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Abstract. The recent evolution of ubiquitous computing has brought with it a
dramatic increase of event monitoring capabilities by wireless devices and sen-
sors. Such systems require new, more sophisticated, event correlation over time
and space. This new paradigm implies composition of events in heterogeneous
network environments, where network and resource conditions vary. Event Cor-
relation will be a multi-step operation from event sources to final subscribers,
combining information collected by wireless devices into higher level informa-
tion or knowledge. Most extant approaches to define event correlation lack a
formal mechanism for establishing complex temporal and spatial relationships
among correlated events. Here, we will focus on two subjects. First, we define
generic composite event semantics, which extend traditional event composition
with data aggregation in wireless sensor networks (WSNs). This work bridges
data aggregation in WSNs with event correlation services over distributed sys-
tems. Secondly, we introduce interval-based semantics for event detection, defin-
ing precisely complex timing constraints among correlated event instances.

1 Introduction

An event correlation service is important for constructing reactive distributed appli-
cations. It occurs as a part of applications, event notification services and workflow
coordinators. In event-based middleware systems, an event correlation service allows
consumers to subscribe to patterns of events (composite events). This provides an addi-
tional dimension of data management, and improvement of scalability and performance
in distributed systems. Particularly in wireless networks, providing event correlation as
a middleware service helps to simplify the application logic and reduce its complexity.

The recent evolution of ubiquitous computing has brought with it a significant in-
crease of event monitoring capabilities by wireless devices and sensors. Such systems
require new, more sophisticated, event correlation over time and space. Typical Wire-
less Sensor Networks (WSNs) communicate directly with a centralized controller or a
satellite. Thus, communication between a sensor and a controller is based on a single-
hop model. On the other hand, a collection of autonomous nodes or terminals may
communicate with each other by forming a multi-hop radio network and maintaining
connectivity in a decentralized manner, thus creating an ad hoc network. Moreover, the
integration of a smart WSN with a large network such as the Internet, increases its cov-
erage and potential application domain. In WSNs, a sink node is a sensor node with
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Fig. 1. Bridging WSN:ss to the Internet

gateway functions to link to external networks such as the Internet. Sensed information
is normally distributed via a sink node. A sink node may also be an Internet backbone
node, or the gateway node to an intermediate ad hoc network, which may deliver the
sensor data to the Internet. Fig[Tldepicts WSNs connecting to the Internet, where an ad
hoc network (the MANET Mesh in Fig[l) could form an opportunistic network such
as [3].

This new platform enables the seamless use of the various resources in physically
interacting environments. A consensus is emerging that the most appropriate system ar-
chitecture to support such platforms is service management, with communication based
on the publish/subscribe paradigm. For example, a publisher broker node can act as a
gateway from a WSN, performing data aggregation and distributing filtered data to other
networks based on contents. Event broker nodes that offer data aggregation services can
coordinate data flow efficiently. Especially when event-based communication is imple-
mented via a peer-to-peer (P2P) overlay network, the construction of event broker grids
will extend the seamless messaging capability over scalable heterogeneous network en-
vironments. Event Correlation will be a multi-step operation from event sources to the
final subscribers, combining information collected by wireless devices into higher level
information or knowledge. Mobile devices can be deployed in remote locations without
a network infrastructure. They will have an important role in collecting sensor data over
ad hoc networks and conveying it to Internet backbone nodes, These mobile devices are
resource constrained, and an implementable event detection mechanism is required. The
semantics of operators for composite events is not defined in a uniform manner in exist-
ing middleware and applications leading to a number of problems. Event consumption
rules are mostly done as part of an implementation, without a clear semantic definition.
Most extant approaches to define event correlation lack a formal mechanism to define
complex temporal and spatial relationships among correlated events. Thus, a unified
semantics has to be defined to resolve this ambiguity for heterogeneous network envi-
ronments.

Temporal ordering in real-time is a critical aspect of event correlation in wireless ad
hoc network environments. The context of real-time in this paper relates to real-world
event occurrences. Neither logical time nor classical physical clock synchronization al-
gorithms may be applicable. Temporal ordering is required for motion detection. In or-
der to determine the direction of movement of a real-world entity, temporal ordering of
events originating from different devices has to be established. Events can be triggered
by physical phenomena, such as glaciers and earthquakes, and the order of occurrence
of sensed data is again important. In general, recent developments in Internet business
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demand precision time for processing data. For example, orders to buy and sell on the
stock market and in an auction must be timed on a global scale, and a trigger event may
be initiated by a wireless devices.

Event Aggregation, Filtering and Correlation: Some event-based middlewares offer
content-based filtering and provide flexible query languages. These allow subscribers
to select events of interest, based on the values of their contents. A query can apply to
different event types but the aim is to select individual events. On the other hand, event
correlation addresses the relationship among, or pattern of, instances of different event
types. WSNs have led to new issues to be addressed in event correlation. Traditional
networking research approached data aggregation as an application-specific technique
that can be used to reduce network traffic. In WSNs the requirement is to summarize
current sensor values in some or all of a sensor network.

