Securing Publish /Subscribe for Multi-Domain
Systems

Jean Bacon, David Eyers, Ken Moody, and Lauri Pesonen

University of Cambridge Computer Laboratory
JJ Thomson Avenue, Cambridge, CB3 0FD, UK

{firstname.lastname}@cl.cam.ac.uk

Abstract. Two convincing paradigms have emerged for achieving scal-
ability in widely distributed systems: role-based, policy-driven control
of access to the system by applications and for system management pur-
poses; and publish/subscribe communication between loosely coupled
components. Publish/subscribe provides efficient support for mutually
anonymous, many-to-many communication between loosely coupled en-
tities. In this paper we focus on securing such a communication service
(1) by specifying and enforcing access control policy at the service API,
and (2) by enforcing the security and privacy aspects of these policies
within the service itself. We envisage independent but related admin-
istration domains that share a pub/sub communications infrastructure,
typical of public-sector systems. Roles are named within each domain
and role-related privileges for using the pub/sub service are specified.
Intra- and inter-domain, controlled interaction is supported by negoti-
ated policies. In a large-scale publish/subscribe service, domains are not
expected to trust all message brokers fully. Attribute encryption allows
a single publication to carry both confidential and public information
safely, even via untrusted message brokers across a vulnerable communi-
cations substrate. Our approach provides the application designer with
fine-grained expressiveness while, at the same time, improving system
fault tolerance by allowing a single shared messaging network to route
both public and confidential information. Early simulations show that
our approach reduces the overall traffic compared with a secure publish/
subscribe scheme that encrypts whole messages.

Keywords: publish/subscribe, loosely coupled applications, content-based rout-
ing, role-based access control, attribute encryption, message confidentiality, trust

1 Introduction

We are concerned with how communication within and between large-scale, in-
dependent, widely distributed application domains should be supported and
managed. Two recently emerging paradigms for achieving scalability are asyn-
chronous, publish/subscribe-based communication and role-based access con-
trol (RBAC). In the EDSAC21 project we aim to extend and integrate these
paradigms to achieve a scalable, secure middleware capable of supporting fine-
grained control of communication within and between domains. In this paper

we present our multi-domain architecture and an interim evaluation based on
simulation.

We define a domain to be an independently administered unit in which a
domain manager has, or may delegate, responsibility for naming and policy spec-
ification. The following motivating scenarios have in common a communication
infrastructure shared by independently administered domains, some of which are
strongly related and have similarly named roles. The bulk of the communication
is likely to be within a domain but there is also a clear need for inter-domain com-
munication. (1) A global company has branches (e.g. sales) in California, London
and Tokyo. Some (sales) data and events should be shared between branches.
(2) A number of county-level police domains need support for intra- and inter-
domain messages. (3) A national health service’s communication infrastructure
is shared by many independent hospitals, clinics, primary-care practices etc. (4)
An “active city” has independent public services such as police, fire, ambulance,
hospital, and utilities. As well as communicating with similar services nationally
(e.g. police with police) the different services need to cooperate, especially in
emergencies. Examples are common in the public sector, where systems have
been particularly susceptible to expensive failure or curtailment.

The concept of role is well established for providing scalable security ad-
ministration. Role-based access control (RBAC) separates the administration of
people, and their association with roles, from the control of privileges for the
use of services (including service-managed data). Service developers need only
be concerned with specifying access policy in terms of roles, and not with in-
dividual users. Here we focus on securing the communication service. Domain
managers, or their delegates, specify communication policy in terms of message
types and roles; that is, which roles may create, advertise, send and receive which
types of message. Inter-domain communication is achieved through negotiated
agreements, expressed as access control policy, on which role(s) of one domain
may receive (which attributes of) which types of message of another.

Publish/subscribe [1] is emerging as an appropriate communication paradigm
for large-scale systems. It allows loose coupling between mutually anonymous
components and supports many-to-many communication. In this paper we fo-
cus on securing publish/subscribe within and between domains. For consistency
with other publish/subscribe systems we use event as synonymous with the
more general term message. The notion of role is ideally suited to a multicast
communication style. For example, the Cambridge police domain may define
a role sergeant-on-duty and message topics such as traffic-accident (attribute-
list). Authorisation policy will indicate which roles can advertise, subscribe to
and publish each topic. Inter-domain communication is supported, after human
negotiation, by indicating in policy that a specified role of some domain may
subscribe to certain (attributes of) topics published by some other domain.

Authentication into roles must be securely enforced to control the use of all
protected services. We have addressed this in earlier papers. For the communi-
cation service, RBAC policy indicates the visibility (to roles, intra- and inter-
domain) of specified attributes of message types. The fact that advertisement

is required before messages can be published, and both are RBAC-controlled,
prevents the spam that pervades email communication between humans. With-
out such control denial-of-service through publication or subscription flooding
could degrade large-scale inter-software communication in the same way that it
consumes resources in email management. In our system a spammer could only
be an authorised, authenticated member of a role and therefore could be held
accountable.

If the network and message brokers could be guaranteed 100% secure and
trustworthy, then RBAC would achieve precisely the visibility specified by policy.
In practice, we have to protect confidential data on the wire and in the brokers
by means of encryption. We offer fine-grained security, in that message attributes
are encrypted selectively, with key management transparent to the client level.
We assume that some form of message encryption is always needed, since nodes
of a communication service are not likely to be trusted universally with all data
and the network is vulnerable to listeners. Encryption overhead per se does not
need to be justified, and our evaluation indicates that our approach incurs less
overhead than using whole-message encryption.

