
Mapping legal cases to RDF named graphs using a
minimal deontic ontology for computer-assisted legal

inference

Alan S. Abrahams
Wharton School

University of Pennsylvania
asa28@wharton.upenn.edu

David M. Eyers
University of Cambridge Computer Laboratory

JJ Thomson Avenue, Cambridge, United Kingdom
{firstname.lastname}@cl.cam.ac.uk

Jean Bacon
University of Cambridge Computer Laboratory

JJ Thomson Avenue, Cambridge, United Kingdom
{firstname.lastname}@cl.cam.ac.uk

ABSTRACT
The complexity of natural language employed within legal
documents will leave their meaning opaque to automated
computer interpretation for many years to come. Even so,
this paper proposes that informative inference of deontic
state can still be performed over a simplified encoding of
legal semantics. We discuss how to map numerous deontic
concepts into our minimal encoding. We use RDF named
graphs to independently represent the numerous conflicting
perspectives on the state of affairs being examined within a
legal case. Inference over these named graphs is performed
using an implementation of event calculus. We encode the
key parts of a commercial case from the High Court of South
Africa, and demonstrate that useful inferences can be formed
on the basis of the minimal encoding.

1. INTRODUCTION
Justice and the law, internationally, are immense resource
consumers in terms of staff time, money, and both electronic
and physical records. Increasingly, legal information is pub-
licly available through the World Wide Web: many countries
provide summarised representations of their courts’ cases.

As Semantic Web technologies mature, there are significant
increases in the potential for computers to be able to corre-
late legal material from distributed information sources. By
better organising public legal data, we believe that it will
become more accessible to the public, as well as increasing
the efficiency of legal practitioners.

Compared to the explosive expansion of the Web, though,
the Semantic Web is growing more slowly. It is unlikely that

ontologies and parsing techniques will be widely available to
encode existing legal records for many years yet.

However, we argue that significant benefit to searching and
analysis of legal documents can be gained even if only a
minimal encoding of legal semantics is applied to cases. This
paper presents such a minimal encoding, and discusses how
to map more complex deontic concepts into it.

Inference of deontic state at points in time is performed
using an implementation of the Event Calculus [29]. This
implementation operates over data stored using RDF [33].
More specifically, we use RDF named graphs [34, 8].

This paper is organised as follows. Section 2 describes the
semantic web technology we employ. We then provide a
brief introduction to the simplified event calculus in section
3. An overview of related research is presented in section
4. Section 5 introduces our minimal deontic ontology. A
worked example is described in section 6. Finally, section 7
provides concluding remarks.

2. RDF NAMED GRAPHS
The Resource Description Framework (RDF – [33]) provides
a straightforward, expressive means for knowledge represen-
tation. Each RDF statement has a subject, a predicate and
an object. The instances of concepts need names that are
defined with global scope and decentralised ownership. The
World Wide Web Universal Resource Identifier (URI – [6])
system is used to meet both requirements. URIs contain
(among other parts) a domain name portion, e.g. vt.edu,
and a local path. Domain names are owned by particular
organisations and can be used to locate the servers of an
organisation unambiguously within the Internet. The lo-
cal paths are under the control of the owner of the domain
name, and thus can be defined at will. URIs themselves are
just names, but by convention their global lookup process
can be used to confirm they are genuine – for example re-
turning human or machine readable information should the
URIs be requested using a web browser.

Each subject and predicate of an RDF statement is a URI,

and statement objects can be either a URI or a literal value.
The example below indicates that the title of RFC 3870 is
“application/rdf+xml Media Type Registration“. We use
‘S’, ‘P’ and ‘O’ to label the RDF statement’s subject, pred-
icate and object respectively. Note that the concept of “ti-
tle” in this RDF statement is drawn from the Dublin Core
ontology.

S: http://www.ietf.org/rfc/rfc3870.txt
P: http://purl.org/dc/elements/1.1/title
O: "application/rdf+xml Media Type Registration"

This paper does not focus on implementation-level RDF con-
cerns, indeed our prototype evaluations are written in Prolog
and use an RDF-compatible, functional term representation
of our data. Our requirement was for an encoding of di-
rected graphs with named edges: RDF can easily encode
such structures.

Unlike the ideal global semantic web, however, we are encod-
ing data that is highly subjective, transactional and possibly
contradictory. Clearly court cases frequently arise from par-
ties having conflicting beliefs. Also, the submissions received
within legal proceedings are sets of statements presented to-
gether, and thus are transactional. To support representa-
tion of this sort of data, we use RDF named graphs [34].

RDF named graphs introduce an extra term to each state-
ment, creating a quad instead of a triple. Three of the el-
ements of this quad are the usual elements of RDF triples.
The fourth element allows grouping of sets of statements.
For example, we could rephrase the above RDF triple in
named graph form (‘G’ labelling the graph).

G: http://vt.edu/people/abra/claim/20070501a
S: http://www.ietf.org/rfc/rfc3870.txt
P: http://purl.org/dc/elements/1.1/title
O: "application/rdf+xml Media Type Registration"

By referring to this RDF statement using the graph name,
we can reason about an individual at Virginia Tech’s claim
that RFC 3870’s title is as shown. It is worth pointing out
that there is some interplay between RDF named graphs
and the implementation of the RDF store in use, however.
Strictly, if the RDF Schema [35] semantics are added to
storage and inferencing components, the notion of closed
lists can be used to describe named graphs. However the
URIs that describe the elements of any such named graph
can only build the graph’s statements through reification,
so the representation ends up somewhat bulky and incon-
venient. We note that this is a similar but more extreme
version of the situation with typed RDF literals, which can
also be implemented using standard RDF statements and
untyped literals provided that the RDF engine understands
the conventions employed.