TinyDB [19] is an inquiry processing system for sensor networks and takes a data
centric approach. Each node keeps the data and executes retrieval and aggregation (in-
network aggregation), with on-demand based operation to deliver the data to external
applications. TinyLIME [3] enhances LIME (Linda In Mobile Environments) to oper-
ate on TinyOS. In TinyLIME, LIME is maintained on each sensor node together with
a partition of a tuple space. A coordinated tuple space is created across the nodes, con-
necting with the base station in one hop. TinyLIME works as middleware by offering
this abstracted interface to the application. It does not currently provide any data aggre-
gation function, only a data filtering function based on Linda/LIME at the base station
node. On the other hand, TinyDB supports data aggregation via SQL query, but re-
dundancy/duplication handling is not clear from available documents. Fig[2l shows the
relationships between aggregation, filtering and correlation. Middleware research for
WSNss has been active recently, but most research focuses on in-network operation for
specific applications. In this paper, we take a global view of event correlation over en-
tire distributed systems, focusing on correlation semantics.

Unified Semantics for Event Correlation: We define a unified semantics, combin-
ing traditional event composition and data aggregation in wireless sensor networks.
In-network aggregation in WSNs is not a concern of this paper. For the event detection
semantics, we introduce a parameterized algebra. Parameters include time, selection,
consumption, and subset rules. This approach defines unambiguous semantics of event
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detection and supports resource constrained environments. We introduce interval-based
semantics for event detection defining precisely complex timing constraints among cor-
related event instances. In resource constrained network environments, the event al-
gebra must be restricted so that only a subset of all possible occurrences of complex
events will be detected, and this can be achieved by applying appropriate parameters.
This paper continues as follows: Section 2 describes key aspects of event composition
semantics with existing systems as examples. Section 3 describes the event model, Sec-
tion 4 defines composite event semantics and section 5 discusses temporal ordering.
The formal definition and proof of the event algebra is out of the scope of this paper. In
Section 6 we describe related work, and Section 7 contains conclusions and directions
for future research.

2 Event Correlation in Middleware

In this section, we show a comparative study of existing event correlation mechanisms
in middleware. Event correlation may be deployed as a part of applications, as event
notification services, or as part of a middleware framework. Definition and detection of
composite events vary, especially over distributed environments. Equally, named event
composition operators do not necessarily have the same semantics, while similar se-
mantics might be expressed using different operators. Moreover, the exact semantic de-
scription of these operators is rarely explained. Thus, we define the following schema to
classify existing operators: conjunction, disjunction, sequence, concurrency, negation,
iteration, and selection. Considering the analyzed systems, it becomes clear that to sim-
ply consider the operators is not sufficient in order to convey the full semantic meaning.
Each system offers parameters, which further define/change the operators’ semantics.
The problem is that the majority of the systems reflect parameters within the implemen-
tations. Parameters for consumption mode and duplicate handling are rarely explicitly
described. Table 1 and 2 shows a comparative study of event composition semantics
in ten existing systems and our proposal ECCO. The tables give an overview of event-
based composition languages typically supported in event-based systems, and provide
an analysis of the languages from a unified viewpoint. Note that the list of analyzed
systems cannot be exhaustive, but considers a representative set of selected compo-
sition semantics. None of the listed systems includes wireless network environments
except ECCO. Most event notification systems still only support primitive events, and
their focus is on efficient filter algorithms. Brief explanations of the characteristics of
each system are given below (see also Section 6, related work).

Table [[lshows composition operators, while Table 2 emphasizes temporal order re-
lated parameters including consumption modes. Concepts of conjunction, disjunction,
sequence, concurrency, negation, and iteration operators are based on an event algebra.
Selection defines the event instance selection, by which events qualify for a composite
event, and how duplicate events are handled. Conjunction and disjunction are supported
in most systems, some of which implement the sequence operators (requiring ordering),
fewer support negation. Selection and concurrency are rarely supported. Concurrency
is difficult to determine for distributed systems. Time operators are not always sup-
ported, requiring a time handling strategy for distributed systems. Consumption mode



370 E. Yoneki and J. Bacon

Table 1. Event Composition Semantics - Composition Operators

Operators
Conjunction | Disjunction | Sequence | Conc. | Negation | Iteration | Selection

ECCO A+B A|B A; B A||B —A A" A
Opera A||B A|B A; BorAB - -A A* -
CEA A&B A|B A; B - —A - -
Schwiderski| A, B A|B A;B A|B NOTA AforAT -
A-mediAS |  A&B A|B AB - —A - AW
Ready A&&B A||B A;B - notA - -
Eve CON(A,B)|DEX(A,B)|SEQ(A, B)|CCR(A,B)(NEG(A,B)| REP(A,n) -
GEM A&B A||B A; B - 1A - -
Snoop A,B AV B A; B - - A* -
Rebeca ANB AV B -A A* -
SAMOS A,B A|B A; B - NOTA |TIMES(n,A)|A"/last(A)

and temporal conditions are rarely made explicit. If they are explicit, several options
are supported, otherwise they are hard-coded in the system and difficult to determine.
The listed systems are notification services, event composition languages, and work-
flow coordinators in which common characteristics are fairly complete semantics of
event composition.