The contribution of this paper is to show how role-based access control, to-
gether with fine-grained data encryption and the associated key management,
can be integrated with publish/subscribe based communication to create a secure
middleware suitable for a wide range of large-scale, widely distributed applica-
tion domains. First, we set the scene by discussing related research on secured
publish/subscribe in Section 2. Section 3 gives background in publish/subscribe
systems and role-based access control, emphasising, without loss of generality,
the systems we have used for our implementation and evaluation, Hermes and
OASIS. We then outline how RBAC and publish/subscribe are integrated. Sec-
tion 4 presents our multi-domain architecture in more detail. Section 5 uses a
multi-domain, networked city as a case study and describes the scenarios evalu-
ated in Section 6. Section 7 presents our conclusions in the context of our ongoing
and future research.

2 Related Work

To our knowledge, the architecture we outlined in [2] was the first to consider
access control for a publish/subscribe service. There, we took a typical private-
sector application, a newsfeed service, comprising a single naming and protection
domain. We did not consider public-sector, multi-domain examples, where it
becomes natural for a message-broker substrate to be shared, and where different
levels of trust in brokers must be accommodated. This work did not address data
encryption and key management.

Some authors explicitly exclude security as being orthogonal to the design
issues of publish/subscribe [3]. Others have limited their work to the communi-
cations level [4]. Others have discussed how publish/subscribe systems might be
secured but without explicit design details and evaluation. Wang et al. present
a number of considerations for publish/subscribe access control in [5] but with-

out proposing an architecture to solve the problems they raise. Similarly, in [6],
Miklés provides semantics defining a security ordering based on event attribute
values, but does not describe a practical test prototype. The approach of Miklés
is likely to be too restrictive in practice; it will not scale well due to the detailed
specifications required to define event security classes and how they interact.

Opyrchal and Prakash concentrate on the separate problem of providing con-
fidentiality for events during the last hop from the local broker to the event sub-
scriber in an efficient manner, with as few encryptions as possible [7]. Limiting
the number of last hop encryptions is valuable if the local brokers have poor re-
sources. We assume that the local brokers are powerful enough to deliver events
to their subscribers over TLS connections [8]. While more resource-intensive,
TLS provides us with strong client and server-side authentication and key man-
agement in addition to data encryption.

In sentient and ubiquitous computing environments privacy should be a ma-
jor concern, for example, when individuals can be recognised automatically and
tracked. This issue is not often considered. An exception is the Gaia project
where the approach is to guarantee anonymity [9]. [10] is also concerned with
anonymity in location systems. Publish/subscribe is based on mutual anonymity
at the client level. Parametrised RBAC gives the option of anonymity or iden-
tification. However, principals are not anonymous to the system when authenti-
cated into roles and the privileges of misbehaving principals can be withdrawn
promptly. Attribute-level policy expression controls the selective propagation of
identity attributes at a fine grain.

3 Background and Integration

Although our approach is generally applicable, our design and implementation
are based on Hermes publish/subscribe and OASIS RBAC. This section provides
a brief overview of publish/subscribe systems and role-based access control, de-
scribing the features specific to Hermes and OASIS. We then show how a publish/
subscribe system can be secured by RBAC.

3.1 Publish/Subscribe Systems

Large-scale, publish/subscribe messaging technology typically comprises a net-
work of brokers, which provide a communication service, and lightweight clients,
which use the service to advertise, subscribe to and publish messages [11,12].
Such systems are subject to failures of nodes and links, and their components
may join and leave dynamically. A communication service must be robust under
these conditions, fault-tolerant and dynamically reconfigurable. For this reason
the message brokers are often built above a peer-to-peer overlay network [13],
since peer-to-peer naming and protocols provide the necessary robustness.
Publish/subscribe systems are classified as type/topic- or content/attribute-
based. Hermes [13,14] is a distributed, content-based publish/subscribe archi-
tecture with an integrated programming model and strong message typing. It is

built on a peer-to-peer routing substrate to provide scalable event dissemination
and fault tolerance.

A Hermes system consists of two kinds of component: event brokers and
event clients, the latter being publishers and subscribers. Event brokers form the
application-level overlay network that performs event propagation by means of
a content-based routing algorithm. Event clients publish, or subscribe to, events
in the system. An event client has to maintain a connection to a local event
broker, which then becomes publisher-hosting, subscriber-hosting, or both. An
event broker without connected clients is called an intermediate broker.

Hermes supports event typing: every published event (or publication) in Her-
mes is an instance of an event type. An event type has an event type owner, an
event type name and a list of typed event attributes so that, at runtime, publica-
tions and subscriptions can be type-checked by the system. Hermes event types
are organised into inheritance hierarchies, but our work does not depend on this.
We show later how inheritance can be used within domains when it is available.

Each event type defined within a domain is registered by its owner via a
local event broker. This causes encryption status and keys to be set up within
the domain and a rendezvous node to be selected for peer-to-peer routing. Before
a publisher can publish an event instance, it must submit an advertisement to its
local event broker, indicating the event type that it wishes to publish. Subscribers
express their interest in the form of subscriptions that specify the desired event
type and a conjunction of (content-based) filter expressions over the attributes
of this event type.

The rendezvous node for an event type is selected by hashing the type name
to a broker identifier — an operation that is supported by the peer-to-peer rout-
ing substrate [15]. Advertisements and subscriptions are routed towards the ren-
dezvous node, and brokers along the path set up filtering state for them.

Most publish/subscribe systems, including Hermes, optimise content-based
routing of events with a subscription coverage relation, that states which sub-
scriptions are subsumed by others [11]. This allows brokers to reduce the number
of events sent through the system by enabling them to filter non-matching events
as close as possible to the publisher; these filters become increasingly specific as
events approach subscribers.

For reliability reasons, rendezvous nodes are replicated for each event type
(for example, broker instances can be selected by concatenating a salt value to
the type name before hashing [16]). In Hermes, a rendezvous node keeps an au-
thoritative copy of the event type definition, which is cached at other brokers
throughout the system for type-checking advertisements, subscriptions, and pub-
lications. In our current work, authoritative, domain-specific type information is
stored within the originating domain and rendezvous nodes hold a copy.

