to grant the access re-
quested.

3.5 Auxiliary Credentials

An important aspect of OASIS role based access control is the ability of one
principal to use auxiliary credentials to control another principal’s ability to en-
ter a role. Policy for role entry expressed in RDL can require the presentation
of an auxiliary credential certificate in addition to one or more role member-
ship certificates. The ACC details additional RMCs required together with any
constraints on their parameters. It can be used to extend the role entry policy
stored at the OASIS server.

@ * Role Credential Records
Tom -
@ / Entry MANAGER
AN DOCTOR-ON-DUTY
@ ? charge
Policy WARD-CHARGE-DOCTOR)|
' |
OASIS
Susan > Access Control secured
@ service

Fig. 4. Delegation in an OASIS service.

Let us develop the example of Fig. 3. It is possible that a hospital manager
would appoint charge doctors for the various wards. This could be done by
supplying an auxiliary credential, charge, to the doctor, Susan, and requiring
that she present the charge ACC along with her DOCTOR-ON-DUTY RMC in
order to enter the role WARD-CHARGE-DOCTOR.

OASIS manages auxiliary credentials with two additional classes of certifi-
cates, the auxiliary credential certificate and a revocation certificate. Figure 4
shows the basic steps that would be used in our example. The six messages are:

1. Principal Tom requests entry to a role, MANAGER, that can distribute aux-
iliary credential certificates charge. Tom would need to satisfy the policy
requirements to enter MANAGER. Tom is issued with a role membership
certificate for MANAGER and a credential record is stored.

2. While Tom holds the role MANAGER he may request ACCs, charge, for en-
tering role WARD-CHARGE-DOCTOR. In requesting the ACC Tom may specify
pre-conditions for use of the ACC to enter the role. These include roles and
constraints on parameters of those roles. In our example, the ACC charge
would require an accompanying RMC for DOCTOR-ON-DUTY and that the
principals named in the ACC and the RMC were identical to the presenter.
These conditions are embedded within the auxiliary certificate and protected
by the digital signature. These conditions are in addition to any imposed by
the role entry policy for the role WARD-CHARGE-DOCTOR.

When certificate charge is issued Tom also receives a matching revocation
certificate, RV K. A credential record for the auxiliary credential certificate
is stored. There is no credential record for RV K.

3. Following a negotiation which is not shown, Tom allocates the right to enter
role WARD-CHARGE-DOCTOR to Susan by sending her the ACC, charge. Tom
retains the revocation certificate, RV K. The “negotiation” between Tom and
Susan allows arbitrary information such as references or past experience to
be made a pre-condition for entering role WARD-CHARGE-DOCTOR.

4. Susan presents the ACC charge and the other prerequisites requesting entry
to role WARD-CHARGE-DOCTOR.

5. Assuming entry to role WARD-CHARGE-DOCTOR is granted an appropriate
RMC, WardChargeDoctor is returned to Susan. A credential record for
this RMC is stored such that it is dependent on the credential record for the
auxiliary certificate charge.

6. Susan presents the RMC WardChargeDoctor requesting an operation from
the service.

The auxiliary credential certificate contains the usual reference (CID plus
CRR) to its own credential record. The revocation certificate contains two ref-
erences, the first to the credential record for the ACC charge, and the second
to the possibly parameterised role, MANAGER, under which it was issued.

The revocation certificate may now be used to revoke the allocated role.
It must be presented with an RMC for the role MANAGER. The CRR for the
auxiliary certificate charge is used to perform the revocation by invalidating
the auxiliary certificate. Any RMC WardChargeDoctor that depends on the
auxiliary certificate will also be revoked.

Using auxiliary certificates it is possible to extend policy expressed in RDL.
First, the issuer can specify roles and constraints on those roles that must be
met by any principal using the ACC, and in that way make use of the OASIS
certificate validation and role entry functions. Secondly, before passing on the
auxiliary certificate the issuer may base the decision on arbitrary logic, including
human intervention.

