
Access Control in Decentralised Publish/Subscribe
Systems

Lauri I.W. Pesonen, David M. Eyers, and Jean Bacon
University of Cambridge, Computer Laboratory
JJ Thomson Avenue, Cambridge, CB3 0FD, UK

{firstname.lastname}@cl.cam.ac.uk

Abstract—Publish/subscribe has emerged as an attractive com-
munication paradigm for building Internet-wide distributed sys-
tems by decoupling message senders from receivers. Large scale
publish/subscribe systems are likely to employ components of the
event transport network owned by cooperating, but independent
organisations. As the number of participants in the network
increases, security becomes an increasing concern. So far most of
the research on publish/subscribe has focused on efficient event
routing, event filtering, and composite event detection. Very little
research has been published regarding securing publish/subscribe
systems. This paper extends our previous work to present and
evaluate a secure multi-domain publish/subscribe infrastructure
that supports and enforces fine-grained access control over the
individual attributes of event types.

I. INTRODUCTION

Publish/subscribe has become an increasingly popular com-
munication paradigm for large-scale distributed systems. A
publish/subscribe system decouples the publishers from the
subscribers by introducing an event service between the com-
municating parties. This decoupling along with asynchronous
messaging allows publish/subscribe systems to scale in both
geographic distance as well as in the number of participating
nodes. Modern highly scalable publish/subscribe systems im-
plement the event service as a decentralised network of brokers
that is used to deliver publications from a publisher to all
interested subscribers.
Publish/subscribe systems have been advocated especially
for large-scale systems where the event service covers a large
geographic area. Such a publish/subscribe system would have
to span multiple domains, be they independent administrative
domains inside a single organisation, multiple independent
organisations, or a combination of the two.
In the past most publish/subscribe oriented research has con-
centrated on routing algorithms, content-based filtering, and
broker network topologies. Relatively little research has been
done with respect to security in publish/subscribe systems.
On the other hand, the fact that widely distributed publish/
subscribe systems are likely to span multiple domains requires
that security issues be addressed. In particular, large-scale
publish/subscribe systems will need to include some form of
access control.
Our overall research aim is to develop Internet-scale pub-
lish/subscribe networks that provide secure, efficient delivery
of events, fault-tolerance and self-healing in the delivery
infrastructure and a convenient event interface.

IB

SHB

Sub

Pub

Pub

Sub
Sub

IB

PHB

IB

IB

PHB

IB

IB

IB

IB
SHB

SHB

IBIB

IB

IB

IB

IB

IB
IBIB

IB
TO

IB

IB
IB

Metropolitan Police
Domain

Congestion Charge
Service Domain

PITO Domain

Detective
Smith

Camera 1

Camera 2

Billing
Office Statistics

Office

Sub Subscriber SHB Subscriber
Hosting Broker

Pub Publisher PHB Publisher
Hosting Broker

TO Type Owner IB Intermediate
Broker

KEY

Figure 1. An overall view of our multi-domain publish/subscribe deployment.

In this paper we propose a capability-based, decentralised
access control architecture for multi-domain publish/subscribe
systems. The architecture provides a mechanism for authoris-
ing clients to publish and subscribe to specific event types
or topics. The client’s privileges are checked by the local
broker that the client connects to in order to access the publish/
subscribe system.
One possible approach is to implement access control at
the edge of the broker network and assume that all brokers
can be trusted to enforce the access control policies correctly.
Any malicious, compromised or unauthorised broker would
be free to read and write any events that pass through it on
their way from the publisher to the subscribers. This might
be acceptable in a relatively small system deployed inside
a single organisation, but it is not appropriate in a multi-
domain environment where organisations share a common
infrastructure.
In order to enforce access control inside the broker network

we propose encrypting event content and controlling access to
the encryption keys. With encrypted event content only those
brokers that have access to the encryption keys are able to
access the event content (i.e. publish, subscribe to, or filter).
We effectively move the enforcement of access control from
the brokers to the encryption key managers.
We expect that access control has to be enforced in a multi-

domain publish/subscribe system when multiple organisations
form a shared publish/subscribe system that is used to deploy

JOURNAL OF NETWORKS, VOL. 2, NO. 2, APRIL 2007 57

© 2007 ACADEMY PUBLISHER

multiple independent applications. Access control might also
be needed when a single organisation consists of multiple sub-
domains that deliver confidential data over the organisation-
wide publish/subscribe system. E.g. the confidentiality of car
numberplate sighting events must be protected in order to
protect the privacy of citizens, but even more importantly the
integrity of numberplate sighting events must be protected to
prevent an intermediary system administrator from modifying
the location of particular numberplate sightings in order to
avoid congestion charges. Both cases require access control
because event delivery in a dynamic publish/subscribe infras-
tructure based on a shared broker network may well lead to
events being routed through unauthorised domains on their
way from publishers to subscribers.
There are two main incentives for domains to share a

common underlying publish/subscribe infrastructure. First,
shared broker networks will generally be able to provide
greater geographical reach without significant extra cost (i.e.
initial infrastructure deployment cost dominates operational
costs). Second, sharing a broker network will almost always
increase the overall interconnectivity of the publish/subscribe
infrastructure, thus providing higher fault-tolerance.
Figure 1 shows the multi-domain publish/subscribe network
we use as an example throughout this paper. It is based on the
United Kingdom Police Forces, and we show three particular
sub-domains:

• Metropolitan Police Domain. This domain contains a set
of CCTV cameras used to publish information about the
movements of vehicles around the London area. We have
included Detective Smith as a subscriber in this domain.
Detective Smith has a court order that permits him to
subscribe only to the Numberplate events necessary to
track the car with numberplate ”AE05 XYZ”. Detective
Smith is authorised to access all of the attributes of any
such numberplate sightings.