3.2 Role-Based Access Control

Role-Based Access Control (RBAC) [17] is an established technique for sim-
plifying scalable security administration by introducing roles as an indirection
between principals (i.e. users and their agents) and privileges. Privileges, such

as the right to use a service or to access an object managed by a service, are as-
signed to roles. Separately, principals are associated with roles. The motivation
is that users join, leave and change role in an organisation frequently, and the
policy of services is independent of such changes.

The Open Architecture for Secure Interworking Services (OASIS) [18,19],
provides a comprehensive rule-based means to check that users can only acquire
the privileges that authorise them to use services by activating appropriate roles.
A role activation policy comprises a set of rules, where a role activation rule for
a role r takes the form

Tl ey Ty Q1 y ooy Gy €15 -, € F T

where r; are prerequisite roles, a; are appointment certificates (most often persis-
tent credentials) and e; are environmental constraints. The latter allow restric-
tions to be imposed on when and where roles can be activated (and privileges
exercised), for example at restricted times or from restricted computers. Any
predicate that must remain true for the principal to remain active in the role is
tagged as a role membership condition. Such predicates are monitored, and their
violation triggers revocation of the role and related privileges from the principal.
An authorisation rule for some privilege p takes the form

Ty€1,-.,€] l_p

An authorisation policy comprises a set of such rules. OASIS has no negative
rules, and satisfying any one rule indicates success.

OASIS roles and rules are parametrised. This allows fine-grained policy re-
quirements to be expressed and enforced, such as exclusion of individuals and
relationships between them, for example treating-doctor(doctor-ID, patient-ID).
Without parametrisation it becomes necessary to define an unmanageably large
number of roles for an organisation of any size.

3.3 Integration

In OASIS RBAC, the authorisation policy for any service specifies how it can
be used in terms of roles and environmental constraints. Here, we use OASIS to
protect the publish/subscribe service in this way at a local broker. The service’s
methods include define(message-type), advertise(message-type), publish(message-
type, attribute-values) and subscribe(message-type, filter-expression-on-attribute-
values). OASIS policy indicates, for each method, the role credentials, each with
associated environmental constraints, that authorise invocation. define is used to
register a message type with the service and specify its security requirements at
the granularity of attributes. On advertise, publish and subscribe these require-
ments are enforced. We can therefore support secure publish/subscribe within a
domain in which roles are named, activated and administered.

A domain-structured OASIS system is engineered with a per-domain, secure
OASIS server, as described in [18], and a per-domain policy store containing
all the role activation and service-specific authorisation policies. This avoids the
need for small services to perform authentication and secure role activation. The

domain’s QASIS server carries out all per-domain role activation and monitors
the role membership rule conditions while the roles are active. This optimisation
concentrates role dependency maintenance within a single server and provides
a single, per-domain, secure service for managing inter-domain authorisation
policy specification and enforcement.

4 A Multi-Domain Architecture

In this section we present an architecture for an RBAC-secured, multi-domain
publish/subscribe system based on a shared event-broker network. We assume
that domains are given unique names within the system as a whole and that
roles are named and managed within a domain. We assume that each domain
provides a management interface through which role activation policies and ser-
vices’ authorisation policies can be specified and maintained.

A group of domains may have a parent domain from which an initial set of
role names and policies is obtained. For example, county police domains may
agree to use a nationally defined set of police roles; health service domains may
start from an initial national role-set. The domain management interface al-
lows local additions and updates, for example, when government changes na-
tional policy. Parametrised roles allow domain-specific parameters, for example
sergeant(Cambridgeshire). This avoids the role explosion when non-parametrised
RBAC is used on a large scale.

4.1 The Event-Broker Infrastructure

RBAC enforces authorisation policy at the level of clients of the publish /subscribe
service. At the service level we have to protect confidential data on the wire and
in the broker network. Publisher-hosting brokers must encrypt messages to se-
cure confidential information, first checking against policy that the publisher is
authorised to send the attribute values. Subscriber-hosting brokers must decrypt
messages and deliver to the subscriber the attributes that it is allowed by policy
to read. These policies are specified when the message type is defined.

We distinguish between trusted and untrusted brokers. For example, a na-
tional police service may comprise some tens of county-level domains, deploying
a (sub)network of brokers, trusted by all police domains. Statically, these bro-
kers are trusted by police to encrypt and decrypt police data. Dynamically, under
monitoring, some broker may come under suspicion and have trust withdrawn
from it. The police domains may choose to route data through the untrusted bro-
kers of other services, for example in rural regions. In general, police domains
may interoperate with other emergency service domains and with the media or
public via parts of the broker network that are untrusted.

A shared broker infrastructure may be built up when public sector domains
agree to interoperate. Alternatively, a broker infrastructure may be provided
commercially or as a public service, and independent, distributed applications

police-

PF
PR (P \ officer2 .m
9 .
police- / @ broker trusted with key for X

officerl RS publisher trusted for X
X—. subscriber trusted for X
<F ® restriction on X
;:;ey__ police-

officer duty-officer

reporter

Fig. 1. Illustration of Secure Publish/Subscribe

may use it to communicate intra- or inter-application. In both scenarios the
domains/applications will have different levels of trust in the various brokers.

A shared event-broker infrastructure offers both direct and indirect benefits:
management overheads are reduced by operating only a single broker network in-
stead of a separate one for each domain, with federation via gateways (as in [20]).
Untrusted brokers can augment trusted brokers’ routing abilities, ensuring better
resilience to failures. These direct benefits are particularly significant when the
network has many domains, and/or the domains are small. The indirect benefits
of using a shared network are equally important: networks of trust can be estab-
lished and reconfigured more easily, since the privileges of brokers and clients
are controlled dynamically within a homogeneous access control scheme. Also,
encrypting attributes separately allows a single event to contain both public and
private information.