ECCO: is our ongoing project to create an event brokering architecture for a distributed
adaptive mobile environment [27]. Event correlation is part of event brokers, and grids
of brokers are deployed over mixed network environments. The ECCO prototype is im-
plemented with a MANET protocol as content-based publish/subscribe. This paper fo-
cuses on event correlation over event broker grids, which requires correlation of events
from various network environments.

Opera: a framework for event composition in a large scale distributed system [23] aim-
ing at reduction of event traffic by distributed composite event detectors. The language
of composite events is based on FSA.

CEA: our early work on the Cambridge Event Architecture (CEA) extended the then-
predominant, object-oriented middleware (CORBA and Java) with a publish, register
and notify paradigm [L1]]. COBEA [21]] is an event-based architecture used for the man-
agement of networks using CEA based composite event operators.

Schwiderski: enhanced the distributed event ordering and composite event detection
by introducing 2g-precedence-based sequence and concurrency operators [26].
A-mediAS: an integrating event notification service that is adaptable to different appli-
cations specifically on handling composite events and event filtering methods [12].
Ready: an event notification service from AT&T Research similar to Siena. Ready sup-
ports composite events and its grouping functionality can be shared among clients [10].
EVE: combines characteristics of active databases and event-based architectures to ex-
ecute event driven workflows [g].

GEM: GEM [20] is an interpreted generalized event monitoring rule based language.
Snoop: a model-independent event specification language [4], supporting parameter
contexts. It supports temporal, explicit and composite events for active databases.
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Rebeca: an event-based electronic commerce architecture focusing on event filtering
in a distributed environment [22]]. Temporal delays in event composition have been ad-
dressed in [16]].

SAMOS: The SAMOS (Swiss Active Mechanism-based Object-oriented database sys-
tem) 7] project addresses the specification of active behavior and its internal processing
supporting Event-Condition-Action (ECA) rules. The detection of composite events is
implemented based on colored Petri-Nets.

Table 2. Event Composition Semantics - Time-related Parameters

Time Operator Timestamp |Composition|Temp. Cond. Consumption Subset|Detection

Period ‘ Life Unrest.|Recenl|Chron.
ECCO (4;B)r, (A+ B)r (A)r| P,PLI 1 X X X X X |Algorithn
Opera (A, B)r - PI P - - - - - |T-FSA
CEA - - P P - X - - x |FSA
Schwiderski - - P P - - - - - |Rule
A-mediAS | (A, B)r,(A; Byr,—Ar | - P P » x | x | x | x |[I-FSA
Ready - - P P - - - - X |-
Eve - - P P - - - X X |Graph
GEM (A-+timeperiod) - P P X - X - X |Rule
Snoop (A, [tiestring] : param, B)| - P P - - X X X |Graph
Rebeca slide window - PI P - - X X - |Rule
SAMOS - - - - - - - X X  |Petri net

Time Operator: Period (between event A and B) Life (valid time for event A)

Timestamp: P (Point-based), PI (Point represented in Interval-based format), and I (Interval-based).
Composition: Event composition semantics. P (Point-based), and I (Interval-based).

Temporal Condition: Temporal conditions such as A before B, A meets B, etc. for event composition.
Consumption: Event consumption (Unrestricted, Recent, and Chronicle).

Subset: Parameters for selection or subset on duplication handling.

Detection: Implementation methods.

3 Event Model

In this section, we define our event model including timestamps for composite events.
A primitive event is the occurrence of a state transition at a certain point in time.
Each occurrence of an event is called an event instance. The primitive event set con-
tains all primitive events within the system. The event set consists of the set of prim-
itive events and the set of composite events. Each event has a timestamp associated
with the occurrence time. There is uncertainty associated with the values of times-
tamps in implemented systems. Composite events are defined by composing primitive
or composite events with a set of operators. Only composite events are defined to have
duration.

Timestamps: A timestamp is a mandatory attribute of an event defined within a time
system, while the event occurrence time is a real-time defined by the occurrence of
the event. Thus, the timestamp is an approximation of the event occurrence time. Most
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point-based timestamps consist of a single value indicating the occurrence time. In [16],
the time when an event is detected is given as an interval-based timestamp, which cap-
tures clock uncertainty and network delay with two values: the low and high end of
the interval. Although an interval format is used, it represents a single point (point-
interval-based timestamp). In addition, we define a (composite) event with duration and
give a new interval-based timestamp to a composite event based on interval semantics
(see Section 4.3). For a primitive event, either a point-based or point-interval-based
timestamp is used in our system. A point-interval-based timestamp is an accurate rep-
resentation, and it is distinct from interval-based timestamps representing the duration
of events. Fig[3l depicts an interval-based timestamp for composite events.