• Congestion Charge Service Domain. The CCS contains
the systems that manage the charges levied on the ve-
hicles that have passed through the London Congestion
Charge zone each day. The source numberplate recog-
nition data comes from the cameras in the Metropolitan
Police Domain. The fact that the CCS are only authorised
to read a subset of the vehicle event data will exercise
some of the key features of the enforceable publish/
subscribe system access control presented in this paper.
The CCS has a statistician whose role is to count the
number of cars passing through a particular part of the
congestion control area. The statistician is only authorised
to access time and location information from numberplate
sighting events. In contrast, the billing staff are authorised
only to access the numberplate and time information.

• PITO Domain. The Police Information Technology Or-
ganisation (PITO) is the centre from which Police data
standards are managed. It is the owner of the Numberplate
event type in this particular scenario.

In addition to protecting the confidentiality of events in
unauthorised domains, we can also use encryption to imple-
ment a more expressive access control mechanism and lower

the number of events sent. By encrypting individual attributes,
instead of the whole event as a single block, we are able
to enforce attribute level access control in a multi-domain
environment. Publishers and subscribers can be authorised
only to access a subset of the attributes in an event type.
With attribute level access control a single event instance can
be delivered to subscribers with differing access rights. For
example, in the congestion charge example scenario above the
Congestion Charge Service would be authorised to read only
the numberplate field, but not the location field, because the
congestion charge is based on the vehicle being seen inside
the congestion controlled area, not on the specific location of
the vehicle inside that area. By hiding the exact location of
the vehicle from the CCS the system protects the privacy of
the vehicle owner.
While access control at the edge of the broker network
is already implemented at the attribute level, it cannot be
enforced among brokers unless each attribute is encrypted with
its own encryption key. Without attribute encryption the system
would have to trust the brokers to behave correctly in ignoring
content they are not authorised to access.
The rest of the paper is organised as follows. Section II
introduces relevant background, like decentralised publish/
subscribe systems and decentralised trust management prin-
ciples. In Sect. III we present our access control model
for publish/subscribe systems consisting multiple domains.
In order to enforce access control policy inside the event
broker network, we introduce attribute encryption in Sect. IV.
Section V discusses how access control policy is managed
in our architecture. Finally Sect. VI presents related work
in securing publish/subscribe systems and Sect. VII provides
concluding remarks.

II. BACKGROUND
This section gives a brief introduction to decentralised

publish/subscribe systems, with particular emphasis on the
assumptions made in this paper about multi-domain publish/
subscribe systems, and to some related security features pro-
posed in our previous work that we build on in this paper.

A. Decentralised Publish/Subscribe Systems

A publish/subscribe system consists of publishers, sub-
scribers, and an event service. Publishers publish events,
subscribers subscribe to events that are of interest to them, and
the event service is responsible for delivering published events
from the publisher to all subscribers whose stated interests, i.e.
subscriptions, match the given event.
The simplest form of publish/subscribe system, called topic-

based publish/subscribe [1], classifies events based on their
topic. Subscribers subscribe to specific topics and receive
all events published to that topic. Content-based publish/
subscribe [1] allows filtering based on the content of an event,
i.e. a subscriber defines a filter and only those events that
match the filter are delivered to the subscriber. A content-
based subscription Sa is said to cover another subscription
Sb if the filter expression in Sa is more general, i.e. it
matches more events, than the filter in Sb. The coverage

58 JOURNAL OF NETWORKS, VOL. 2, NO. 2, APRIL 2007

© 2007 ACADEMY PUBLISHER

s3: NumberPlateEvent
location=”Victoria”

s2: NumberPlateEvent
number_plate="AE05 XYZ"

coverscovers

s1: NumberPlateEvent

Billing Office’s Subscription

Officer Smith’s Subscription Statistics Office’s Subscription

Figure 2. Subscription coverage in the example environment.

relation between the billing office’s, statistics office’s, and
detective Smith’s subscriptions can be seen in Fig. 2. The
billing office’s subscription covers the subscriptions of both
detective Smith and the statistics office, because it specifies
no filter expression. The coverage relation is useful when
creating routing trees in a broker network. Instead of routing
both subscriptions to the next broker in the broker network, a
broker routes only the more general subscription Sa. Because
Sa will match anything that Sb matches, the broker can be
certain that it will receive all events that match either Sa or
Sb.
Topic-based and content-based approaches can be combined

so that a subscription is topic-specific, but it includes a filter
expression for filtering events of that topic. This paper is
concerned mostly with type-checked, content-based publish/
subscribe systems where each event conforms to a predefined
event type, and subscriptions may include filter expressions
over the attributes of the event type.
In a decentralised publish/subscribe system the event service
has been decentralised over a number of broker nodes. The
brokers together form a broker network that shares respon-
sibility for routing events from the publishers to interested
subscribers. Event clients (publishers and subscribers) connect
to a local broker which is trusted by the client to the extent
of the authority granted to the broker by the domain’s access
control service. A local broker is a member of the the same
domain as the client.
A broker network can have a static topology (e.g. Siena [2]