There is no restriction on RDF statements using graph-name
URIs in their subjects, objects and predicates (although the
former two contexts would probably be more intuitive than
the latter). Indeed we employ statements about the con-
tainment of named graphs within other named graphs to
effect collections of RDF statements and named graphs in a
manner similar to the discrete “files” used in most computer
software.

holds_at(U,T) :- 0=<T, initially(U),

\+ clipped(U,0,T).

holds_at(U,T) :- happens(E,Ts), Ts < T,

initiates(E,U,Ts),

\+ clipped(U,Ts,T).

holds_for(U,T1,T2) :- holds_at(U,T1),

\+ clipped(U,T1,T2).

clipped(U,T1,T2) :- happens(E,T), T1<T,T<T2,

terminates(E,U,T).

initiates(E,U,_) :- initiates(E,U).

terminates(E,U,_) :- terminates(E,U).

terminates(E,F=_,T):- initiates(E,F=_,T).

Figure 1: A basic Prolog implementation of the Sim-
plified Event Calculus

In this paper we use the following shorthand for statements
that belong to named graphs:

graphname: { subject | predicate | object }

Each of graphname, subject, predicate and object represents
a URI unless it is quoted. Note that we will sometimes
include attributes in parentheses on these URIs. Again this
is shorthand for URIs that have particular relationships (e.g.
sequencing) recorded in RDF statements we do not provide.

3. THE SIMPLIFIED EVENT CALCULUS:
A BRIEF INTRODUCTION

The Simplified Event Calculus can be described succinctly
in Prolog (for other formulations see [31, 26]), as shown in
figure 1.

In addition to some basic inference rules, the core concepts
in the Simplified Event Calculus are the application-specific
events, fluents and rules. Events are named instantaneous
happenings that occur at a particular point in time. Fluents
are named half-open intervals in time that describe a state
of affairs holding over that time period.

Application-specific rules provide the connection between
events and fluents. In the simplest case this will be done
with instances of initiates/2 and terminates/2 facts that
indicate respectively what fluent will be initiated or termi-
nated by the occurrence of some event.

Both events and fluents may be parametrised. This is par-
ticularly straightforward in Prolog since atomic terms used
to represent the names of either can simply be replaced by
functional terms.

Often time will be treated as discrete (i.e. integer), as this
avoids any problems with equality considering computers’
lack of floating-point precision. The semantics of the time
metric will probably be useful for any given application en-
vironment, but from the perspective of the Event Calculus
inference mechanisms, all that is required is a partial order
of subsets of events.

4. RELATED WORK
Amongst the first to attempt to distill fundamental legal
conceptions, was jurisprudential theorist Wesley Newcomb
Hohfeld [19], who identified notions such as duties (obliga-
tions), privileges, powers, and immunities. However, Ho-
hfeld did not attempt to formalise these notions, and initial
formalisms can be traced to deontic logics – logics of obli-
gation and permission – from von Wright onwards [32, 23].
Subsequent authors have also formalised calculi for violation
[5, 9] and power [20]. For a full review of various deontic
and related logics, see [1].

Much prior work has been done on adding dynamic features
to deontic logics: this includes work on temporal, dynamic,
defeasible, and event-based variants, as well as markups and
languages for contract representation and monitoring.

Various authors have investigated temporal deontic logics.
Dignum et al. [10, 11, 12] observe that Meyer’s deontic
dynamic logic [23] is capable of expressing only immedi-
ate obligations where the action should be performed as
the next action. They argue for an extension that caters
for obligations to perform an action as soon as possible,
before a deadline (relative or absolute time condition), or
periodically. Examples of obligations specifying a deadline
include obligations to ‘pay within 30 days of purchasing’,
‘pass within 1 year of enrolling’, ‘order before stock is too
low’, or ‘repair the roof before the October rains start’. Pe-
riodic obligations may include ‘pay employees between 25th
and 30th of every month’ or ‘order whenever available stock
is between 6 and 10 units’. Dignum et al. model the dynamic
system in terms of a purely theoretical formal mathemati-
cal Kripke structure, providing no practical implementation.
Initially [12], these structures constrained their framework
by forcing the impractical assumption that all actions take
the same amount of time. Later [10], they propose that an
assumption of instantaneous begin- and end-actions may be
appropriate, but requires further investigation.

Bons et al. [7] introduce an ‘epistemic dynamic deontic tem-
poral logic’, using the notation [β]Oα to indicate that state-
of-affairs β causes a transition to the state-of-affairs Oα
where α is obliged. As an example—

[promise(r1, r2, α)]Or1r2(α)

—means that ‘after r1 promises to perform α to r2, then
r1 is obliged towards r2 to actually perform the action α’.
State history is not kept and contradictory rules and conflict
resolution are not attended to. For instance, subsequent
imposition of a law to the effect that ‘only promises made
by legally competent parties lead to obligations’ could not
be introduced.

Eiter et al. [13] introduce a do operator for the absence of
a mechanism for triggering state changes in standard deon-
tics. Bons et al. [7] proceed similarly; their DO(α) operator
entails that α will hold at the next moment; and DONE(α)
entails that α held at the very last moment (α was the very
last action performed). For instance we can indicate indi-
cates that the very last action was John paying $100 using
DONE(pay(John, $100)). This operator is troublesome as
it needs to be reset after each system event to reflect which
action was last performed, and problematic race conditions

can be expected in the determination of exactly which was
the last action performed. No action history is maintained
and logical errors arise as DONE(α) is overwritten.