Interval-Based Point-Based

(A" < 1(B)' 1(A) < 1(B)
A
A
A before B B < BO
A+ B o= o=
Al B o> -
. o=
A ;B o

Fig. 3. Timestamp of Composite Event (A before B)

Spacestamp: We introduce spacestamp, as an optional attribute of an event, indicat-
ing certain location, relative location, grouping and so forth (e.g., position informa-
tion (X.,y,z), global node id). The Global Positioning System (GPS) [13]] provides each
node with its location information (latitude, longitude and elevation) with a high de-
gree of accuracy. This information can be used for ordering events within the given
space.

3.1 Duration

Reference [1]] argues that all events have duration and considers intervals to be the basic
timing concept. A set of 13 relations between intervals is defined, and rules govern-
ing the composition of such relations controls temporal reasoning. On the other hand,
most event systems listed in Section 2 consider events as instantaneous, that is, the time
associated with the event is an instant rather than an interval. A durative event can be
seen as capturing the uncertainty over the time of occurrence and the time of detec-
tion of an event rather than modelling an event that persists over time. In this sense,
durative events are akin to the point-interval-based-timestamps described above. The
durative event model considers that instantaneous events are durative events with min-
imum duration, thus reconciling the models. Our model is based on primitive events
that represent instantaneous changes of system state, with uncertainty over their mea-
surement. We would regard an “event” that persists over time as akin to a state, with an
event at the start and one at the end of the time period. This could also be defined as a
composite event. Composite events are built up from events occurring at different times,
therefore the associated real-time is usually that of the last of its contributory primitive
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events. This is natural in a context where the prime focus is on event detection, since
typically a composite event will be detected at the time that its last contributory event
is detected. However, this does lead to logical difficulties in the case of some compos-
ite events. Determination of the duration of composite events requires the semantics of
composition and time system information such as a point-based or an interval-based
time model. Fig[4] shows an example of a sequence operation on the interval-based and
point-based timestamps. Complex timing constraints among correlated event instances
are precisely defined (see Appendix).

Interval-Based Point-Based
(A" <1(B)' 1(A) < 1(B)
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B@®
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starts B
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Fig. 4. Interval and Point based Timestamps

3.2 Duplication

It is important to distinguish between multiple instances of a given event type, which
may be primitive or composite, and duplicates of a given event instance. The expres-
siveness of some event specification languages has been limited by not distinguishing
between event types and instances of those types. [17]] attempts to define conditions
and constraints on attributes of events in correlation rules rather than defining opera-
tors on event instances. Especially in sensor networks, in order to avoid loss of events
by communication instability, duplicates of events may be produced to increase reli-
ability. Duplicates have to be handled differently depending on the application, and
contexts within applications. For example, in object tracking, the most recent reading
from a sensor is valid, and events prior to that will be obsolete, except for the historical
record. On the other hand, in a transaction event in which a customer cancels an or-
der, a duplicate event should be ignored because a transaction is being repeated. Thus,
the semantics of event composition have to address handling of duplicates. [18] take
the approach of defining constraints on attributes of events and detect occurrences of
events, before correlation conditions are evaluated. We propose duplicate handling in
two ways: adding a selection operator as an event composition operator and adding sub-
set rules as parameters (obtaining this efficiently without loss of meaningful data) (see
Section 4.4).

4 Event Correlation Semantics

We define composite events by expressions built from primitive and composite events
and algebraic operators. The operators of the event algebra are defined informally in
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this section. We also support parameters, which help to define unambiguous semantics
of event detection and support resource constrained environments. In wireless ad hoc
networks, the event algebra must be restricted so that only a subset of all possible oc-
currences of complex events will be detected. We provide basic operators that have the
potential of expressing the required semantics and are capable of restricting expressions.
Also, an interval-semantics supports more sensitive interval relations among events in
environments where real-time concerns are more critical, such as wireless networks or
multi-media systems. Our recent work [23]] defined composite event operators that are
tightly based on FSA without considering time-related issues in depth. The temporal
operators introduced in [1] are not uniformly defined in many applications, and we de-
fine precise timing constraints (see Appendix and [28]). The temporal operators help
resource constrained mobile devices to have unambiguous semantics.

4.1 Composite Event Operators
The event operators are defined informally as follows:

e Conjunction A + B: Event A and B occur in any order. (A + B)r with a temporal
parameter T indicating the maximal length of the interval between the occurrences of A and
B. Note that (A 4+ B)o or (A + B) refers without restrictions.

e Disjunction A | B: Event A or B occurs.

e Concatenation A B: Event A occurs before event B where timestamp constraints are A
meets B, A overlaps B, A finishes B, A includes B, and A starts B.

e Sequence A ; B: Event A occurs before B where timestamp constraints are A before B,
and A meets B. (A;B)o is a special case belonging to A meets B.

- E.g. (A;NULL;B): denotes there is no occurrence of any event between event A and B.
- E.g. (A ; B)r: means that an interval T between event A and B.
- E.g. (A;Bo): denotes that there is event A and event B occur contiguously.

e Concurrency A||B: Event A and B occur in parallel.

e Iteration A*: Any number of event A occurrences.

e Negation —A: No event A occurs for an interval T.