and Gryphon [3]) or a dynamic topology (e.g. Scribe [4] and
Hermes [5]). Our proposed approach will work in both cases.
A static topology enables the system administrator to build
trusted domains and make sure that confidential events are
never routed through untrusted domains. This is very difficult
with a dynamic topology that changes during runtime. On the
other hand, a dynamic topology allows the broker network
to dynamically re-balance itself when brokers join or leave
the network either in a controlled fashion or as a result of a
network or node failure. Therefore, a dynamic broker network
provides more fault tolerance and is easier to maintain than a
static topology network.
We have used Hermes as a base for our work. Hermes is

a content-based publish/subscribe middleware that supports
strong typing. That is, each publication is an instance of
a predefined event type. Publications are type checked at
the local broker of each publisher. Hermes uses a structured
overlay network as a transport and therefore implements a
dynamic broker network topology.

In addition to type-checking, Hermes also supports type
inheritance. This means that a new type definition can extend
an existing type definition by adding new attributes to the
ones inherited from the super type. Type hierarchies allow
domains and application developers to model is-a relationships
between different event types. Our access control approach
also supports type inheritance.
In this paper we assume that the underlying publish/
subscribe system is type-based. Nevertheless, the work is
equally applicable to topic-based publish/subscribe systems,
except for the attribute level encryption scheme, which as-
sumes that events are instances of predefined types.

B. Secure Event Types

We started our work towards a secure publish/subscribe
system by introducing secure event types [6]. Secure event
types provide integrity and authenticity of type definitions by
using digital signatures. They also provide globally unique
event type and attribute names, that are used to reference event
types and attributes from access control policies. In this paper
we use the globally unique names of the event type and its
attributes to refer to the type or attribute from an access control
policy.
An event type name, as proposed in [6], includes the
public-key of the type owner. The public-key defines a
unique namespace in which the type owner is free to
create any names without the risk of name collisions.
For example, the full name of the Numberplate event
type would be: PITO pk.uk.gov.pito.Numberplate,
where PITO pk represents the public-key of PITO.

C. Capabilities

Access rights in a system can be described with an access
control matrix where the rows represent subjects (i.e. users),
the columns represent objects (i.e. resources), and the cells
define the access rights that a given subject has over a specific
object.
Access control systems typically implement either a column

centric view or a row centric view of the matrix. In a column
centric view each column of the matrix is translated to an
access control list (ACL) that is stored with the object that
the column represents. The ACL contains entries for each
subject defining the access rights for that subject regarding the
specific object. An example of an ACL based system would be
a typical UNIX filesystem where a simplified ACL is attached
to each file.
In a row centric view each row of the matrix is translated

to a set of capabilities that are stored with the subject. Each
capability defines what access rights the subject, or holder of
the capability, has over a given object.
A common use for certificates is to map principals to trusted
identities. Rather than using certificates as an authentication
token, however, it is also possible to use certificates for autho-
risation of actions. Certificates used in this manner are often
referred to as signed capabilities or authorisation certificates.

JOURNAL OF NETWORKS, VOL. 2, NO. 2, APRIL 2007 59

© 2007 ACADEMY PUBLISHER

Pa Pc

Issuer: Pa
Subject: Pb
Delegation: true

Authorisation: Aab
Validity: Vab

Issuer: Pb
Subject: Pc
Delegation: false

Authorisation: Abc
Validity: Vbc

Pc proves ownership of key-pair Pc to Pa

Pb

Cab Cbc

O

Figure 3. An SPKI authorisation certificate loop with three principals and
two level delegation.

D. Decentralised Trust Management

Decentralised trust management was first introduced by
Blaze et al. in [7]. PolicyMaker was later followed by
KeyNote [8], and the Simple Distributed Security Infrastructure
(SDSI) [9], which was later integrated with the Simple Public-
Key Infrastructure (SPKI) [10] to create SDSI 2.0 [11].
The central idea in decentralised trust management is to
decentralise access control decision making, and policy and
credential management over all the principals in the system.
This is achieved by requiring the owner of an object, or their
delegatee, to issue capabilities to authorised subjects that grant
access to the object. Distributing management responsibilities
over all of the principals results in an extremely scalable access
control system.
In SPKI the decentralisation is based on certificate loops.

A typical certificate loop is depicted in Fig. 3 where the
owner, Pa of an object O, grants Pb an SPKI authorisation
certificate, Cab, with access rights, Aab, for the object O. Pb

then further delegates access rights Abc, where Abc ⊆ Aab, to
Pc by granting Pc another authorisation certificate Cbc. Now,
when Pc wants to access O, she shows Pa both certificates
Cab and Cbc. Pa is now able to form a certificate chain from
Pc to Pb via Cbc and from Pb to itself via Cab. Finally Pc

authenticates herself to Pa by proving ownership of the key-
pair Pc. Pc does this by executing a public-key challenge-
response protocol with Pa. This completes the certificate chain
which now forms a certificate loop flowing from Pa to Pb

to Pc and back to Pa again. Pa has now verified that Pc

is authorised to access O within the privileges granted by
Aab∩Abc

1. Typically the verification is performed by an access
control service rather than Pa. Note that in SPKI, principals
and key-pairs are synonymous.
An SPKI authorisation certificate is a 5-tuple containing
the following items: Issuer, Subject, Delegation, Authorisation,
and Validity. Issuer is the public-key (or a hash of the public-
key) of the issuer of the certificate. Subject is the public-
key of the entity the certificate is issued to. Delegation is a
boolean value specifying whether the Subject is permitted to
further delegate the Authorisation granted by this certificate.
In a certificate chain all certificates bar the last one must have

1The verification process will also consider optional validity conditions (e.g.
expiration dates) for each certificate in the chain. Any single invalid certificate
will render the whole chain invalid.