A number of authors have built defeasible reasoning exten-
sions of deontic logics – for example [28], and others – see
[18] for a review.

The event calculus has also been previously applied to for-
malising the dynamic aspects of deontic relations (e.g. [22,
15]).

Annotation of business contracts using a markup language
has also been investigated – for example, [17, 16], extended
RuleML for this purpose. Other languages intended for con-
tract monitoring e.g. [24] have also been suggested.

Our approach differs from the approaches discussed above
in a number of ways:

Firstly, in previous approaches, obligation, prohibition, and
permission are often regarded as unitary concepts, and their
nuances are frequently overlooked. We delve deeper into
different types of obligation, violable and inviolable prohibi-
tions, and violable and inviolable permissions (see Section 5
of this paper).

Secondly, conventional approaches typically do not offer the
automatic instantiation of individual identified obligations,
from general obligation clauses. For example, in [17], the
representation can capture that clause 6.1b specifies that
“the purchaser is obliged to pay the set price for the good”.
However, active features are not provided that, for instance,
automatically creates obligation 124, of John (ID = 23) to
pay James (ID = 26) a sum of $27.

Thirdly, because traditional approaches omit features that
automatically create obligation instances, there is limited
expressivity for annulments of individual obligations [2], and
instead only general expressions of norm defeasibility can be
provided. For instance [17], allows expressions of the form
“clause 6.1c overrides clause 6.1b” (where 6.1c is a writ-
ten agreement of Standard Terms & Conditions, and 6.1b
is a Purchase Order). Such general override expressions are
useful, but lack the ability to express specific conditions (in-
cluding evidence and law) that result in the annulment of
specific, identified obligation instances, in particular, well-
described circumstances: for instance, clause 6.1c of the
Standard Terms & Conditions may not override clause 6.1b
(the Purchase Order) if the Standard Terms & Conditions
were not prominently displayed and pointed out to that par-
ticular purchaser – in that instance, obligation 124, which
is an individual obligation that arose from the general obli-
gation in 6.1b, would be binding.

Finally, conventional approaches assume singular interpre-
tations of the deontic state and do not permit different (sub-
jective) interpretations of the status of the obligation, by dif-
ferent stakeholders, at different times, or using different jus-
tifications (e.g. evidence and systems of law). For instance,
in the light of certain evidence, prior case law, and relevant
legislation presented by the attorneys, High Court Judge
Stevens may view John’s obligation (obligation ID = 124)

as binding, whereas Supreme Court Judge Thomas, who
considers additional pleadings (evidence, prior case law, and
legislation) may view John’s obligation as annulled. Our ap-
proach specifically caters for a plurality of interpretations,
and allows the selection of a specific interpretation as the
interpretation accepted by a given party at a given point in
time.

In this paper, as in our previous work [2], we are not aiming
to build complete and conflict-free logics, since these are not
capable of capturing the rich, conflict-ridden real world sce-
narios and legal arguments. Rather, we are defining struc-
tured mechanisms for storing subjective, and possibly con-
tradictory, viewpoints. Huhns and Singh [25] remark that a
system that supports Hohfeld’s conceptions could represent
contracts and would be useful for defining and testing the
compliance of agent interactions to norms. We do not claim
to achieve the ambitions goals of testing agent compliance.
Instead, we have defined an extended, and structured repre-
sentation of Hohfeld’s conceptions, and a mapping between
them, which we will show facilitates richer searching of legal
arguments that have been annotated using our mechanisms.

There have been numerous commercial system created for
the management of contracts. See [27] for a review and crit-
icism of these. There have also been some commercial at-
tempts at annotating legal texts, e.g. RuleBurst from Rule-
Burst Corporation [30], previously known as STATUTE Ex-
pert / SoftLaw. The primary purpose of RuleBurst has been
the administration of government statutes in order to cor-
rectly infer entitlements of citizens to prescribed social se-
curity, veterans, and housing benefits, and for assisting with
regulatory compliance checking, for instance, in the finan-
cial sector. RuleBurst aims to provide software solutions for
prevention, detection, and cure, of breaches in regulation.
Our goal is simply to provide richer annotation primitives
and compounds, for the purposes of improving the fullness
of information held in annotations.

5. A MINIMAL DEONTIC ONTOLOGY
This section explores how a number of deontic concepts can
be mapped into a simplified ontology. We emphasise that
our simplification loses information in this mapping process.
Nonetheless, we hope to demonstrate that it still facilitates
broad inferences to be made automatically regarding the
interrelationships between clauses in legal documents.

We first describe the deontic concepts that have principals
as their subject and actions or states of affairs as their ob-
ject. Note that the management of embedded propositional
content in the target of these terms relates to work done by
Kimbrough on disquotation [4, 3, 21].

Obligation. Broadly, an obligation describes a perceived
requirement for a principal to react in some way in
appropriate contexts. In more RDF-oriented terms,
an obligation is a statement of justification that can
be linked to actions taken by a principal.

The target of obligations is essentially a statement of
ideality, so it is important to distinguish its terms from
fact. As described above, RDF named graphs are used
to do so.

Affirmation. Affirmations are declarations of belief by en-
tities that the current world state has certain proper-
ties. As we explore in other publications [14], we aim
to avoid assumptions of objective truth in our analy-
ses.

Each of the above deontic statements have a variant with a
negated object. We need to include such expressions in order
to make the representation sufficiently complete. In general,
negation can significantly complicate inferencing processes,
so we instead add explicit negated versions.

Prohibition. A prohibition can be approximated by an
obligation to not do something.