-E.g. (A — B): denotes no B occurs during A’s occurrence.
-E.g. (A — B)r: denotes no B occurs after starting A’s occurrence within an interval T.
- E.g. (A; B) — C" denotes that event A is followed by B and there is no C in the duration
of (A;B).
o Selection A™V: The selection A™ defines the occurrence defined by N.
-E.g. A#VE: denotes taking the average during an interval T.
-E.g. AZA5T: denotes taking the most recent instance during an interval T.

e Spatial Restriction A g: Event A occurs if it is a spatial restriction defined in S, that can
be defined as a specific location or a group identifier etc.

- E.g. Acposrp: The area code CBO3FD identifies the zone around Computer Laboratory
in Cambridge. Event A is valid only when spatial condition is satisfied.

e Temporal Restriction A7: Event A occurs within T.

-E.g. (4; B)r or (A; Br): B occurs within an interval T after A.
- E.g. Br: B is valid for an interval T.
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The following examples illustrate the use of the operators to describe composite events.

Example 1: The temperature of rooms with windows facing south is measured every
minute and transmitted to a computer placed on the corridor. 7' denotes a temperature
event and T:f(‘)VG denotes a composite event of an average of the temperature during 30
minutes. (Toom1 + Troom7)5 © denotes to take an average of room 1 and 7.

Example 2: Two sensing receivers are placed before and after the stop sign on the
street. When a car passes, they generate events to the local computer. Suppose the event
received before the stop sign is B and after the stop sign is A for a given car. (B; A)2
denotes A occurs 2 seconds after B and it indicates a car did not make a full stop at
the stop sign. On the other hand, ((B; A)gp)* indicates cars may not be flowing on the
street, which indicates potential traffic congestion.

Example 3: At a highway entrance, a sensor detects movement of a passing car as event
E. The number of cars entering the highway (ElsoUM )HWY1Ent7 can be calculated at a
computer locally, which can be used to detect traffic congestion on the highway (e.g., a
congestion event C = ((E5VM) gryyy 1 prer) FEO912).

4.2 Temporal Conditions

Defining temporal conditions for the semantics of composite events could be tricky,
especially when timing constraints are important such as for processing transactions.
This may cause an incorrect interpretation according to the intuition of the user. Fig[3]

E(T during ((A before B) or (A overlaps B)))
= E(TH((A;B)I(AB)))

Lo 2 T

E— A -
A before B — B E: Detected

By
Gomex

A - A
A overlaps B B £: Missed

o>

Composite Event E (snow storm alert) during the period
when event A (humidity raises 60%) occurs followed by
event B (wind blow from north), if event T (temperature
goes down below zero degree) occurs.

Fig. 5. Semantic Ambiguity

depicts a composite event E (snow storm alert): during the period when primitive event
A (humidity raises 60%) occurs followed by primitive event B (wind blows from north),
if primitive event T (temperature goes down below zero degree) occurs. Two situations
are shown. If we follow the interpretation of temporal conditions described by Gomez
et al. in [9]], in the first situation, event E is detected and in the second situation, event
E is missed. In [9], overlaps and during only comprises the period when two events are
simultaneously occurring, while every other operator takes the period over both event
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occurrences. This inconsistency may cause a problem. In both occasions, the natural
interpretation of event E is the same. With our definition, both examples will yield
consistent results.

4.3 Interval Semantics

In most event algebras, each event occurrence, including composite events, is associated
with a single time point. This may result in unintended semantics for some operator
combinations, for example nested sequence operators. In Figlgl time flows from left
to right, and each row shows the occurrence of a primitive event. When single point
detection is used, an instance of event B;(A;C) is detected if A occurs first, followed
by B and C. The reason is that these occurrences cause a detection of A;C, which
is associated with the occurrence of B;(A;C). With interval semantics, the sequence
A;B can be defined to occur only if the intervals of A and B are non-overlapping. No
occurrence of B;(A;C) would be detected.

A: move into the area above 1000m, B: temperature goes down to -4°C
C: move into the area above 2000m

A — &
B L 4 L4
C — e —_— e —
A;C —_— .- e—e
B;(A;Q) — @
B:C _— e — e—e—
A;(B;C) — @ — R —"
Single Point Interval Semantics

Fig. 6. Point and Interval

4.4 Event Context

Adding the policy defining the constraints provides a way to modify the operator seman-
tics. This parameter-dependent algebra can accommodate different policies on event
consumption. First, each operator is given a principle definition of the constraints on
the participating occurrences of events that characterize the operator. Then a number of
event contexts are defined that act as modifiers to the simple operator semantics. These
contexts specify constraints on how occurrences may be selected. As a result, each com-
bination of an operator and a context can be seen as a separate operator with a specific
meaning. This helps to deal with resource constrained environments, e.g., keeping the
most recent instance for future use.