Key Management for Trust Groups. A broker network comprising mul-
tiple trust groups must have a key manager for each group. Some domains’
OASIS servers will maintain key-groups of trusted brokers and distribute keys
to them, transparently to the clients of the publish/subscribe service. A broker
must be provided with credentials that allow it to join a trust group. Intermedi-
ate trusted brokers decrypt messages to achieve efficient content-based routing.
Untrusted brokers participate in routing at the message, rather than attribute,
level; details are given below. When a broker becomes untrusted, new keys must
be distributed to the remaining group members. We do not address malicious
brokers with byzantine behaviour that may corrupt routing state.

In Fig. 1 the brokers are annotated with the encryption keys to which they
have access; P for the police key, F for the fire key. The broker to which the
reporter is attached can deliver only unrestricted public data.

Suppose inter-domain communication is negotiated and an authorised sub-
scription is made from an external domain that has brokers in a different trust
group. The police and fire services of Fig. 1 are an example. Such a negotiated
agreement, that events of one domain may be subscribed to from another, im-

plies that the local brokers of publishers and subscribers are trusted to encrypt
and decrypt the authorised attributes, and have the appropriate keys.

4.2 Policy

Policy and enforcement mechanisms must be in place to support:

(i) Secure connection by a new broker in order to become part of a group of
trusted brokers.

(ii) Secure connection by a client to any trusted local broker.

(iii) Secure propagation of messages through the broker network with confiden-
tiality of attributes enforced as specified by policy.

(iv) RBAC-controlled use of the publish/subscribe service by clients.

For (i) and (ii), publishers, subscribers and brokers hold public key pairs,
bound to identity certificates (e.g. X.509 [21]), to connect to their local OASIS
service. Successful authentication will allow brokers to become part of a trusted
group for key management purposes, and will allow clients to proceed to re-
quest activation of the roles that authorise advertisements, subscriptions and
publications.

The authentication key pairs are also used in creating client and server-side
authenticated TLS connections between nodes. This prevents simple network
sniffing attacks by outsiders, thus helping to achieve data confidentiality and
integrity, contributing to (iii). For (iii) the key management service controls the
propagation of attribute decryption keys to trusted brokers.

(iv) was introduced in Section 3. The authorisation policy for the define(type)
operation specifies the credentials and constraints required for registering new
message types with the publish/subscribe service in a domain, and subsequently
for managing the registered types. It controls the ability to modify and remove
existing types and, in Hermes, to create sub-types. When a parent domain exists
it is likely that an initial set of message types will be used by all child domains,
similar to the use of nationally agreed role-names within related domains. A type-
specific read-write policy, if present, augments and refines the advertisement and
subscription policies. It defines, at the attribute level, the roles that can read
and/or write the various attributes of a type and can also restrict access by
attribute value, see below.

An advertisement policy defines which roles are allowed to advertise, and
then to publish, events of each given type. Environmental constraints may also
be included, see Section 3. Their actions may be subject to further restriction,
see below, as indicated by the type-specific read-write policy. A subscription pol-
icy defines the authorised receiver roles and conditions in a similar fashion. If
required, individual clients can be identified using role parameters.

Restriction. A publisher or subscriber role may be authorised by the pub-
lication or subscription policies, but restricted by the type-specific read-write
policy to a subset of the attributes of some event type that it requests, and/or
for a subset of the values of certain attributes. Rather than reject the request
outright, the local broker may allow the request after applying a restriction.

In the case of a publisher, any attribute value whose read-write policy does
not include write access is ignored. A simple approach is to omit the attribute
from the marshalled data, and supply a null value to subscribers. With a type
hierarchy it may be possible to restrict publications to a super-type of the re-
quested type, if advertisement policy allows that. In the case of a subscriber, the
natural restriction is to suppress the attribute value whenever the subscriber
does not have read access to an attribute under read-write policy.

Authorisation to advertise, publish or subscribe may also depend on condi-
tions such as event type or content, date, time or frequency of publication. Thus
a publisher may be restricted to publish certain events between 9am and 5pm.
OASIS environmental constraints can specify and enforce some of these condi-
tions, and publish/subscribe filtering may implement some forms of restriction
by attribute value. In general, specific predicates must be computed by the local
broker of the client to which the restrictions apply, see Section 5.

4.3 Attribute Encryption

Real-world occurrences often include confidential data that should be accessible
only to authorised subjects, e.g. the press should know about a car accident on
a highway, but the names of the victims should stay confidential to the police
and health services. This is achieved by RBAC policy and mechanism at appli-
cation level, and by encrypting attributes (in publications) and filter expressions
(in subscriptions) with symmetric keys at the message service level, as outlined
above. Although our approach introduces run-time overhead due to the cryp-
tographic operations on attributes of publications and subscriptions, it allows
the same publication to be disseminated to subscribers with different privileges,
thus using the event dissemination tree efficiently. Section 6 shows that attribute
encryption can decrease the overall cryptographic overheads.

Event Types with Attribute Encryption in Hermes. To indicate attribute
encryption within the Hermes type system, we annotate the event type hierar-
chy with the keys that are used to encrypt specific attributes, reflecting defined
policy. Local brokers of publishers and subscribers implement this security pol-
icy; clients are not concerned with encryption. Each attribute of an event type
is either public, indicated by the empty key (0), or it must be encrypted using
one or more keys. Fig. 2 shows annotated type hierarchies for Police and Fire
Service domains. The location attribute in a PoliceEvent may be encrypted
using both police and fire keys. This would result in two instances of the same
attribute in a single event, each instance encrypted with a different key.

The standard inheritance sub-typing relation between event types must still
hold: a subtype has to be more specific than its parent type. As a result, encryp-
tion keys can only be removed from inherited attributes but not added. This is
illustrated in Fig. 2 with the location attribute, whose access becomes more
restrictive as new event types are derived.