Annulment. The affirmations of negative results are an-
nulments. Annulments are key to inferring outstand-
ing obligations. Revision of the requirements other-
wise implied by obligations can be made through an-
nulments – they are a mechanism to cancel out obliga-
tions, prohibitions, violations, affirmations and other
annulments. The process of determining annulment is
recursive. That is to say that an annulled obligation
for which the annulment is annulled needs to be viewed
as an outstanding obligation.

The above terms all relate to ideal-world situations. We also
need a notion of violation.

Violated-by. Instances of violated-by predicates are used
to describe situations in which an outstanding obliga-
tion is perceived not to have been satisfied. As for
the other deontic statements, the descriptions of these
non-ideal situations can operate at different generality
levels. Specific violations will reference an obligation
instance.

Each instance of one of these core deontic concepts is rep-
resented by a single RDF statement. The need to collect
graphs of information regarding the object of such state-
ments means we expect the statements to belong to, or refer
to named graphs.

The RDF statements representing instances of the above
statement types are declared within our software as events
(§3). As required by the event calculus, each such event
will be recorded as occurring at a point in time. Note that
these times indicate when statements are recorded, and do
not relate to the times of any events those statements might
refer to. The named graph containing the event can, of
course, be annotated with further attributes of context (e.g.
location).

We also need to incorporate some event calculus concepts
into our model. The actions that affect deontic state are
recorded as events. This includes events triggered by the
expiry of deadlines. The world state is measured by querying
fluents.

Our model can be summarised as:

1. Affirmations define world states.

2. Obligations and prohibitions express constraints on
ideal world states,

3. Events can cause non-ideal world states expressed as
violations.

4. Annulments can return non-ideal world states to ideal
world states.

5. Events can activate annulments.

Expressed in this way, it is hopefully clear that notions such
as “satisfaction” can be represented using annulment. While
humans would of course make a semantic distinction be-
tween satisfaction and annulment, the effect on outstanding
obligations (from a machine perspective) is very similar.

Each obligation, violation, affirmation and annulment will
be used as the predicate in some number of RDF state-
ments: they all have a subject and an object. Importantly,
the description of these entities can be at very different lev-
els of generality. For example, the encoding of a prescrip-
tive workflow might contain both statements over “types” of
subjects and objects, as well as specific statements regard-
ing well defined entities. These specific statements usually
can be formed by inference given the general statements and
enough information about the world state. To allow state-
ments to be made about entities that have not yet been
defined, there will be the need either to agree on the terms
used to describe concepts in advance, or to apply RDF in-
ference tools to discover appropriate isomorphisms.

We now proceed to examine a number of deontic concepts
and indicate how they can be reduced into the core set of
terms described above. The information mapping loses in-
formation (e.g. the subtlety of different words), but is only
intended to facilitate computerised assistance of humans
searching and examining the actual source text. This list
is intended to be indicative of how the mapping is implied,
but it is not completely comprehensive – some concepts will
need approximation to fit into the mapping.

5.1 Obligation
Since obligation is one of the core concepts we use, here we
examine some of the different forms of obligation used in le-
gal material and describe how the are mapped in particular.

5.1.1 Conditional obligation
The base form of obligation we use correlates to an uncon-
ditional obligation. Conditional obligations can be repre-
sented by coupling a base, unconditional obligation instance,
with an appropriate annulment instance.

5.1.2 Different obligation generality levels
General, essentially parameterised obligation “factories” can
be used to create instances of specific obligations. The lat-
ter are sometimes referred to as identified obligations [2].
In contrast, prima facie obligations are likely to be repre-
sented with highly generalised subjects and objects. RDF
statements will need to link the particular entities within a
scenario with the subject and object described. Similarly

personal obligations require that an identified subject per-
forms the necessary actions for their satisfaction.

Limited forms of inference can be performed over these dif-
ferent forms of obligation without having to analyse these
distinctions, through being able to separate such annota-
tions into separate RDF statements.

5.1.3 Interrelated obligations
There are numerous forms of obligation that imply sequenc-
ing. For example a sequence of steps in a workflow (series or
parallel), or so called joint obligations, in which any member
of a group can perform the necessary actions to avoid vio-
lations occurring. Note that in this case all group members
will be seen to be in violation if the obligation is violated.

5.2 Prohibition
Prohibition is of course a commonly used deontic principle.
As discussed above, prohibition is a core statement type:
essentially an obligation not to do something. This most
directly relates to the notion of a Violable prohibition in
deontic literature. In this case, a violation of the prohibition
occurs when, for example, a particular prohibited action is
performed.

An inviolable prohibition (also known as immunity or dis-
ability) on the other hand, is a statement about the limita-
tion of power of a subject. For example, say some hypothet-
ical retail store policy declares something to the effect that
“sales staff cannot extend the warranty period on product
X”. If a sales staff member subsequently asserts an extended
warranty period to a customer, the statement is annulled.
That is, the sales staff member never had the power to make
the assertion in the first place. Note that in some jurisdic-
tions, if the sales staff member makes the warranty extension
assertion to a customer without showing them the company
conditions then common law says the warranty is actually
extended.

We encode inviolable prohibitions in our simplified form by
declaring annulments of the potential affirmations of the rel-
evant type.

5.3 Positive and negative statements
Our mapping looses the connotational distinction between
assertions and affirmations, but hopefully it is clear they
have similar semantics in terms of their impact on the world
state. Affirmations are a core item of our ontology. Note
that this word was chosen to avoid the computer program-
ming connotations associated with the term “assertion”.

As discussed above, annulment is also an important deontic
concept, and is within the core ontology. Its meaning is an
affirmation of “not X”.