Consumption Policy: For event consumption policy, three contexts unrestricted, re-
cent and chronicle, can be defined. Snoop [4] uses these contexts, but it is not capable
of applying an individual context to different event operators. The parameter-dependent
algebra clarifies the situations. The following gives an informal definition for detecting
A;B. Fig[7shows the effect of these contexts on the sequence operator.
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Fig. 7. Event Consumption Policy

e Unrestricted: All instances of A and B are valid.

e Recent: If an instance of B can be combined with several instances of A to form
instances of A;B, the only recent instance of A is valid.

e Chronicle: If an instance of B can be combined with several instances of A to form
instances of A;B, only the oldest instance of A is valid. Also, this instance is never
valid in the future.

Subset Policy: defines the subset of events to detect. Ideally the Subset Policy should in-
terfere as little as possible with unrestricted semantics. None of the removed instances
should have a crucial impact on the detection of an enclosing detection. At the same
time, operations such as conjunction and sequence must be able to identify non-valid
instances early, before the end time of the instance is reached. The main task of the Sub-
set Policy is to make an effective algebra, feasible to implement in resource-constrained
environments.

Al=
—eo—eo eo—e
A= — D
o—1 o —
S e—2—e
— o3 ot
—- = o A2=
—ef—e-
—_— e—e—
—- o
— - -

Fig. 8. Subset Policy

The basis of the Subset Policy is that the restricted event stream should be a subset
that does not contain multiple instances with the same end time. Informally, from the
instances with the same end time, the Subset Policy keeps exactly one, that with the
maximal start time. Fig. [§] shows the result of applying the Subset Policy to an event
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stream A. From the three instances of A (2,3,6) with the same end time, 2 must be re-
moved, together with either 3 or 6. For the two instances (1,4) that share the same end
time, the one with the earlier time must be removed. 5 does not share the end time with
others. The choice of which of (3,6) to remove results in two valid restrictions of the
event stream A, named Al and A2.

Precision Policy: defines the required precision of the events to be detected. The dy-
namic spatial-temporal data from sensor networks is generated at a rapid rate and all
the generated data may not arrive at the event correlation node over the networks due to
the lossy/faulty nature of the sensor network. Various techniques, including compres-
sion and model adaptation have provided certain levels of guarantees [15]. On the other
hand, if some imprecision of the collected data could be tolerated by the application,
defining the precision available is important.

For example, High, Default, Low can map to:

e the ratio of sensor nodes that are awake: 80%, 20%, 5%

e the delivered time-series data: 100%, 70%, 50%

e the interval of data collection: / second, 10 seconds, 60 seconds
o the frequency of data report: Urgent, Periodical, Available.

4.5 Event Detection

The current detection mechanism is based on an imperative algorithm, which is exe-
cuted once every time instant (Fig[9). The main loop selects subexpressions dynami-
cally and computes the current instance of a target composite event from the current
primitive event and stored past information. For example, F denotes the event expres-
sion to be detected, and subexpressions of E are indexed 1 to k in bottom-up order. The
operation result is £¥(= E). Each operation in the expression needs its own indexed
state variables (e.g., past events, time instant, and spatial information). For example,
Negation E = (A; B) — Cr, an instance of (A; B) is an instance of (4; B) — C unless
invalidated by some instance of C. Thus, if the current instance of (A; B) is valid, the
instance of C' with maximum start time can be the only one to invalidate. Conjunction
requires storage of the instance with maximum start time from each subexpression. If
the event expressions are known before the execution, a canned detection component
can be created for common use. The formal proof of the algorithm is out of scope of
this paper. We implemented a prototype based on a simple automata with support of
parameterized values and time constraints.

Algebra - -
Conjunction
Restriction

@ BEUECEIUEN @ | roicy > Detector ///‘m‘

Fig. 9. Event Detection
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5 Temporal Ordering

Sensor networks are used to monitor real world phenomena and for such monitoring ap-
plications, physical time is crucial. In global computing environments, such sensor data
flow over heterogeneous networks and ordering events is difficult. We cannot assume
a global clock, or globally synchronized physical clocks, to correlate events. Moreover
when the store-and-forward paradigm is used for communication, message propagation
delay is unavoidable. Traditional message ordering based on a transport layer protocol is
not applicable.

o4 Ts = Tx + (Px0+...Px4) + (Nx1+...Nx5)
X
ep%si (G [E

% NS Na .

Sink

Nx3
P: Process time Px2

N: Network Delay g
Nx2

Source

Px0

Fig. 10. Lightweight Local Clock Propagation

Thus, we use timestamps embedded in events for correlation, which provide a real-
time mechanism. Temporal ordering of events is highly influenced by the event detec-
tion method, timestamping methods and the underlying time systems. In this section,
we describe our time system for timestamping primitive events. Temporal ordering is
based on interval semantics and is described precisely in the Appendix.