Delegation set to true, otherwise the certificate chain is not
valid. Authorisation is an application specific representation
of access privileges granted to the Subject by the Issuer. And
finally, Validity defines the date range when the certificate
is valid and optional on-line validity tests, e.g. certificate
revocation lists (CRLs).
Two certificates are reduced to a single 5-tuple as follows:

< I1, S1,D1, A1, V1 > + < I2, S2,D2, A2, V2 >

⇒ < I1, S2,D2, A1 ∩ A2, V1 ∩ V2 >

iff A1 ∩ A2 �= ∅, V1 ∩ V2 �= ∅, S1 = I2 and D1 = true

This 5-tuple reduction rule is applied recursively to the
certificate loop in order to collapse the loop to a single 5-
tuple that will then be evaluated.
Our work relies on SPKI authorisation certificates to prop-

agate authorisation from resource owners to domains in a
decentralised and scalable fashion.

III. ACCESS CONTROL IN PUBLISH/SUBSCRIBE

We envision a multi-domain publish/subscribe system, as
explained in Sect. I, where each domain contains a number of
event clients and brokers, and an access control service. The
access control service is responsible for granting privileges to
brokers and clients in that domain according to the domain’s
internal access control policy.
One of the domains in the system is the coordinating
domain which coordinates the formation of the shared publish/
subscribe system. The coordinating domain forms the shared
publish/subscribe system by inviting other domains to join the
existing system. Because the coordinating domain forms the
publish/subscribe system, it can be seen as the owner of the
shared infrastructure and is therefore responsible for managing
access to it.
The incentive for domains to join the network is twofold:

on the one hand domains are interested in implementing
shared applications with other domains, e.g. when one domain
produces events while others consume them. On the other
hand, even with domain-internal applications, the increased
number of brokers increases the reliability and geographic
coverage of the broker network, i.e. a broker network with
a larger number of nodes is increasingly fault-tolerant and the
extended coverage enables participating domains to reach a
larger geographic area with lower infrastructure investments.
Both incentives are attractive to domains, but only if the
system provides appropriate access control mechanisms to
prevent unauthorised access to deployed applications.
The publish/subscribe system needs to control access to a
number of resources, e.g. the shared publish/subscribe infras-
tructure and various event types that have been introduced to
the system. All of the following actions have to be authorised:
(i) nodes, i.e. event brokers and event clients, connecting to
the broker network; (ii) type owners introducing new types
to the system; (iii) type owners extending an existing event
type by inheritance; (iv) event clients accessing the publish/
subscribe API, i.e. to publish or subscribe to events of a given
event type.

60 JOURNAL OF NETWORKS, VOL. 2, NO. 2, APRIL 2007

© 2007 ACADEMY PUBLISHER

PITO

Met Access
Control
Service

Met
Broker

Authorisation Certificate

issuer: PITO

subject: Met ACS

type: PITO.NumberPlate

action: subscribe

attributes: *

Authorisation Certificate

issuer: Met ACS

subject: Agent Smith

type: PITO.NumberPlate

action: subscribe

attributes:

 number_plate="AE05 XYZ"

 location

 timestamp

1

2

Detective
Smith

Figure 4. The authorisation certificates form a certificate chain linking
detective Smith to the type owner, i.e. PITO.

We propose a common approach to access control for
publish/subscribe systems where access control decisions in
all four cases are ultimately rooted at the appropriate resource
owner. In (i) and (ii) the resource owner is the coordinating
domain. In (iii) and (iv) the resource owner is the type owner.
Employing authorisation certificates in the architecture and
distributing the access control policy management, decision
making, and credential management over all resource owners
enables the access control architecture to scale well in an
environment consisting of multiple independent domains.

A. Delegating Authority

A resource owner delegates authority to another subject by
issuing an authorisation certificate for use by that subject.
In our model the resource owner grants an authorisation
certificate to a domain’s access control service. The autho-
risation certificate authorises the access control service to
further delegate the granted authority to nodes (e.g. event
brokers, event clients, and access control services in sub-
domains) in that domain. The access control service is then
responsible for further delegating the authority to nodes by
issuing authorisation certificates to them according to the
domain-internal access control policy.
The authorisation certificates form a certificate chain that
links the node to the resource owner through the access control
service, as seen in Fig. 4. The link between the resource and
the resource owner is implied either by the resource owner’s
public key being a part of the resource’s identifier (i.e. event
types, see Sect. II-B) or by the resource owner being explicitly
specified (i.e. the coordinating domain being specified as the
owner of the publish/subscribe system in the configuration of
all participating nodes). This is shown as the grey line between
the Met Broker and PITO in Fig. 4. The verifier forms a
certificate loop out of the certificate chain by verifying that
the node making the access request is able to authenticate
itself as the subject in the last authorisation certificate in the
chain, as depicted in Fig. 5.

PITO

Met Access
Control
Service

Detective
Smith

Met
Broker

Request

type: PITO.NumberPlate

action: subscribe

filter:

 number_plate="AE05 XYZ"

1 2

Challenge-Response

Figure 5. The Met Broker closes the certificate chain into a certificate loop
by challenging Detective Smith to authenticate himself.