Coverage Relations with Encrypted Filters. In order to take advantage of

-~ Fire Service "~ e PoliceEvent S~
N

e Domain AN e location (police, fire) AN
4 \ e policeCode (police) N
’ . \ .
FireEvent ’ . source (police) \

/ \ N

/ buildingType (0) \ ,/ PO]IC.C N
! enginesPresent (fire) Voo Domain . . \
! [1sa, isa \
I g \
1 [1

! . .

\\ isa ;0 TrafficAccidentEvent /’
\ 1 \\ roadType (0) Burglary];vent) ,
\ FireAlarmEvent)/ \ casualties (police) location (police) !
AN detectorType (0) / AN specialHazard (police, fire) zone (0) ,
N 4 N 7
N . < .

Fig. 2. Per-Domain Event Type Hierarchies with Attribute Encryption

sl:PoliceEvent

covers

s2:PoliceEvent
fl (location (police, fire))

cove’r}/ xovers

s3:PoliceEvent
f1(location (police))

s4:BurglaryEvent
f1 (location (police, fire))

Fig. 3. Subscription Coverage with Attribute Encryption

subscription coverage (described in Section 3), we extend this relation to handle
subscriptions that refer to encrypted attributes.

A filter expression encrypted under a particular key is covered by a previ-
ous filter expression if this previous filter is the same or more general, and is
encrypted under the same key (including the case where neither expression is
encrypted). A subscription is then covered by another subscription if all its filter
expressions are covered. More formally, if s; and s; are two subscriptions with
a conjunction of filter expressions f¢ and g7 encrypted under the keys k; and [;,
respectively,

s1=fa, Ny NN FE (1)

szzglll/\gli/\.../\gl’fn, (2)

then s; covers (3J) s is defined as follows:
s1 sy < Vidj fi, Jgl A ki=l (3)

We assume above that each subscription includes empty filters encrypted with
all available keys by default.

The coverage relations between the example subscriptions s; to s4 are shown
in Fig. 3. Subscription s; is the most general because it does not specify any filter
expressions. It covers the second subscription s;, which specifies a filter f; over
the location attribute encrypted under the police key or the fire key. Subscribers

can only provide meaningful filters for encrypted attributes if they have read
access, and in addition the broker handling the so subscription must be trusted
with both the police and fire keys. The filter expression in s3 does not match
events with location attributes encrypted under the fire key and therefore so
covers sg strictly. According to the event type hierarchy BurglaryEvent is a
subtype of PoliceEvent, hence subscription s4 is also covered by s, since their
filter expressions are the same.

Encryption Keys. We use symmetric keys to encrypt and decrypt attribute
values. These keys are distributed only to the brokers that are trusted with the
attribute values. The system will never deliver these keys to clients. This reduces
the number of nodes that are trusted with sensitive keys, and that take part in
key management protocols. Note that this does not affect security since local
brokers encrypt and decrypt attribute values on behalf of connected clients, and
deliver events to clients over secure links.

To support cryptographic properties such as key freshness, and forward and
backward secrecy [22], the system requires key management service(s). The most
suitable key management strategy depends on the broker-network architecture.
For EDSAC21 we assume a stable configuration with static, multi-hop, inter-
broker connections and are investigating a tree-based approach [22]. However,
the dynamic nature of a peer-to-peer routing layer presents special problems,
and we are also evaluating an alternative, ad-hoc network based approach [23].

Efficient group key management [24] is not the focus of this paper. Overall,
the efficiency of key distribution will have little impact on performance, since
symmetric keys are distributed only to brokers, as opposed to publishers and sub-
scribers. Relatively few entities are involved in key dissemination, and changes
will be infrequent. However, correct key management is essential for the security
of the system.

4.4 Security Overheads

When compared with basic publish/subscribe, our secured publish/subscribe in-
troduces three types of processing overhead: one-time only, per event, and key
management related. (1) One-time only overheads include node authentication
and authorisation when new nodes connect to the network, and subscription-
filter encryptions. (2) Per event overheads include those caused by encrypting
and decrypting attributes, and applying restriction predicates at local brokers.
One encryption is required for each instance of a secure attribute in a published
event (see Section 4.3), using the appropriate symmetric key; this happens only
once at the source, and intermediate brokers can pass the encrypted event to
the next node directly. Decryption is required on delivery, and possibly at each
routing step, too. The event dissemination tree structure ensures that each new
subscription adds no more than two decryptions: once en route at a filtering bro-
ker, and once on delivery at the subscriber’s local broker. (3) Finally, the cost
of key management depends on the frequency of key change and the dissemina-
tion method, as discussed above. This is likely to occur relatively infrequently,

police-
P.F B officer?

52 Te

P,F

P
e @ P Yt [F e
sl sl b2 sl

police-
officerl

@ broker trusted with key for X

police-
duty-officer

X .
—D publisher trusted for X BurglaryEvent

X . rendezvous node
—. subscriber trusted for X

® restriction on X

Fig. 4. Notifying two police officers of a BurglaryEvent

as clients never have direct access to encryption keys, and key management is
handled at broker-level only.

In addition to processing overheads, attribute encryption increases the size
of events in two ways: (1) a single attribute value encrypted with multiple keys
results in multiple instances of that value, each encrypted with a different key;
(2) encryption algorithm mechanisms dictate that the encrypted data must be at
least of some minimum length, depending on the encryption algorithm. Common
minimum lengths would be 64 bits and 128 bits. Thus, a single 8 bit attribute
value encrypted with three keys grows in size to 192 bits because of padding and
multiple attribute instances. This might be avoided by using a stream cipher,
which operates on a stream of data one bit at a time, rather than a block cipher.