The term satisfaction is not within the core ontology how-
ever. As previously discussed, we emphasise that satisfac-
tion causes a cancellation of (potential) outstanding obliga-
tions, and thus can be represented using annulment.

Satisfaction adds one extra condition compared to straight
annulment: it is annulment of a clause that is not violated.

Intuitively the status of an obligation can either be violated
but not annulled, violated and annulled, satisfied, or out-
standing.

5.4 Violation of obligations
Violation-by is another core ontology member. The “-by”
suffix is used to invert the subject and object sense for RDF
statements of this type. A policy object is the subject of such
statements, and the conditions of the violation are defined
by the object.

Note we ensure that violation is recorded as an event in it-
self. Noticing violations makes sense in a human context. It
normally is not associated with computer inference, but we
believe that we need it to be, given that our infrastructure
can look at situations from numerous independent perspec-
tives.

Fully annotated instances will record both the origin of the
violation in terms of the events (evidence) that caused it,
as well as the documents / utterances (provenance) that
defined the violation as arising under those circumstances.

5.5 Powers and permission
The notion of power has two senses. In one sense power
describes the relative weight of different principals’ affirma-
tions. So if party A affirms “X” and party B affirms “not
X”, the party with the power to make such statements will
be sought out to resolve the conflict.

The other sense of powers is as a form of automatic affirma-
tion. So some action can trigger an affirmation because of a
given power.

In either case, the partial order of overrides will need to be
established to resolve any conflicts. So, coupled with appro-
priate override orders, a power can be seen as a conditional
affirmation, along with a prohibition from others contradict-
ing the affirmation when viewed as misleading from the per-
spective of that institution. For example, Catholic priests
have the power to proclaim two people to be married, but
an unordained person does not. A proclamation by an unor-
dained person would be regarded as both a violation and as
being ineffectual (i.e. annulled), by the Catholic institution
(although of course other institutions may take a different
view).

Finally permissions, like prohibitions, can be divided up into
two classes: violable permissions and inviolable permissions.

An inviolable permission (also known as a privilege) can
be represented as annulment of violations arising from pro-
hibitions. For example, if A is permitted to do X, but B
prohibits this action, then violations against B’s prohibition
will not be accepted.

A violable permission is an obligation on other parties not
to interfere with certain actions of the other party. Such
forms of interference will lead to violations.

6. CASE STUDY
To explore the practical use of our framework, we encode a
subset of the clauses contained in a legal case: the ruling by

the High Court of South Africa in case number AC166/2003,
delivered on 15th Dec 2005.

The case can be retrieved by the interested reader from
http://law.sun.ac.za/ for the sake of extra context and/or
to verify the results and analysis in this paper.

6.1 Summary of the case
The conflict is between plaintiff Freshgold SA Exports (Pty)
Ltd (“Freshgold”) and defendant Maritime Carrier Shipping
GmbH and CO (“Maritime”).

Freshgold’s business includes the export of fruit. In this
case, a shipment of fruit was to be transported by Maritime
from Cape Town to Rotterdam in a 40 foot refrigerated con-
tainer. It was agreed by both parties verbally that the fruit
needed to remain below -0.5 degrees centigrade during its
transport.

Unfortunately, after the container was loaded onto its in-
tended transport vessel (Marine Vessel “Grey Fox”), it mal-
functioned. It was offloaded from that vessel for repairs.
It was subsequently reloaded onto Marine Vessel “Amber
Lagoon”, and reached Rotterdam. However, the fruit had
suffered from decay and mould and had to be sold at reduced
prices.

Freshgold sought compensation for the damaged goods from
Maritime claiming that the damage occurred due to Mar-
itime violating the agreement between them that the fruit
be kept at an appropriate temperature.

It was agreed by both parties, however, that the damage
to the fruit most probably occurred in the time when it
was between the two vessels. Unfortunately for Freshgold,
Maritime attached its standard terms and conditions to the
bill of lading issued for the transport. In the terms and
conditions, there are two clauses of particular interest:

Clause 5: The carrier shall be under no liability
whatsoever for loss of or damage to the goods,
whosoever occurring if such loss or damage arises
prior to loading onto or subsequent to discharge
from the vessel.

Clause 16. The carrier may at any time and with-
out notice, transfer the goods from one vessel to
another

Freshgold’s representatives claimed they could not believe it
would be the case that Maritime would not be responsible
for damage caused by a defective container. While the judge
acknowledged that this was indeed a high point in the plain-
tiff’s case, the judge also emphasised that Freshgold would
have expected to receive a bill of lading and that the bill
of lading might well include the standard terms and condi-
tions of the shipper. Thus, the plaintiff was responsible for
not having negotiated an arrangement that would preclude
clause 5 protecting Maritime from responsibility during the
need to exercise clause 16. Caveat emptor...

http://law.sun.ac.za/

Discourse Description
0 Written record of the judge’s decision
1 Record of the oral agreement between the

plaintiff and the defendant
2 Common cause evidence
3 Standard terms and conditions of the de-

fendant
4 Bill of Lading for the shipment of the

40 foot refrigerated container, containing
fruit, from Cape Town to Rotterdam

5 Plea by the plaintiff
6 Plea by defendant

Table 1: Discourses in the example case

case(0): { p | affirms | discourse(5)
case(0): { discourse(5) | type | discourse }
case(0): { discourse(5) | contains | d(5,1) }
case(0): { discourse(5) | contains | d(5,2) }
case(0): { discourse(5) | contains | d(5,3) }

d(5,1): { d(1,2) | annuls | d(3,5) }
d(5,1): { d(5,1) | context | discourse(1) }

d(5,2): { d(1,1) | violated-by | d }
d(5,2): { d(1,2) | violated-by | d }

d(5,3): { d | obliged | damages }
d(5,3): { d(5,2) | evidence-for | d(5,3) }

Figure 2: Clauses encoding the plaintiff’s plea

6.2 Encoding of the case
The encoding of the case is done in a number of stages. We
use the term discourse to describe the named graphs that
collect the RDF statements that make up the salient parts
of evidence submitted by the plaintiff and the defendant, as
well as the decision delivered by the judge. As mentioned
in section 2, we employ an orthogonal ontology of graph
relationships, in particular the “contains” predicate.