B. Verifying Authority

When a client makes a publish/subscribe API request, it
shows the authorisation certificate it received from the access
control service and the authorisation certificate(s) linking the
access control service to the resource owner. The authorisation
certificates form a certificate chain from the client to the
resource owner via the client’s domain’s access control service.
The verifier then (i) verifies the signatures on the authorisation
certificates; (ii) verifies the certificate chain that they form,
i.e. the verifier reduces the chain to a single 5-tuple (see
Sect. II-A), verifies that the validity conditions are met and
that the client’s request is authorised by the authorisation
certificates; and finally (iii) executes a public-key challenge-
response protocol with the requesting client, as depicted in
Fig. 3. If everything validates correctly, the client’s request is
processed.
Note that the certificate chain must end at a resource owner
that the verifier trusts. That is, the prover and the verifier must
have a common trust root. In the coordinating domain’s case,
all nodes participating in the shared publish/subscribe system
trust the coordinating domain (all nodes in the system have the
coordinating domain’s public-key and the node’s local access
control service’s public-key installed as trusted keys). In the
case of the type owners, the owner’s public-key is included in
the name of the type (see Sect. II-B). This links together the
root of the certificate chain, i.e. the type owner, and the type
name. Thus the verifier is able to trust that the issuer of the
first certificate in the certificate chain is actually authorised to
do so.
We assume that authorisation certificates will be delivered to

the domain access control services out-of-band (i.e. outside of
the publish/subscribe system that is being protected). Out-of-
band delivery and the use of decentralised trust management
principles allows the resource owners to change access control
policy after deployment by issuing new and revoking exist-
ing authorisation certificates. For example, the coordinating

JOURNAL OF NETWORKS, VOL. 2, NO. 2, APRIL 2007 61

© 2007 ACADEMY PUBLISHER

domain is able to accept a new domain to the common
broker network simply by issuing an authorisation certificate
to the joining domain’s access control service without having
to update policy files at each node in the publish/subscribe
system. Similarly, a type owner is able to grant a new domain
access to an existing event type by issuing the domain’s access
control service an authorisation certificate granting access
rights to that event type.

C. Access Rights

Our model has four types of access rights that can be
granted to nodes. The first type, access to the broker network,
is required from every node that wants to join the broker
network. Without access to the broker network a node is not
able to use the publish/subscribe system. The second type, the
right to introduce new event types, is necessary if a domain
wants to deploy its own event types on the shared publish/
subscribe system. If a domain is not allowed to deploy its
own event types, that domain is effectively dependant on the
event types defined and deployed by other domains and as
such unable to deploy its own applications. The third type of
authority allows domains to extend other existing event types
by inheriting the existing type. Where the right to introduce
new types to the system is controlled by the coordinating
domain, the right to extend an event type is controlled by the
owner of the type being inherited. The credentials in both cases
must be included in the type definition, as explained in [6], so
that the authenticity and integrity of the event type definition
can be defined without any external evidence. The final type
of authority is the authority to access the publish/subscribe
API for a specific event type. The access rights specify the
type of access granted to the node, i.e. publishing rights,
subscription rights or both. The access rights also specify
which attributes the node is allowed to access. In some cases,
e.g. the Congestion Control Service presented in Sect. I, a node
is authorised to receive or publish an event type, but it is not
authorised to see all the content in those events. In the example
of the Congestion Control Service the service needs to see the
numberplate of a car entering the congestion controlled area,
but there is no need to see the location of the car when it
was seen, because the car is required to pay a fee based on it
entering the area, not based on its location when there.
The authorities described below can be combined into a sin-

gle authorisation certificate assuming that the granted authority
is a subset of the issuer’s access rights. For example, PITO, as
the coordinating domain of the UK Police Network, could is-
sue a single certificate granting both connect and install
rights to the access control service of the Metropolitan Po-
lice Force domain (e.g. action: connect|install).
The authority field also supports the asterisk wildcard, e.g.
action:* in order to enable all actions. It is important to
notice that the resource owner can only grant authority for
her own resources. For example, PITO, as a type owner, can
grant the Met domain the authority type:*, but the access
rights will apply only to the types owned by PITO. Similarly
with coordinating domains, the authority network:* will
grant access to the networks owned and managed by that
coordinating domain.

PITO

Met Access
Control
Service

Met
Broker

Authorisation Certificate

issuer: Met ACS

subject: Met Broker

type: *

Authorisation Certificate

issuer: PITO

subject: Met ACS

type: (some type T1)

Authorisation Certificate

issuer: PITO

subject: Met ACS

type: (some type T2)

Figure 6. Once the Met Broker has received the type:* authorisation
certificate, it can use it to access any further type authorised to the Met ACS.