4 A Distributed Architecture

The OASIS service shown in Fig. 1 implies a monolithic service including role
entry, access control and the service being secured. We mentioned earlier that
this need not be the case and there are strong arguments for separating an
OASIS aware service (access control, access policy and service) from an OASIS
certificate issuing and validation service (role entry, role entry policy, credential
record storage and certificate validation).

1. The functions of the certificate issuing and validation service are common
and can be shared amongst many OASIS services.

2. These functions are the foundation of the system’s security and should be
resident in a physically secured environment.

3. Validation of a certificate requires authenticated communication with other
OASIS services. By sharing validation services the number of servers is dras-
tically reduced and much of the communication becomes localised within a
server.

4. Similarly, the reduced number of servers reduces administration problems.

The deployment of OASIS within an enterprise also requires consideration
of availability and performance. If the OASIS issuing service is not available the
entire distributed environment will come to a halt. The approach to take is a
question of scale. In a smaller organisation where a single server can provide good

g g
Service X ServiceY ServiceZ Service X ServiceY ServiceZ
Role Policy Role Policy Role Policy Role Policy Role Policy Role Policy
Credential Credential Credential Credentia Credential Credential
Records Records Records Records Records Records
Certificate Certificate
Role Entry Validation Role Entry Validation
- G
Ve
Service X Service Y ServiceZ
Role Policy|| || RolePolicy|| || Role Policy ServiceX Service
. . . Access policy
Credential Credential Credential
Records Records Records
Access Control —
Certificate
Role Entry Validation
N~ / Principal

Fig. 5. An architecture for distributed OASIS servers.

performance a hot back up can be used to achieve availability. This technique
is common and well understood. In a larger enterprise a single server may not
meet performance requirements and/or the complexities of the network may
invalidate the use of backup for high availability. The architecture presented in
this section is designed for a single enterprise that requires a more robust and
complex solution.

Our design allows the OASIS certificate issuing and validation servers (here
after simply called servers) to be arbitrarily replicated. The algorithms below
assume the credential database for each OASIS service is replicated on all of the
OASIS servers. Figure 5 shows three servers with the replicated databases of
three services. The service X which uses OASIS role based access control may
use any server to validate certificates. Clients use the role entry function of the
servers to obtain new certificates.

By replicating a service across several machines high availability can be
achieved, and by providing multiple points of access we decrease the latency
through increased concurrency and the possibility of local access. To further
ensure good concurrency, our design does not depend on locking protocols to
maintain consistency of the distributed data structure.

These federated servers are identical from the users’ viewpoint. That is, the
same result is obtained regardless of the server to which a request is addressed.
We achieve this using a weak consistency model which tolerates limited transient
inconsistency amongst distributed data structures at any instant in time.

Replication of the credential record graph leads to several problems that must
be addressed by any solution.

Concurrent Update. Requests to update the CR graph for a particular service
may occur independently and concurrently on different servers. For example,
two clients may request entry to roles at the same time.

Propagation Delay. Race conditions may arise involving the propagation of a
change to a CR graph and the use of that change by a client.

Partial Failure. In many systems the goal of replication is to increase availabil-
ity and reduce latency. Algorithms that address partial failure are intended
to restore an inoperable or disconnected server to operation. OASIS servers
face the same problem but must also consider the implications of partial
failure on access control decisions.

The following assumes that a reliable transport protocol is available between
pairs of servers. Each server is assumed to have a persistent store capable of
withstanding machine crashes. We assume that a technique such as a redo log
allows updates to the credential database to be done atomically [7].

4.1 Distributing Updates

Each server maintains a full and complete replica of each service’s credential
record graph. This enables each server to validate any certificate issued by any
OASIS service. The next concern is the maintenance of consistency across the
servers.

Our consistency protocol is based on an update-notify model. Each server
may make modifications to its own credential database at any time. The server
then reliably broadcasts an update message communicating the change to the
other servers in the federation. An update message will indicate either an addi-
tion or a removal of a CR. A functional definition of these messages is:

add ((CID, CRR), new CR, parent list [(CID, CRR) list])
revoke ((CID, CRR))

An add message carries a new CR, its CID and CRR, and a list of CID and
CRR pairs indicating the certificates upon which this CR depends. The server
is required to insert the new CR and a new pointer from each CR on which it
depends. No existing information is modified.