sw(0): { case(0) | case-title | "High Court of South
Africa Case Number AC166/2003" }

sw(0): { case(0) | case-delivered | "2005-12-15" }
sw(0): { case(0) | contains | discourse(0) }
sw(0): { case(0) | contains | discourse(1) }
...

The discourses extracted from this example case are enu-
merated in table 1.

6.3 The plea from the plaintiff
We begin by examining a subset of the clauses encoding
the plaintiff’s plea, shown in figure 2. All of the terms in
the listings are placeholders for URIs. The form d(x,y)
indicates the yth URI of discourse x. The terms p and d

refer to the plaintiff and defendant within this case.

In figure 2, the named graph d(5,1) declares that that plain-
tiff sees clause 5 (that the carrier is not liable for damage
when the goods are not on a vessel) of the standard terms
and conditions as being annulled. The reason is a clause

case(0): { j | affirms | discourse(0) }
case(0): { discourse(0) | type | discourse }
case(0): { discourse(0) | contains-graph | j(1) }
...
case(0): { discourse(0) | contains-graph | j(9) }

j(1): { ap | agent-of | p }
j(1): { ad | agent-of | d }
j(1): { ap | affirms | discourse(1) }
j(1): { ad | affirms | discourse(1) }

j(2): { discourse(1) | type | oral-agreement }

j(3): { discourse(2) | type | common-cause }
j(3): { p | affirms | discourse(2) }
j(3): { d | affirms | discourse(2) }

j(4): { discourse(4) | provided-with | discourse(3) }

j(5): { d(5,1) | annuls | d(3,5) }
j(5): { d(5,1) | annuls | d(3,16) }

j(6): { r1 | annuls | j(6b) }
j(6b): { discourse(4) | type | contract }

case(0): { r1 | type | document-reference }
case(0): { r1 | section | discourse(0) }
case(0): { r1 | page | 7 }

j(7): { p | obliged | discourse(3) }
j(7): { j(4) | evidence-for | j(7) }

j(8): { p | obliged | d(3,5) }
j(8): { p | obliged | d(3,16) }

j(9): { j | annuls | d(5,1) }
j(9): { j | annuls | d(5,3) }
j(9): { j(8) | evidence-for | j(9) }

Figure 3: Clauses encoding the judge’s decision

of the verbal agreement between the parties (d(1,2)). As
noted above, the functional form of the above URI terms is
only for reader convenience.

In addition to the core deontic predicates, this named graph
also indicates that discourse(1) is the context of p’s an-
nulment, i.e. the annulment is only related to this particular
set of circumstances, and not the defendant’s terms and con-
ditions as applied to other agreements.

The second named graph, d(5,2) indicates the plaintiff’s
affirmation that two clauses of the verbal agreement between
them have been violated by the defendant.

Finally, graph d(5,3) indicates that the plaintiff believes
that the defendant is obliged to pay damages (although we
ignore the statements to which damages refers).

6.4 Conclusion from judge
We now turn our attention to encoding the result of this
court case, as presented by the judge. A subset of the nec-
essary clauses are shown in figure 3.

The first few statements indicate that the judge (j) affirms
the content of the named graph discourse(0). We use this

pattern to simplify a party making a collection of affirma-
tions. Statements are also included that specify the named
subgraphs included with this particular discourse.

The named graph j(1) sets up the parties ap and ad as
agents of the plaintiff and defendant, and indicates that the
items in discourse 1 are agreed between them both. For
completeness we include j(2), it indicates that the judge
noted that the initial agreement between the two parties
was oral. A more comprehensive annotation would need to
include details such as the time and location of this state-
ment, although we only need a partial ordering of events in
this paper to perform our analyses.

The common cause evidence is discussed in named graph
j(3). It indicates that both the plaintiff and the defendant
affirm the statements it contains.

The first significant item of the case is encoded in j(4). The
judge noted that the bill of lading (discourse 4) included the
defendant’s standard terms and conditions (discourse 3).

As previously discussed, the plaintiff chose to annul certain
clauses of the defendant’s terms and conditions. This is
indicated in j(5). The judge notes that the bill of lading
itself is not a contract in j(6), although as this is not directly
connected to the outcome of the case, we leave it as an
external reference to source document material.

After weighing up the evidence, the judge concludes that the
plaintiff is bound by the terms and conditions, since they
should have expected that clauses similar to 5 and 16 would
be included. This is encoded in j(7). This leads quickly to
the judge emphasising that the plaintiff is obliged by the two
relevant clauses in the standard terms and conditions (j(8)),
and that the judge annuls both the plaintiff’s dismissal of the
clauses of the terms and conditions, and also the plaintiff’s
belief that the defendant owes them damages (j(9)).

6.5 Analysis of case
In this section we demonstrate a “quick and dirty” imple-
mentation of the event calculus providing predicted answers
over the case. Of course real deployments would require a
more comprehensive implementation – in particular the use
of RDF querying technologies should be better combined
with the event calculus engine.