In most cases we expect the event brokers of a domain
to shared the privileges of the access control service. For
example, all event brokers in a domain are expected to be
able to access all event types that the access control service
can access, because it allows all brokers to implement efficient
content-based routing for all event types accessed by that
domain. To achieve this the access control service can issue
authorisation certificates to the brokers with an unrestricted
action field, i.e. action:*. This grants the brokers access to
everything that the access control service is allowed to access,
assuming that the broker can show the authorisation certificate
of the access control service that links the broker’s certificate
to the resource owner. If the access control service is granted
new access rights after the deployment of the brokers, as is
the case with T2 in Fig. 6, the access control service can
just broadcast the new authorisation certificate to all brokers.
Because of the blanket authorisation granted to the brokers,
they are able to utilise the new authorisation certificate without
requiring new certificates to be issued to them.
Obviously granting blanket authorisations can be dangerous,
so one must be exercise care when doing so. We would assume
that a blanket authorisation would be specific to event types,
or a even a type owner, e.g. PITO pk.uk.gov.pito.*.
In some rare cases it might be necessary to deny some

brokers access to particular event types. But these cases are
usually handled more efficiently and more elegantly by placing
all privileged brokers into a sub-domain of their own with their
own privileged access control service.
1) Broker Network Access: The lowest level access control

decision in the system is granting nodes access to the broker
network. The authority is rooted at the coordinating domain
which is seen as the owner of the shared publish/subscribe

62 JOURNAL OF NETWORKS, VOL. 2, NO. 2, APRIL 2007

© 2007 ACADEMY PUBLISHER

system resource.
The aim of controlling access to the broker network is to

prevent unauthorised parties accessing the event service in any
way. If a malicious node is able to access the event service, it
is able to launch a simple denial of service attack by issuing
large amounts of subscription requests, or by injecting invalid
routing messages to the broker network, which can lead to
formation of network partitions. By controlling access to the
broker network we can easily prevent trivial DoS attacks.
The granted authority is very coarse compared to the

publish/subscribe API related access rights: it grants or denies
access to a specific publish/subscribe network. The author-
ity specifies the name of the network and the authorised
action which in this case are UK Police Network and
connect, respectively:

issuer: PITO
subject: Metropolitan Police
network: UK Police Network
action: connect

When connecting to a broker, both parties should verify each
others’ credentials. This is to prevent a client from connecting
to a malicious broker that pretends to be part of the system,
but in reality is not.
We assume that all links in the publish/subscribe system
are protected by Transport Layer Security (TLS). Securing
the communication links between nodes with TLS is a simple
way to prevent trivial network sniffing and flooding attacks.
Nodes create a TLS connection between each other. During
the TLS handshake both parties present their credentials (an
authorisation certificate granting access to the given broker
network) and prove ownership of their own public-key. Notice
that the trust relationship between the two nodes is based on
them sharing a common ancestor in the certificate tree, e.g. the
coordinating domain is the root of the authorisation certificate
chain for two brokers from two different domains. Or the local
access control service is the a common ancestor for an event
client and a broker of the same domain.
2) Introducing New Types: The authority to introduce new

types is also controlled by the coordinating domain since
this is seen as a function related to the publish/subscribe
system. The right to introduce new types to the system enables
domains to deploy their own applications. Otherwise a domain
is dependent on the types and applications deployed by other
domains. In the following example PITO has granted the Met
domain the right to deploy new event types:

issuer: PITO
subject: Metropolitan Police
network: UK Police Network
action: install

3) Extending Types: Extending an existing event type is
related to the type that is being inherited. Therefore the owner
of that type is responsible for managing access rights to extend
the given type.
By using wildcards the type owner is able to include
multiple types into one certificate. In the example below,
authority is granted to extend all types with names starting

with uk.gov.pito owned by the PITO:

issuer: PITO
subject: Metropolitan Police
type: uk.gov.pito.*
action: extend

The authorisation certificate granting authority to install a
new type or extend an existing type must be included in the
new type definition. This way the type definition is a self-
contained package and its validity can be verified without
external assistance when a client hosting broker is validating
a client’s request [6].
4) Accessing the Publish/Subscribe API: Accessing the

publish/subscribe API is always related to a specific event
type. Therefore the type owner, who is seen as the resource
owner, is responsible for issuing an authorisation certificate to
the access control service in each domain that is authorised to
access that event type. The domain’s access control service
is then responsible for delegating a subset of its authority
to nodes in the domains by issuing the nodes authorisation
certificates that specify the nodes authority with respect to the
given type.
The authority for accessing the publish/subscribe API can
be very fine grained. On the one hand the access rights can be
very specific granting the node only publication rights for a
specific event type with a subset of the event type’s attributes.
On the other hand the access rights can be extremely generous
granting the client access to all types and all attributes in those
types both for publishing and subscribing. In the following
example the Met domain has granted a CCTV camera located
near Victoria the right to publish Numberplate events:

issuer: Metropolitan Police
subject: CCTV Camera at Victoria
type: uk.gov.pito.Numberplate
action: publish
attributes: location = "Victoria"

numberplate
timestamp

Notice that the authority can place restrictions on event
content. For example, above the value of location is re-
stricted to be Victoria. When publishing this means that the
publisher hosting broker forces the attribute value if the pub-
lisher tries to publish a different value than Victoria. Sim-
ilar restrictions can also be used when granting subscription
rights to an event client. For example, detective Smith of the
Metropolitan Police might have temporary subscription rights
to Numberplate events where the value of the numberplate
field is restricted to a specific number plate that is relevant to
a case that the police officer is working on. In such a case
the local broker would force a filter, e.g. numberplate =
"AE05 XYZ", on detective Smith’s subscription.
In addition to the restricted access to the location

attribute, the CCTV camera has unrestricted access to the
numberplate and timestamp fields.
Assuming that the access control policy is enforced by
encrypting attributes it is not possible to force restrictions on
individual attributes in the broker network. For example, PITO