A revoke message carries the CID and CRR pair of the CR which is to be
removed from the tree. This CR and any CRs that depend on it are removed.

FEach server maintains a sequential count of the updates it initiates. This
count is included in each update message broadcast to other servers. Each server
maintains a list of the update messages it has seen from all other servers. The
sequence count is also used in creating the CID whenever a new certificate is
created. As a consequence we have a partial ordering of all messages and CIDs.

Upon receiving an update message, a server is expected to update the ap-
propriate graph to maintain consistency with its peers. Generally speaking the

add and revoke operations are idempotent and may be independently executed
in any order. However, there are two situations that can lead to one or more of
the CID/CRR pairs in an update message referring to a non-existent CR in the
current server’s graph 1) the referenced CR has been concurrently revoked, or
2) the pair refers to a new CR which has not yet been notified to this server.
In the prior case, the server should simply discard the update message since the
earlier revocation implies that the current tree is already the updated version.
In the latter case, the server should retain the update message until it receives
the update message notifying the creation of the referenced CR.

These cases can be distinguished by comparing the sequence number in the
CID with the messages seen from the originating server. If the CID has a higher
sequence number it refers to a new certificate for which no CR yet exists at this
server. If the CID is smaller it implies that the CR has been deleted.

4.2 Support for Fault Tolerance

In general replication is used to increase availability by allowing service to con-
tinue despite a failure. In replicating a security system great care must be taken
that operation during a partial failure does not jeopardise system security. The
protocol described below is designed to deal with server crashes and network
partitions of both a transient and persistent nature.

We assume a fail-silent system in which a crashed server simply stops send-
ing messages, rather than generates erroneous messages. OQur aim is to provide
support for fault tolerance in the protocol level in order to maintain consistency
across replicated servers.

Failure Cases. The protocol described in Sect. 4.1 requires update information
to be broadcast to all servers to enable them to update their credential database
to reflect the current state of the service. Inconsistency is introduced if a server
does not receive one or more messages. The effect of this inconsistency is possible
ambiguity observed by the clients. For example, a certificate may be incorrectly
rejected if the validation is done by a server that has not received notification of
creation of the certificate.

Network partitioning presents a particularly difficult situation for a service
supporting security. If a partition separates a set of servers into two groups,
while all servers are functional in their own right, updates made to servers on
one side of the partition will not be reflected in servers on the other side. The
servers are active but have an inconsistent view of the state of the credential
records. This has two implications:

1. The creation or invalidation of certificates on one side will not be noticed on
the other side until the partition is repaired.

2. A role entered on the basis of an auxiliary credential may not be able to be
revoked if the allocator resides on one side of the partition while the holder
is on the other.

We have designed protocols to address each issue. A heartbeat is used to
allow lazy consistency, but also detect failures and partitions. We recognise that
many failures are transient and provide reliable messaging to overcome these. For
more persistent failures that result in a server’s database becoming significantly
out of date we restore the full database from an agreed checkpoint.

Finally, we address the question of how an operating server should respond
to a partial failure by deferring to policy. Some services may be prepared to
operate in a partitioned state. Other services may judge that this is too great
a risk. The correct place to make this decision is in the policy of each individ-
ual service. We accomplish this by providing a simple variable representing the
current operational state of each server within the system. The variable may be
used in expressing policy allowing decisions to include constraints such as “all
servers operating” or “a majority of servers operating”. Observe that while it is
quite feasible to make decisions on the validity of a certificate it would be unwise
to allow copies of the database on both sides of the partition to be updated. Our
recovery protocol for persistent failures will not merge two separate databases.