In many real world scenarios, wireless networks may be deployed with relay nodes
to the Internet and it is possible that relay nodes can connect to GPS. This makes us con-
sider the use of GPS in distributed systems, including wireless network environments.
However, GPS is not suitable for use in a large class of smart devices due to its high power
consumption and the required line of sight to satellites. But GPS may be the key for pro-
viding accurate time adjustment at certain nodes that are less resource constrained within
wireless ad hoc networks. We define two categories of network environment; where NTP
is deployed with GPS, such as the Internet domain, and where networks are isolated in
ad hoc mode without GPS or any other deterministic time synchronization mechanism.
For the first category, we use interval-based point timestamps for primitive events (see
section 3), where the interval low and high end values are computed as described in [16]
to allow for clock uncertainty and network delay. For timestamping composite events we
use interval-based semantics, unlike[16] where a new timestamp is taken on the detection
of a composite event. For the second category, several time synchronization mechanisms
have been proposed (see section 6). Among those, we investigated the one described in
[25]). The idea of the algorithm is not to synchronize the local computer clocks of the
devices but instead to generate timestamps from a local clock. When such locally gen-
erated timestamps are passed between devices, they are transformed to the local time
of the receiving device. As a result of the experiments in [29], we propose a simplified
protocol Lightweight Local Clock Propagation explained below.
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Thus our proposal is a coordinated approach with and without the use of GPS. We use
interval-based timestamps throughout, with interval-based point timestamps for primitive
events and interval-based semantics for composite events. Sensor events could be aggre-
gated at gateway nodes with transformed timestamps and passed towards a subscriber
node in the Internet environment, where GPS-based time synchronization is deployed.

Lightweight Local Clock Propagation: is on-demand based timestamp synchroniza-
tion. Fig.1 shows the operation from source nodes X and Y to the sink node S. The
basic idea is that each node calculates its processing time using a local clock, and at
the sink node, the sum of the processing times is subtracted from the event arrival time
to estimate the occurrence time. Comparable timestamps are therefore created at sink
nodes instead of network-wide. This requires the following two assumptions:

o Network delay is negligible, where the node is close to the radio or network deploy-
ment is dense. Thus, O(nanoseconds) over a path to the sink of O(100s) meters..

e Clock drift is negligible, where the node carries an oscilloscope that guarantees less
than 10 ppm drift. One part per million (ppm) corresponds to 1 second in 11.5 days.

The detail of algorithms and experiments are out of the scope of this paper.

6 Related Work

Much composite event detection work has been done in active database research.
SAMOS [7] uses Petri nets, in which event occurrences are associated with a number
of parameter-value pairs. An early language for composite events follows the Event-
Condition-Action (ECA) model and resembles database query algebras with an expres-
sive syntax. Snoop [4] is an event specification language for active databases, which
informally defines event contexts. The transition from centralized to distributed sys-
tems led to the need to deal with time. [4] presents an event-based model for specifying
timing constraints to be monitored, and to process both asynchronous and synchronous
monitoring of real-time constraints. [18] proposes an approach that uses the occurrence
time of various event instances for time constraint specification. GEM [20] allows ad-
ditional conditions, including timing constraints, to combine with event operators for
composite event specification. In event-base middleware, publish/subscribe can provide
subscription to composite events instead of leaving it to the client to subscribe to and
correlate multiple primitive events. This reduces the communication within the system
and potentially gives a higher overall efficiency, which is addressed in [23]]. Hayton et al.
[11]], on composite events in the Cambridge Event Architecture [2], describe an object-
oriented system with an event algebra that is implemented by nested push-down FSA
to handle parameterized events. [12] provides time-restricted sequence and conjunction
and a construct to detect the 7*" occurrence of a given event.

Temporal message ordering has been an issue in traditional networks such as for
system monitoring and in distributed event systems. In existing systems, the semantics
of event order often depends on the application logic. Even the established Java Mes-
sage Service (JMS) only guarantees the event order within a session where a session is
a single-threaded context that handles message passing.
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For real-time support, a common solution in wired networks provides a virtual global
clock that bounds the value of the sum of precision and granularity within a few mil-
liseconds. The following approaches aim to support a real-time mechanism. The 2g-
Precedence model is enhanced for distributed event ordering and composite event de-
tection using 2g-precedence-based sequence and concurrency operators [26]. Events from
different sites can only be ordered if they are at least two clock ticks apart. The 2g-precedence
model is applicable for closed networks with interconnected servers. Network Time Pro-
tocol (NTP) is an Internet standard that supports the assignment of real-time timestamps
with given maximal errors. However, in open distributed environments, not all servers
are interconnected and event ordering based on NTP may lead to false event detection.
Interval-based time systems define event order based on intervals. In [16], timestamps of
events can be related to UTC (Universal Coordinated Time) with bounded accuracy, and
event timestamps are modeled using accuracy intervals. They use NTP that provides ref-
erence time injected by a GPS time server and, in addition, returns reliable error bounds.
In [23], the interval timestamp model introduced in [16] is adopted.