JOURNAL OF NETWORKS, VOL. 2, NO. 2, APRIL 2007 63

© 2007 ACADEMY PUBLISHER

can not force one domain to publish Numberplate events with
the location set to Victoria in all publications. Restricting
attributes on a domain level would mean that each broker on
the publication’s path from the publisher to all subscribers
would have to decrypt all attributes of the event and check that
the event content conforms to the credentials of the previous
broker. Therefore we assume that restrictions on attribute
values are used only when issuing authorisation certificates to
event clients where the client hosting broker is able to enforce
the restriction.
When a client has access only to a subset of the attributes
in an event type, the client hosting broker will replace the
other attributes with null values. In the case of a publisher, the
publisher hosting broker sets all attributes that the publisher
is not authorised to access to null. If a subscriber is not
authorised to access an attribute in a publication, the subscriber
hosting broker delivers the publication to the subscriber with
the unaccessible attributes set to null.

IV. ATTRIBUTE ENCRYPTION
Real-world events often include confidential data that should
be accessible only to authorised subjects, e.g. in our num-
berplate example the location of the numberplate sighting is
seen as a piece of confidential data that should not, in most
cases, be revealed to parties that are privy to the numberplate,
because the privacy of the numberplate owner is compromised
when the event specifies both the sighted numberplate as well
as the location where it was seen. For example, the CCS
billing service is not allowed to see the location where a given
numberplate was sighted in order to protect the privacy of
the numberplate owner. Detective Smith on the other hand is
authorised by a special court order to see both fields in order
to be able to track the numberplate through the city. These
conditions will need to be specified in the rules of a deployed
policy management system. That is, the policy defines which
brokers have access to which attributes in event types.
The policy is enforced by encrypting each attribute of

each event type in the system with its own encryption key.
Authorised brokers are given the encryption key that allows the
broker to encrypt (in case of publishing events or subscribing
to an event type) or decrypt (in case of content-based filtering
and delivering events to subscribers) event content. Notice that
clients do not access the encryptions keys directly. Instead the
local broker of a client handles encryption and decryption for
the client. It is assumed that the client is able to trust the local
broker sufficiently for the broker to act on the client’s behalf.
Therefore, clients must always connect to brokers that have
the required access rights for the client to access the event
types and attributes that it needs to access.
To protect the confidentiality of attributes in events we
must also encrypt the attribute filters defined in subscriptions.
Otherwise unauthorised brokers could deduce the value of an
attribute by looking at the subscription filter that matched the
given event.
Although our approach introduces run-time overhead due to
the cryptographic operations on the attributes of publications
and subscriptions, it allows the same publication to be dis-
seminated to subscribers with different privileges, thus using

the event dissemination tree efficiently. Our experiments in
[12] indicate that encrypting each attribute separately instead
the complete event can decrease the overall cryptographic
overheads. This is because in most cases filtering is based on
just one or two attributes instead of the whole event content.

A. Coverage Relations with Encrypted Filters

In order to take advantage of subscription coverage in
content-based publish/subscribe systems when encrypting at-
tributes, we extend the coverage relation to handle subscrip-
tions where the filter expressions have been encrypted.
We treat the filter expression in a subscription as a conjunc-
tion of attribute filters. Each attribute filter is encrypted. An
encrypted attribute filter expression is covered by a previous
encrypted filter expression if the previous filter is the same
or more general, and the broker making the comparison is
authorised to access the attribute being filtered, i.e. the broker
has access to the encryption key. A subscription is then
covered by another subscription if all its filter expressions are
covered. More formally, if sa and sb are two subscriptions
with a conjunction of filter expressions f i and gi encrypted
under the key ki.

sa = f1
k1

∧ f2
k2

∧ . . . ∧ fn
kn

(1)
sb = g1

k1
∧ g2

k2
∧ . . . ∧ gm

km
, (2)

then sa covers (�) sb is defined as follows:

sa � sb ⇐⇒ ∀i∃gi
ki

. f i
ki

� gi
ki

∧ ki ∈ Kbroker, (3)

where Kbroker is the set of encryption keys accessible to
the broker.

B. Encryption Keys

We use symmetric keys to encrypt and decrypt attribute
values. These keys are distributed only to the brokers that
are trusted with the attribute values. The system will never
deliver these keys to clients. This reduces the number of nodes
that are trusted with sensitive keys, and that take part in key
management protocols. Note that this does not affect security
since local brokers encrypt and decrypt attribute values on
behalf of connected clients, and deliver events to clients over
TLS secured communication links.
Encryption in a decentralised publish/subscribe system can
be seen as a sub-category of secure group communication.
In both cases the key management system must scale well
with the number of nodes, nodes might be spread over large
geographic areas, there might be high rates of churn in group
membership, and all members must be synchronised with each
other in time in order to use the same encryption key at the
same time.
There exists a number of scalable key management pro-

tocols for secure group communication[13]. We have imple-
mented the One-Way Function Tree (OFT) [14] protocol on
top of a structured overlay network as a proof of concept.
Our implementation uses the same structured overlay network

64 JOURNAL OF NETWORKS, VOL. 2, NO. 2, APRIL 2007

© 2007 ACADEMY PUBLISHER

used by the broker network as a transport. The OFT protocol is
based on a binary tree where the participants are at the leaves
of the tree. It scales in log2 n in processing and communication
costs, as well as in the size of the state stored at each
participant, which we have verified in our simulations.
Efficient group key management is not the focus of this

paper. Overall, the efficiency of key distribution will have little
impact on performance, since symmetric keys are distributed
only to brokers, as opposed to publishers and subscribers.
Relatively few entities are involved in key dissemination, and
changes will be infrequent. However, correct key management
is essential for the security of the system.