Recovery Protocols. We use separate protocols for recovering from transient
and permanent failures. Transient failures are addressed by introducing reliable
message logging [1] to the messaging protocol of Sect. 4.1. Where a long term
failure occurs the inconsistency of the database may be such that it is more
appropriate to download the entire database from another server or to introduce
a new replacement server. At this point we switch to a recovery protocol that is
a form of active replication [12].

We define five states which describe the state of a server at any given instant
of time.

Normal The server is operating normally. It believes all its peer servers are also
alive and share a weakly consistent state.

Replay Logging A server enters this state when it has detected a failed server
amongst its peers. It maintains a redo log of all messages which have not
been delivered to the failed servers for replay in the future.

Down A server enters this state if it is crashed.

Recovering A server enters this state when it has rebooted following a crash, or
network communication to its peers is restored after network partitioning.

Coordinating A recovering server nominates a server to coordinate its recovery
phase. The nominated server enters this state.

Short term failures that cause update messages not to be delivered are han-
dled using reliable message logging. In handling a client request to add or revoke
a credential record, the server delays the reply until the update is fully logged in
its persistent store. It then broadcasts the updates to the other servers. It retains
a persistent copy of each broadcast message until it receives an acknowledgement
from all other servers.

A heartbeat protocol amongst the servers is used to maintain the currency
of connections. Where data is transmitted the heartbeat is piggybacked to avoid

unnecessary traffic. When a server detects that another server is down it enters
the Replay Logging state, maintaining a structured log of messages not acknowl-
edged by the failed or disconnected server. In this state all update messages are
saved until the failed server rejoins the federation or a decision is made that any
future recovery will be made using a full restore.

If and when the failed server restarts it enters the Recovering state. In this
state it uses the last sequence numbers seen from each server to request that
all subsequent messages be resent. Once these messages have been received and
acknowledged all servers can return to the Normal state of operation.

If a server remains unavailable for a sufficient period of time recovery from
structured logs may be abandoned. If this happens all messages that are queued
for this server only may be deleted. If this empties the queue of logged messages
the server may return to a Normal state.

Where a long term failure occurs the inconsistency of the database may be
such that it is more appropriate to download the entire database from another
server. In this case other servers discard their redo logs and assume that if
the server returns it will recover by doing a full transfer. This allows the same
algorithm to support the introduction of an entirely new server and a restart of
the failed server.

The full restoration of a server consists of three operations: agreement on a
state, S, to be transferred, transfer of S, and transmission of messages arising
after the establishment of S. The new server selects one of the operating servers
as the coordinator of the recovery process.

Figure 6 demonstrates this recovery protocol. A, B and C are replicated
servers, and the state of each server is denoted by S4, Sp and Sc. Initially,
Sa, Sp and S¢ are identically equal to S. Let P be a principal requesting a
certificate from A. A validates the request and creates a certificate ¢ for P. It
will then send an update message upd(c) to both B and C. Now, suppose C
crashes before receiving upd(c). Detecting the loss of contact with C, both A
and B will move from Normal state to Replay logging state, and log subsequent
messages for forwarding to C.

At this point, we know there is some failure in our federation of replicated
servers. It is possible the failure is transient. If C' resumes while A and B are in
Replay logging state, the recovery only involves re-sending any logged messages.
However if C remains down for an extended period of time, A and B will abandon
this and return to the Normal state. A serious fault has been detected and C has
left the federation.

When C' returns it enters the Recovering state and broadcasts a message
seeking a partner to coordinate its recovery. It accepts one reply, in this example
B. B is responsible for coordinating all operating servers to ensure that state S¢
is consistent at the end of the recovery protocol. B enters the Coordinator state.

On assuming the role of coordinator, B broadcasts a checkpoint request to all
other operational servers, in this example, A. The checkpoint request indicates
that C'is recovering. Each server responds to the checkpoint request by providing

P

\ f
service service
request reply

EzEEE Normal

3 Replay logging

checkpoint
update msg request

=5 |
recovery state transfer
request transfer ack g

Fig. 6. Recovery from a server crash.

checkpoint
ack

replay replay

Coordinator

Down

@ZZzzZd Recovering

to the Coordinator the sequence number of the last message that it broadcast and
entering the Replay Logging state on behalf of the recovering server, C.