5 Case Study: Public Services within a City

We now illustrate our architecture for a city in which the publish/subscribe
systems of different emergency services interoperate securely and efficiently. We
use a break-in to a university building as an example. Fig. 4 shows the principals,
brokers and messages discussed below. We assume that equipment failure has left
the police network partititioned, and that broker b1 is connected only through
the fire network.

1) We focus on two police officers on night shift; part of their duty is to
respond to notifications of burglaries. We assume that the event-type Bur-
glaryEvent is already advertised when the officers come on duty. This means
that a rendezvous node b5 is assigned for the type and subscriptions can be
made. We shall see that further advertisements, and subsequent publications,
can be made as burglaries are detected in different areas.

We assume that both officers authenticate with their local OASIS service on
coming on duty and, assuming that their credentials are valid, acquire the role
with associated privilege to send subscription messages: s1 and s2 respectively.

Officer 1 is a probationary officer, who moves between different parts of the
city. Officer 2 is located in West Cambridge. Suppose that at the start of her shift
officer 2 subscribes to BurglaryEvent (location = ‘West Cambridge’). Since
this subscription requires filtering on the location attribute, and this attribute
is encrypted with the police key (recall the event type hierarchy shown in Fig. 2),
the officer knows that her local broker must be trusted with the police key, i.e.
a P broker.

Officer 1 tries to subscribe to all burglary events with a police code less than
4, BurglaryEvent (polCode < 4), but the request is only partially granted.
Instead, the subscription is restricted, as described in Section 4, to deliver only
those events that occur in the officer’s current location. This restriction, which
is based on a dynamically checked environmental constraint, is shown in Fig. 4,
attached to his broker connection.

2) Any broker through which s1 and/or s2 travel (towards their rendezvous
node and then along the reverse path of advertisements) will update its internal
routing state appropriately. Note that our security architecture augments stan-
dard Hermes subscription setup behaviour when we reach broker b2. Whilst s1
travels through this broker, the broker is not part of the police network, and
thus will not have access to the police key. Therefore this broker will be forced
to degrade routing efficiency by ignoring police officer 1’s filter on the polCode
attribute, which it cannot decrypt, and routing all events forward.

3) We show a duty-officer at a police station who must notify police of-
ficers of reported burglaries. Like officers 1 and 2, the duty-officer authenti-
cates himself with his local OASIS service, and acquires privileges to advertise
BurglaryEvents. Again, his local broker needs access to the police key. The con-
sequent advertisement message is shown as a in Fig. 4. This step could occur in
parallel with a subscription, see Step 1. If a broker notices that an existing sub-
scription matches a new advertisement, it will resend the subscription message
along the reverse path of the new advertisement towards the publisher.

All this occurs at the start of the officers’ sessions, a long time (in publish/
subscribe terms) before the actual burglary occurs.

4) Now suppose our example burglary is reported to the duty-officer. He
publishes an event e, in this case:
BurglaryEvent (location = ‘West Cambridge’, premises =
‘William Gates Building’, polCode = 3, ..., zone = ‘university’).

5) The event e leaves the duty-officer’s local broker, through the publish/
subscribe network, under control of the Hermes routing algorithm. Note that
en route, each broker decodes and filters the event in so far as it can. In this
particular case, only P brokers will be able to filter based on the location
and/or polCode attributes, but all brokers will be able to filter on the zone
attribute (see Fig. 2).

6) As e travels along the reverse path of the subscriptions, it passes through
broker b3, which is police officer 2’s local broker. The broker uses the police key
to decrypt the location and polCode attributes before delivering the event to
officer 2 over the secure ‘final hop’ set up as described in Step 1 above.

7) In order to reach police officer 1, e needs to be routed through b2. While
this is not the most desirable mode of operation, since the event passes through
a broker that does not have access to the police key, it is crucially better than
the situation in which the police network remains partitioned.

As mentioned in Step 2, since broker b2 cannot decrypt police encrypted
attributes, it cannot apply filtering on fields such as location. Thus for routing
e, the event appears as BurglaryEvent (location = 7, polCode = 7, ...,
zone = ‘university’), and it is passed on to bl regardless of its location
value.

8) Finally, the local broker bl of police officer 1, which is trusted with the
police key, will receive e from b2, and decrypt the location attribute. It will
then apply the restriction, checking whether officer 1 is currently in West Cam-
bridge. If so, b1 will decrypt the entire event and pass it over the secure ‘final
hop’ to officer 1. We have assumed for simplicity that although officer 1 is mobile
he remains connected to the same local broker. The alternative is that he creates
a new OASIS session whenever he needs to connect to a different broker.

6 Evaluation

The EDSAC21 project is substantial and still at an early stage. We have carried
out the following simulation studies to validate the approach. Fig. 5 and Fig. 6
compare the performance of our attribute encryption implementation with the
more common approach (such as [4]) that encrypts multiple instances of entire
events with each of the relevant keys. Each figure shows the average result of
three simulations for each data point.

These experiments all used the Hermes publish/subscribe system for message
routing, running over a simulated network topology of 1000 IP routers (organised
into ten autonomous subnetworks), with fifty randomly chosen event brokers. In
this overlay network we randomly introduced ten event publishers, who, in each
iteration of the test, published a total number of 1000 events.

We used the case study scenario of Section 5 as a basis for the simulation,
generating events of type PoliceEvent. There were three groups of subscribers:
(1) public information services (S0) that filtered only on a single unencrypted
attribute (severity); (2) police officers (S1) who filtered on a single police en-
crypted attribute (location); (3) police trainers (S2) who held both police and
policeTraining keys and filtered on isDrill and location. For the attribute en-
crypted case, publishers encrypted the individual message attributes as shown
in Fig. 2. The implementation that encrypts whole events had to send up to
three instances of each event, one for each of the independent security domains
covered by a message.