For wireless network environments, [24] presents a GPS based virtual global clock,
which is used for timestamping events, and deploys a similar concept to 2g-precedence.
Without the existence of GPS, there is no means of synchronizing the clocks of all
the nodes in a deterministic fashion with an upper bound independent of the message
propagation delay and system size. Logical time cannot be used to determine tempo-
ral ordering, because causal ordering of events in the real world must be maintained.
Thus, physical time has to be used, requiring clock synchronization. However, most of
the synchronization algorithms rely on partitioned networks. Post-facto synchronization
[6] is based on unsynchronized local clocks but limits synchronization to the transmit
range of the mobile nodes. In [25], they take a similar approach of unsynchronized
clocks.

7 Conclusions and Future Work

In this paper, we introduce a generic composite event semantics, which combines tradi-
tional event composition and the generic concept of data aggregation in wireless sensor
networks. The main focus is on supporting time and space-related issues such as tempo-
ral ordering, duplicate handling, and interval-based semantics, especially for wireless
network environments. Our approach includes definition of precise and complex tem-
poral relationships among correlated events using interval-based semantics. Our event
correlation semantics supports a new paradigm coming from the recent evolution of
ubiquitous computing with a rapid increase of event monitoring capability by wireless
devices, requiring more sophisticated event correlation over time and space. Work is
ongoing on high level language definition and the transformation of event algebra, so
that complex expressions can be more efficiently implemented in resource constrained
devices over mobile ad hoc networks. We are working on a complete implementation,
including various timestamping environments and parallel/hierarchical composition. In-
tegration with WSN middleware such as TinyLIME is in progress.
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Appendix: Interval Semantics - Timestamp for Composite Events

Table 3. Interval Semantics - Timestamp for Composite Events

‘ ‘Relalion ‘Timestamps of Primitive Events ‘Point ‘ Interval | Interval/Point | Point/Interval
1|A before B |P-P: t,(A) < t,(B) OA O-A-O O-A-O OA
Lt (A)" < t;(B)" OB O-B-O OB O—B-0O
(A+B) I-P: t;(A)" < t,(B) -0 ® LN -@ ® -@
(A|B) PI: t,(A) < t;(B) ° o—eo —eo o—eo
(A;B) e (o LJIKJ -0 | ® -@
2|A meets B * [P-P: NA O—A-O O—A—O OA
It (A)" = t;(B)! O—B—0O OB| O—B—O
(A +B) I-P: t; (A" = t,(B) [ LI -@ ® -@
(A|B) P-L: t,(A) = t;(B)! *—©O [ ® ®
(AB) [ LN -@ ® -@
(A;B)o o LK -0 | ® -@
3|A overlaps B|p-P: NA O—A—-0O
L (8 (A) < t:(B)Y) A (t:(A)" > t:,(B)Y) O—B—0O
(A+B) I-P: NA [ ] ®
(A|B) P-I: NA ® L
(AB) @ @
4|A finishes B |p-P: NA O A——O| O—A—oO0 OA
L (t(A) < t:(B)Y) A (ti(A)" = t,(B)") O—B—0O OB | O B—O
(A+B) I-P: t; (A)" = t,(B) [ J LN ) -@ ® -@
(A|B) P-I: t,(A) = t;(B)") ® LN -@ [
(AB) @ o ©® -@
5|A includes B|p-p: NA O——A O | O—A—O
I (8 (A) < t:(B)Y) A (8:(A)" > t,(B)") O-B-O OB
(A +B) I-P: (£, (A)! < t,(B)) A (£:(A)" > t,(B)) ® LN ) -@
(A|B) P-I: NA [ o ® -@
(AB) @ o ©® -@
6|A starts B [P-P: NA O—A—O O—A—O OA
L (t:(A) = t:(B)Y) A (8 (A" < t:(B)") O B——O| OB O—B O
(A+B) I-P: t;(A)! = t,(B) ® LN -@ ® -@
(A|B) P-L: t,(A) = t:(B)! ® ® [ -@ [ ]
(AB) ® ® ® -@
7|A equals B |P-P: t,(A) = t,(B) OA O A——-O
LL (t(A) = t,(B)) A (ti(A)" =t,(B)") | OB O B——-O
(A+B) I-P: NA [ ® @
(A|B) P-I: NA [ ] ® L ]
(A || B) ° ° °
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@—@ depicts the timestamp for the composite events

* A meets B where #(A)" and ¢(B)' share the same time unit
t(A): timestamp of an event instance A
tp(A): Point-based timestamp
t;(A) ?: Interval-based timestamp from event composition
tpi(A)I': Point-interval-based timestamp

(compared same as point-based timestamp but using interval
comparison)

P-P: Between Point-based and Point-based timestamps
I-I: Between Interval-based and Interval-based timestamps
I-P: Between Interval-based and Point-based timestamps
P-1: Between Point-based and Interval-based timestamps
Real-time Period T":
<B;j,t( ) <T(-p)

YES : max(t(B)" t(A ) ) — min(t
t(B)",t(4)") < T(1+p)

[t(A)l,t(A)h]f[t(B)l,t(B)h] < T—{ NO: max(t(B)l,t( ) ) — min(
MAYBE : otherwise

where p is maximum clock skew.
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