The Coordinator awaits the responses from all servers. When these have ar-
rived it confirms that its own database contains all the updates less than or
equal to the checkpoints it has received. (The assumption of an underlying re-
liable messaging protocol implies that this should have happened as a matter
of course.) At this point it transfers its entire database to the recovering server,
C. When this is acknowledged the Coordinator has finished. It now enters the
Replay Logging state, logging any further updates.

The recovering server, C', now completes the recovery process as it would
recover from a transient fault. It requests all logged messages from each server
specifying the sequence number reached in its database. This is just the sequence
number provided by the server to the Coordinator and all subsequent updates
are now provided directly to C.

4.3 Analysis

Our protocol solves the concurrent update problem by ensuring the consistency
of the final state after all updates. Take the simple example shown in Fig. 7.
Suppose we have two servers, A and B, replicating a CR tree. The initial state is
shown in (a). Assume a request is made to A to revoke CR4, and simultaneously
another request is made to B to create CR6 dependent upon CR4. Both A
and B would proceed with their individual requests, producing a temporarily
inconsistent state, as shown in (b).

However, A and B will send each other an update message after the local
modification has been made. A will notice that CR4 is no longer valid because
it was revoked, and it will discard the update message. A will also increment
its view of B’s current sequence number, since B has used the sequence number
to create CR6. B will remove CRA4 as a result of receiving the update message
from A, producing a tree which is identical to A’s. This is the final state of the
consolidated CR tree, as shown in (c).

]

[CR1] [CRi] [CR1]
[CR2] [CR2] [CR2]

[CR3] [CRS] [CR3] [CR3]

(a) Initial state (b) CR4 isrevoked (c) State consolidated
Server B
[CRI] [CRI] [CRI]
[CrR3] [OR5] CR3] [CRE] [CR6 [CR3)]

(@) Initial state (b) CR6 is added under CR4 (c) State consolidated

Fig. 7. Resolution for concurrent updates.

One may argue that there is a window of chance that the certificate for which
CR6 is a credential will be used before the revocation of CR4 takes place. If the
certificate is presented to A, it would treat it as a new unknown certificate. After
the reception of the update message from B, it will learn that the certificate
depends on a revoked CR, therefore the use of this certificate will be rejected. If
this certificate is presented to B, B will authorise its use if the update message
from A has not been received. We argue that this problem is an example of
a race condition. Even in a single server situation, the order of arrival of the
requests determines the exact consequences. There would still be a chance that
certificate CR6 may be used before it is revoked.

Our protocol also solves the problem of delayed propagation. The servers’
sequence numbers allow each server to determine whether a missing CR has
been revoked or is new. The servers can take appropriate action. For example, a
certificate issued by A may be sent for validation before B receives the update
message. If B has been asked to validate this certificate, it can determine that
this is a new CR. In this case it would wait for the update message from A.

Correctness for Recovery Protocol. Our recovery protocol is correct be-
cause of three crucial attributes: the update operations are commutative; every
update is known by at least one server within the federation at any given time;
and our assumption of a weak consistency model.

Updates made to a CR tree are either an addition of a new CR or a removal
of an existing one, with removal collapsing all dependent CRs. It is trivial to see
the commutativity if two updates are made on unrelated CRs. If two updates
are made on related CRs, this property still holds. Consider adding a CR that

depends on a CR which is being revoked. The addition will fail since there is no
CR for the new one to depend on in the tree. If the two operations are done in
reverse order, the final result would still be the same. This is exactly the case
illustrated in Fig. 7.

Consider the case where two additions are made concurrently to a server,
with one creating a CR that depends on the CR created by another. If the
dependent CR has not been processed by the server, the addition will be left
pending until it has been created. This in effect guarantees a consistent final
state by serialising the addition operations. The last case involves two removal
operations made on related CRs. Removing a node of an inverted tree and its
dependents and subsequently removing a second node that the first depended
on results in exactly the same tree as removing just the second node.