70000

g Total messages
o 60000 -
)
) L
=) 50000
@ 40000
Q
£ 30000 B J S
o B
o 20000 ru’af e
Q o e A e e T R S N
g 10000 f*,w; ’:x_xx x2ex % s i
pd L I ans fabaasbababessakabasts
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Subscribers (ng)
Fig. 5. Total number of messages with attribute encryption
. 70000 Tot I' T T T
s otal messages —=— Bngaaass
3 60000 - S — o T
8 L 81 """ i _F“‘,BW
o)) 50000 82 ,,,,,,,,,,,,,,,,,,, ’nfaﬂ
g s I
) Tt
@ 40000 faf PRI o
£ 30000 . R
o N s
E 20000 ,4—++w‘ Xy KooK s XKHXHX X g X X-% XX
-g 10000 o) X X X x~xx—xx->‘x-)->0<x"‘>"‘"‘ X XXX
2 g:;,xx* st shassanssd ssssanns

0 .
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Subscribers (ng)

Fig. 6. Total number of messages without attribute encryption

The events were delivered to the subscribers, whose number (ny) we gradually
increased from 25 to 2000 in steps of 25. Subscribers set random filters on event
attribute values. Five per cent of all subscriptions were S2 subscriptions that
filtered on two encrypted attributes, one encrypted with the police key, and the
other with the policeTraining key. Thirty five per cent of all subscriptions were
S1 subscriptions that filtered on one attribute encrypted with the police key,
while the rest were SO subscriptions filtering on a single unencrypted attribute.
Note that subscriptions with filtering on encrypted attributes may also include
filters on unencrypted attributes. The total number of events sent within the
broker network is also shown in the graphs, as Total messages = SO + S1 + S2.

Our performance results show that with 1000 subscribers, only about 39300
messages needed to be sent when using attribute encryption, while 51400 were
sent when events were encrypted atomically with one key at a time — a 24%

saving in bandwidth. For 2000 subscribers, the savings had increased further to
27%.

As the number of subscribers increases, the network with attribute encryption
eventually becomes saturated by complex filtering; this is because it becomes
increasingly likely that there is a local S1 or S2 subscriber at each broker for any
given event. Thus the number of events that need to be decrypted (S1 and S2)
grows in Fig. 5, initially because of new event dissemination routes, but later
also because events previously counted under SO now need at least one attribute
decrypted; they contribute instead to S1 or S2, which explains the eventual fall-off
of the SO tally as the number of subscribers increases. However, even with 2000
subscribers there were over 11000 event hops for which no attribute decryptions
were needed.

Attribute encryption slightly increases the number of times that events need
to be decrypted for filtering. However, this is largely compensated by the fact
that we then need fewer point-to-point encryptions and decryptions within a TLS
connection (total decryptions = 2 x S2 + S1). For 2000 subscribers, whole event
encryption needed about 87400 decryptions, while attribute encryption required
a grand total of approximately 88500, — an increase of 1.2%. However, for a
less saturated network with 1000 subscriptions, overall encryptions decreased by
2.7%.

Note that generally the overall load on event brokers is decreased still further
in our approach, since less data needs to be decrypted at each filtering decryption
step (a few attributes, as opposed to the whole event).

7 Conclusions and Future Work

Security is a crucial concern for the development of scalable messaging systems,
particularly those for the public sector where data is often highly confidential and
privacy must be guaranteed. Publish/Subscribe communication is recognised as
appropriate for large-scale systems, yet most research on it excludes security.
This paper presents our architecture for a secure publish/subscribe middleware.
Our system builds on the performance and fault-tolerance of publish/subscribe
messaging, and augments it with scalable security administration based on de-
centralised Role-Based Access Control. We assume a multi-domain architecture
for administration of roles, message types and policies.

Although our implementation uses Hermes and OASIS, our design is appli-
cable to publish/subscribe systems in general. To secure a topic-based publish/
subscribe system, whole event encryption would be used, with given events being
sent multiple times, encrypted under different keys. Our simulation takes this ap-
proach as a basis for comparison. To secure a content-based publish/subscribe
system, whole event encryption could be used, but we have shown that it is
practicable to encrypt the different attributes of an event separately.

Using an “Active City” example, we show how various public-sector, emer-
gency service notifications can be captured in an event type hierarchy, and how
access control and attribute encryption can facilitate secure and efficient com-

munication. If a type hierarchy is not available, our design equally well supports
separate services using a shared publish/subscribe system with a flat message
type-space.

We have simulated attribute encryption and whole-event encryption for a
scenario based on the case study in Section 5. We show that our approach reduces
the number of events sent in the system, as well as the processing required for
decryptions performed by brokers. Efficiency was not the main focus of our
design; rather, we were concerned to demonstrate that the expressiveness of
fine-grained access control need not incur undue implementation overhead.

Current and Future Work. This research is part of a project, EDSAC21,
to provide secure middleware for large-scale, widely distributed applications.
The system mechanisms themselves are used to maintain role membership rules
and push changes of policy, thus facilitating immediate response to changes in
security predicates.

In [25] we present current work on ensuring the system-wide uniqueness and
integrity of message type names and versions, and [26] discusses how a broker
network is assembled securely and maintained. We are currently integrating ac-
tive databases and publish/subscribe. Database message types are defined as
described in Section 4.2. Database instances can then advertise the events they
are prepared to publish, and subscribers use the standard subscription mecha-
nism [27].

We are also working on how to support communication patterns other than
the anonymous multicast of publish/subscribe, while retaining the efficiency and
resilience of a broker network. Natural requirements are for an individual member
of a role to be selected on publication, and for any recipient to be able to reply
to a publication, either anonymously (as in voting) or identified.

We shall continue to assume stationary rather than mobile brokers. Since
OASIS is session-based we have so far assumed that mobile clients will remain
connected to a single broker during their period of subscription. We envisage
natural extensions that allow detached operation while a subscription persists,
where a local broker (or a separate service) will buffer messages on behalf of
detached clients. Future work is to investigate how best to support client mobility
during a period of subscription.