We used a simple shell script to extract the (named graph)
RDF statements we have discussed from the LaTeX source of
this paper. These lines were transformed into Prolog state-
ments (data.pl) that are loaded into the SWI-Prolog source
file presented in figure 4.

Note that figure 4 introduces the predicate d holds at. The
notion here is that a fluent deontically holds if it holds and
it is not annulled by a fluent that deontically holds itself. In
this paper we create a partial order of events for the event
calculus engine from the order in which the named graphs
are declared by the parties in the court case. The time
units chosen achieve the required partial ordering, but are
otherwise arbitrary.

At time unit 15, the plaintiff’s plea is fully presented. From

:-ensure_loaded(data).
:-dynamic holds_at/2.
:-ensure_loaded(event_calculus).

d_holds_at(U,T) :-
holds_at(U,T),
\+ d_annulled_at(U,T).

d_annulled_at(U1,T) :-
annulled_by(U1,U2),
d_holds_at(U2,T).

annulled_by(annulment(G1,S1,O1), annulment(_,_,G1)).
annulled_by(obligation(G1,S1,O1), annulment(_,_,G1)).

initiates(rdfng(G,S,annuls,O), annulment(G,S,O)).
initiates(rdfng(G,S,obliged,O), obligation(G,S,O)).

Figure 4: Prolog code to test inference

time 42 onwards, the judge’s decision has been fully pre-
sented. Predictably we get the following Prolog dialogue:

?- d_holds_at(annulment(d(5,1),d(1,2),d(3,5)), 15).
Yes
?- d_holds_at(annulment(d(5,1),d(1,2),d(3,5)), 42).
No
?- holds_at(obligation(d(5,3),d,damages), 50).
Yes
?- d_holds_at(obligation(d(5,3),d,damages), 50).
No

In other words, at time 15 named graph d(5,1) indicates
that a clause of the spoken agreement (d(1,2)) annuls clause
5 of the standard terms and conditions (d(3,5)). This is
the plaintiff’s perspective. By time 42, this annulment has
been annulled itself. Similarly, at time 50 the plaintiff’s
named graph d(5,3) indicates the belief that the defendant
(d) should pay damages (externally referred to via the URI
damages), although this obligation does not deontically hold
at that time, as it has been cancelled out by the judge’s
affirmations.

Thus the infrastructure we have described can facilitate ba-
sic inference of the world state at different times during the
progress of a case. It can also indicate the independent be-
lieved world states as viewed from different participants. It
is hoped it would be straightforward to appropriately anno-
tate cases, and that the extra inference mechanisms could
increase the expressiveness of queries over legal databases.

Note that we do not claim to be able to infer whether the
judge reached a “correct” conclusion in the case. Our only
goal is to better annotate the transcript. Whether the judge’s
conclusion is correct would be the subject of complex legal
arguments, citing diverse, and sometimes previously uncited,
statutes, precedents, and evidence. Also, irrespective of its
procedural correctness, the judge’s findings are still upheld,
until a higher court decides otherwise, and it is of little avail
for us to dispute his findings, since only he has the power to
proclaim them, and only higher institutions have the power
to annul them.

7. CONCLUSION
This paper introduces our initial work on a simple deontic
ontology for annotation of legal documents. We use RDF
named graphs as an expressive and flexible mechanism for
subjective knowledge representation. An event calculus im-
plementation is discussed that can perform queries over an-
notated legal data. We then indicate how these technologies
might be employed in the approximate encoding of a South
African High Court case.

The requirement to perform logic programming reduces the
real world applicability of our current work, although we
are hopeful that aspects of the annotation process can be
automated.

Although our representation loses information in the map-
ping process, we believe that simplification of semantics will
increase the scalability of document annotation processes.
We are hopeful that when used alongside electronic versions
of the source material, the technologies we have presented
might help initial search and analysis of collections of legal
documents.

8. REFERENCES
[1] Alan S. Abrahams. Developing and Executing

Electronic Commerce Applications with Occurrences.
PhD thesis, University of Cambridge Computer
Laboratory, 2002.

[2] Alan S. Abrahams and Jean M. Bacon. The life and
times of identified, situated, and conflicting norms. In
Procedings of the Sixth International Workshop on
Deontic Logic in Computer Science (DEON’02),
Imperial College, London, UK, May 2002.

[3] Alan S. Abrahams and Jean M. Bacon. A software
implementation of Kimbrough’s disquotation theory
for representing and enforcing electronic commerce
contracts. Group Decision and Negotiations Journal,
11(6):1–38, November 2002.

[4] Alan S. Abrahams and Steven O. Kimbrough.
Treating disjunctive obligation and conjunctive action
in event semantics with disquotation. Wharton
Business School Working Paper Series, 2002.

[5] Alan R. Anderson. A reduction of deontic logic to
alethic modal logic. Mind, 67:100–103, 1958.

[6] T. Berners-Lee. RFC 2396: Uniform Resource
Identifiers (URI). Technical report, MIT, 1998.

[7] R.W.H. Bons, F. Dignum, R.M. Lee, and Y-H. Tan. A
formal analysis of auditing principles for electronic
trade procedures. International Journal of Electronic
Commerce, 5(1), 2000.

[8] Jeremy J. Carroll. Signing RDF graphs. In Proceedings
of the International Semantic Web Conference,
Florida, USA, October 2003.

[9] P. d.Altan, J.J.Ch. Meyer, and R.J. Wieringa. An
integrated framework for ought-to-be and ought-to-do
constraints. Artificial Intelligence and Law, 4:77–111,
1998.