The commutative property of update operations is crucial since our recovery
protocol is based on replaying messages and this works regardless of the order
of replay.

The requirement that a server must fully log an update before replying to
the client ensures that no orphan state can exist [1] and [5]. Therefore recovery
is a straightforward transfer of state followed by a resend of update messages.
This scheme also works in multi-node failure situations.

5 Conclusion

We have presented a description of OASIS role based access control and a dis-
tributed architecture for supporting it. Work continues on both the functionality
of OASIS and on the architecture. Our understanding of auxiliary credentials
and the different ways in which they may be applied is still evolving. This will
improve with experience applying role based access control in different contexts.

The protocols employed in the architecture presented here retain a relatively
high level of efficiency at the cost of replicating all services on each server. This
constrains the scale that can be achieved in several ways. The cost of updates is
proportional to the square of the number of servers. Partial failures may cause
some services to stop functioning when they could have functioned quite happily
with a smaller number of replicas all on operating servers. A next goal is to
produce a design that allows a subset of services to be replicated at each server.

An implementation of the distributed model is under way. It will be used to
address questions about the cost of protocols and the system’s ability to scale.
It will also be used to gain experience with the organisation of roles. We are also
investigating the use of OASIS role based access control in areas of electronic
health records and network management.

Role based access control promises a number of advantages for security in
large, complex distributed systems. In this paper we have presented a distributed
architecture that supports a resilient, highly available access control service
based on the OASIS model. This includes protocols supporting weak consis-
tency and recovery from server and network failures.

References

1.

10.

11.

12.

13.

14.

L. Alvisi, B. Hoppe, and K. Marzullo. Non-blocking and orphan-free message
logging protocols. 28rd Int. Conf. on Fault-Tolerant Computing (FTCS-23), pages
145-154, 1993.

David F. Ferraiolo, John F. Barkley, and D. Richard Kuhn. A role-based access
control model and reference implementation within a corporate intranet. ACM
Transactions on Information and System Security, 2(1):34-64, Feb 1999.

Richard Hayton. OASIS An Open Architecture for Secure Interworking Services.
PhD thesis, Fitzwilliam College, University of Cambridge, Mar 1995.

Richard Hayton, Jean Bacon, and Ken Moody. Oasis: Access control in an open,
distributed environment. In Proc. of IEEE Symposium on Security and Privacy,
pages 3—-14, Oakland, CA, May 1998. IEEE.

D. B. Johnson and W. Zwaenepoel. Sender-based message logging. 17th Int. Symp.
on Fault-Tolerant Computing, pages 14-19, 1987.

B. W. Lampson. Protection. In Proc. Fifth Princeton Symposium on Information
Sciences and Systems, pages 437—443, March 1971. reprinted in Operating Systems
Review, 8, 1 (Jan. 1974) pp. 417-429.

Tobin J. Lehman and Michael J. Carey. A recovery algorithm for a high-
performance memory-resident database system. In Proceedings of ACM SIGMOD
Annual Conference on Management of Data, San Francisco, May 1987. ACM.
R.M. Needham and M.D. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993-999, December
1978.

Matunda Nyanchama and Sylvia Osborn. The role graph model and conflict of
interest. ACM Transactions on Information and System Security, 2(1):3-33, Feb
1999.

J. H. Saltzer. Naming and binding of objects. In R. Bayer, R.M. Graham, and
G. Seegmuller, editors, Operating Systems, An Advanced Course, pages 99-208.
Springer-Verlag, Berlin, 1979.

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein and Charles E. Youman. Role-
based access control models. IEEE Computer, 29(2):38-47, February 1996.

F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22(4):299-319, December 1990.
J.G. Steiner, C. Neuman, and J.I. Schiller. Kerberos: An authentication service
for open network systems. In USENIX, Dallas TX, 1988. Uniforum.

Gene Tsudik. Message authentication with one-way hash functions. In IEEE
Infocom 1992. IEEE Press, May 1992.