In this paper we have demonstrated the synergy between roles and publish/
subscribe communication within and between domains, and have shown the fea-
sibility of expressing and enforcing fine-grained security policy.

Acknowledgements

We acknowledge the contributions of Peter Pietzuch, Brian Shand and Andrés
Belokosztolszki. The EDSAC21 project builds on their research as graduate stu-
dents and they were involved in the design of the architecture presented here.
EPSRC GR/T28164 supports Lauri Pesonen and EPSRC GR/S94919 supports
David Eyers.

References

10.

11.

12.

13.

14.

15.

16.

. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of

publish/subscribe. ACM Computing Surveys 35 (2003) 114-131

Belokosztolszki, A., Eyers, D.M., Pietzuch, P.R., Bacon, J.M., Moody, K.: Role-
based access control for publish/subscribe middleware architectures. In: 2nd In-
ternational Workshop on Distributed Event-Based Systems (DEBS’03). ICDCS,
ACM SIGMOD (2003)

Baldoni, R., Contenti, M., Virgillito, A.: The evolution of publish/subscribe com-
munication systems. In: Future Directions of Distributed Computing. Volume 2584
of LNCS., Springer (2003) 137-141

Yan, Y., Huang, Y., Fox, G., Pallickara, S., Pierce, M., Kaplan, A., Topcu, A.:
Implementing a prototype of the security framework for distributed brokering sys-
tems. In: Proceedings of the International Conference on Security and Management
(SAM’03). (2003) 212218

Wang, C., Carzaniga, A., Evans, D., Wolf, A.: Security issues and requirements
in internet-scale publish-subscribe systems. In: Proceedings of the 35th Annual
Hawaii International Conference on System Sciences (HICSS’02), IEEE (2002) 303
Miklés, Z.: Towards an access control mechanism for wide-area publish/subscribe
systems. In: 1st International Workshop on Distributed Event-Based Systems
(DEBS’02). ICDCS, IEEE (2002) 516-524

Opyrchal, L., Prakash, A.: Secure distribution of events in content-based publish
subscribe systems. In: 10th USENIX Security Symposium. (2001)

Dierks, T., Allen, C.: The TLS protocol, version 1.0, RFC-2246. Internet Engi-
neering Task Force (1999)

Campbell, R., Al-Muhtadi, J., Naldurg, P., Sampemane, G., Mickunas, M.D.: To-
wards security and privacy for pervasive computing. In: Software Security — The-
ories and Systems, Mext-NSF-JSPS International Symposium, ISSS 2002. Volume
2609 of LNCS., Springer (2002) 1-15

Beresford, A., Stajano, F.: Location privacy in pervasive computing. IEEE Perva-
sive Computing 2 (2003) 46-55

Carzaniga, A., Rosenblum, D.S.; Wolf, A.L.: Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems 19 (2001)
332-383

Banavar, G., Kaplan, M., Shaw, K., Strom, R.E., Sturman, D.C., Tao, W.: Infor-
mation flow based event distribution middleware. In: Middleware Workshop at the
International Conference on Distributed Computing Systems 1999. (1999)
Pietzuch, P.R., Bacon, J.M.: Peer-to-peer overlay broker networks in an event-
based middleware. In: 2nd International Workshop on Distributed Event-Based
Systems (DEBS’03). ICDCS, ACM SIGMOD (2003)

Pietzuch, P.R., Bacon, J.M.: Hermes: A distributed event-based middleware ar-
chitecture. In: 1st International Workshop on Distributed Event-Based Systems
(DEBS’02). ICDCS, IEEE Press (2002) 611-618

Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems. In: Middleware '01, IFIP/ACM Inter-
national Conference on Distributed Systems Platforms. (2001) 329-350

Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, UC
Berkeley (2001)

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Sandhu, R., Coyne, E., Feinstein, H.L., Youman, C.E.: Role-based access control
models. IEEE Computer 29 (1996) 38-47

Bacon, J., Moody, K., Yao, W.: Access control and trust in the use of widely
distributed services. In: Middleware ’01, IFIP/ACM International Conference on
Distributed Systems Platforms. Volume 2218 of LNCS., Springer (2001) 295-310
Bacon, J., Moody, K., Yao, W.: A model of OASIS role-based access control and
its support for active security. ACM Transactions on Information and System
Security (TISSEC) 5 (2002) 492-540

Hombrecher, A.B.: Reconciling Event Taxonomies Across Administrative Domains.
PhD thesis, University of Cambridge Computer Laboratory, Cambridge, UK (2002)
ITU-T (Telecommunication Standardization Sector, International Telecommuni-
cation Union): ITU-T Recommendation X.509: The Directory — Authentication
Framework. (2000)

Kim, Y., Perrig, A., Tsudik, G.: Tree-based group key agreement. ACM Transac-
tions on Information and System Security 7 (2004) 60-96

Hietalahti, M.: Efficient key agreement for ad-hoc networks. Master’s thesis,
Helsinki University of Technology, Department of Computer Science and Engi-
neering, Espoo, Finland (2001)

Rafaeli, S., Hutchison, D.: A survey of key management for secure group commu-
nication. ACM Computing Surveys 35 (2003) 309-329

Pesonen, L., Bacon, J.: Secure event types in content-based, multi-domain pub-
lish/subscribe systems. In: Fifth International Workshop on Software Engineering
and Middleware (SEMO05). (2005) To appear.

Pesonen, L., Eyers, D., Bacon, J.: A capability-based access control architecture
for multi-domain publish /subscribe systems. (2006) Submitted for publication.
Vargas, L., Bacon, J., Moody, K.: Integrating databases with publish/subscribe.
In: 4th International Workshop on Distributed Event-Based Systems (DEBS’05).
ICDCS, IEEE Press (2005) 392-397