[10] F. Dignum and R. Kuiper. Combining dynamic
deontic logic and temporal logic for the specification
of deadlines. In Proceedings of the 30th Hawaii
International Conference on Systems Sciences, Hawaii,
1997.

[11] F. Dignum and R. Kuiper. Specifying deadlines with
dense time using deontic and temporal logic.
International Journal of Electronic Commerce,
3(2):67–86, 1998–1999.

[12] F. Dignum, H. Weigand, and E. Verharen. Meeting
the deadline: on the formal specification of temporal
deontic constraints. In Proceedings of the International
Symposium on Methodologies for Intelligent Systems,
pages 243–252, 1996.

[13] T. Eiter, V.S. Subrahmanian, and G. Pick.
Heterogeneous active agents, I: Semantics. Artificial
Intelligence, 108(1-2):179–255, 1999.

[14] David M. Eyers and Alan S. Abrahams. Orthogonal
truths, electronic beholders and the event calculus. In
Workshop on Formal Modelling for Electronic
Commerce, Palo Alto, USA, June 2007. To appear.

[15] Andrew D. H. Farrell, Marek Sergot, Mathias Salle,
and Claudio Bartolini. Using the event calculus for
tracking the normative state of contracts.
International Journal of Cooperative Information
Systems, 4(2–3), 2005.

[16] G. Governatori. Representing business contracts in
RuleML. International Journal of Cooperative
Information Systems, 14(2–3), 2005.

[17] G. Governatori and A. Rotolo. Modelling contracts
using RuleML. In Proceedings of Jurix 2004: Legal
Knowledge and Information Systems, pages 141–150,
Amsterdam, 2004. IOS Press.

[18] G. Governatori, A. Rotolo, and G. Sartor.
Temporalised normative positions in defeasible logic.
In Proceedings of the Tenth International Conference
on Artificial Intelligence and Law, pages 25–34, New
York, NY, USA, 2005. ACM Press.

[19] Wesley N. Hohfeld. Fundamental Legal Conceptions as
Applied in Judicial Reasoning. Greenwood Press
Publishers, 1978.

[20] Andrew J.I. Jones and Marek Sergot. A formal
characterisation of institutionalised power. Journal of
the Interest Group in Pure and Applied Logic,
4(3):427–443, 1996.

[21] Steven O. Kimbrough. Reasoning about the objects of
attitudes and operators: Towards a disquotation
theory for the representation of propositional content.
In Eight International Conference on Artificial
Intelligence and the Law (ICAIL 2001), St Louis,
Missouri, May 2001.

[22] R. Hernandez Marin and G. Sartor. Time and norms:
a formalisation in the event calculus. In Proceedings of
the Seventh International Conference on Artificial
Intelligence and Law, pages 90–99, New York, NY,
USA, 1999. ACM Press.

[23] John J.C. Meyer and Roel J. Wieringa. Deontic Logic
in Computer Science. John Wiley & Sons Ltd, 1993.

[24] Z. Milosevic, S. Gibson, P. F. Linington, J. Cole, and
S. Kulkarni. On design and implementation of a
contract monitoring facility. In First IEEE
International Workshop on Electronic Contracting
(WEC’04), pages 62–70, 2004.

[25] Huhns M.N. and Singh M.P. Agent jurisprudence.
IEEE Internet Computing, 2(2):90–91, 1998.

[26] Erik T. Mueller. Commonsense Reasoning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,

2006.

[27] S. Neal, J. Cole, P.F. Linington, Z. Milosevic,
S. Gibson, and S. Kulkarni. Identifying requirements
for business contract language: A monitoring
perspective. In M. Steen and B.R. Bryant, editors,
Proceedings of the seventh International Enterprise
Distributed Object Computng Conference, pages 50–61,
Brisbane, Australia, September 2003. IEEE Computer
Society.

[28] D. Nute. Norms, priorities, and defeasible logic. In
P. McNamara and H. Prakken, editors, Procedings of
the second International Workshop on Deontic Logic
in Computer Science (DEON’98), Amsterdam, 1998.

[29] R.Kowalski and M.Sergot. A logic-based calculus of
events. New Generation Computing, 4:67–95, 1986.

[30] Ruleburst corporation. http://www.ruleburst.com/,
2007.

[31] Murray Shanahan. The event calculus explained.
Springer Lecture Notes in Artificial Intelligence,
1660:409–30, 1999.

[32] G.H. von Wright. Deontic logic. Mind, 60:1–15, 1951.

[33] W3C. Resource description framework (RDF) model
and syntax specification.
http://www.w3.org/TR/rdf-primer/, February 1999.

[34] W3C. OWL web ontology language overview.
http://www.hpl.hp.com/techreports/2004/

HPL-2004-56.html, February 2004.

[35] W3C. RDF vocabulary description language 1.0: RDF
Schema. http://www.w3.org/TR/rdf-schema/,
February 2004.

http://www.ruleburst.com/
http://www.w3.org/TR/rdf-primer/
http://www.hpl.hp.com/techreports/2004/HPL-2004-56.html
http://www.hpl.hp.com/techreports/2004/HPL-2004-56.html
http://www.w3.org/TR/rdf-schema/

	Introduction
	RDF named graphs
	The Simplified Event Calculus: a brief introduction
	Related work
	A minimal deontic ontology
	Obligation
	Conditional obligation
	Different obligation generality levels
	Interrelated obligations

	Prohibition
	Positive and negative statements
	Violation of obligations
	Powers and permission

	Case study
	Summary of the case
	Encoding of the case
	The plea from the plaintiff
	Conclusion from judge
	Analysis of case

	Conclusion
	References