V. ACCESS CONTROL POLICY

Whilst this paper primarily focuses on mechanisms for the
enforcement of access control, the specification of access con-
trol policy is also necessary for any complete deployment. Our
current implementation decouples policy management from
access control enforcement, allowing many possible forms of
policy management. This section discusses using the OASIS
Role-Based Access Control (RBAC) framework for the policy
management of our distributed publish/subscribe architecture.
The access control policy for a resource is done at multiple

levels: for example, at the resource owner and the authorised
access control service. In the first level, the resource owner
authorises the access control services within each domain to
access a resource. In the second level, the access control ser-
vice of a domain implements an independent, domain-internal
access control policy which defines the access rights granted
to domain members. This means that the resource owner has
no control over authorisation certificates issued to domain
members by the domain’s access control service. We assume
that the resource owner is willing to trust the access control
service of a domain within the extent of the authorisation
certificate. This seems reasonable assuming that the resource
owner is able to easily revoke access from misbehaving access
control services. We will provide an illustration using OASIS
policy at the domain level, but potentially the different levels
could use independent policy languages.

A. OASIS

The Open Architecture for Secure Interworking Services
(OASIS) [15], [16], provides a comprehensive rule-based
means to check that users can only acquire the privileges that
authorise them to use services by activating appropriate roles.
A role activation policy comprises a set of rules, where a role
activation rule for a role r takes the form:

r1, .., rn, a1, .., am, e1, .., el � r

where ri are prerequisite roles, ai are appointment certificates
(most often persistent credentials) and ei are environmental
constraints. The latter allow restrictions to be imposed on when
and where roles can be activated (and privileges exercised), for
example at restricted times or from restricted computers. Any
predicate that must remain true for the principal to remain
active in the role is tagged as a role membership condition.

Such predicates are monitored, and their violation triggers
revocation of the role and related privileges from the principal.
An authorisation rule for some privilege p takes the form:

r, e1, .., el � p

An authorisation policy comprises a set of such rules.
OASIS has no negative rules, and satisfying any one rule
indicates success.
OASIS roles and rules are parametrised. This allows fine-

grained policy requirements to be expressed and enforced,
such as exclusion of individuals and relationships between
them, for example caseAssignment(detective-ID, case-ID).
Without parametrisation it becomes necessary to define an
unmanageably large number of roles for an organisation of
any size.

B. OASIS Policy in Our Example Scenario

In our scenario Detective Smith is only permitted to receive
events relating to the sighting of a particular numberplate. We
have indicated how the publish/subscribe system can enforce
these types of access control, but have not discussed how to
specify this in terms of policy within a domain.
In this section we show how the OASIS policy language
could be used to specify a simple rule required by our example
scenario. We propose that the courts are equiped with a means
to issue a warrant as an OASIS appointment certificate. This
appointment certificate has parameters that specify which case
and which numberplate the warrant has been issued for.
The domain access control policy can then ensure that
the subscription privilege is granted only to detectives who
have been assigned to the case. An environmental predicate,
caseAssignment, records the mapping between cases and
detectives.
An appropriate OASIS role activation rule would be:

detective(detId),

caseAssignment(detId, case),

courtOrder(case, np) � npTracker(detId, np)

The target role membership certificate, npTracker is pa-
rameterised with the detective’s identity and the numberplate
being tracked. This certificate can subsequently be represented
as an authorisation certificate that the detective presents to
a local broker when they want to subscribe to numberplate
events.

C. Access Rights Revocation

Rapid, reliable, distributed revocation of certificates is a
non-trivial problem, yet one for which we need a mechanism
if access control policy in an access control system such as
ours might ever need to be revised.
Traditional approaches to certificate revocation include ex-
piry dates, certificate revocation lists (CRLs), and various on-
line tests. When a given revocation occurs through any of
these mechanisms, the OASIS policy rules for which that
credential was a prerequisite for can be scanned to effect active

JOURNAL OF NETWORKS, VOL. 2, NO. 2, APRIL 2007 65

© 2007 ACADEMY PUBLISHER

security – we can send events to the other parties that need
to be notified of this revocation. That is, if a subject loses
her role membership or authority, all registered parties will be
notified. This allows, for example, the Met event brokers to
be notified if detective Smith loses the authority to subscribe
to Numberplate events.
In the case of resource owners, we assume that the authori-

sation certificates issued to domains are relatively long lived.
If a resource owner wants to change the access control policy
related to a resource, in most cases it is not an option to wait
for an authorisation certificate to expire in order to revoke a
domains access rights concerning a resource, e.g. access to a
publish/subscribe broker network or to an event type. There-
fore the publish/subscribe system must provide a mechanism
for resource owners to actively revoke authorisation certificates
issued to domains. Such a mechanism can be based on CRLs,
a notification based active security approach, or other on-line
checks.
For domain access control services there are more options.
A domain may decide to issue short-lived certificates in order
to avoid having to deal with active certificate revocation
mechanisms. It is plausible to assume that all event clients in a
domain are required to reacquire their authorisation certificates
regularly, e.g. once every day or once every hour. The domain
is free to make a trade-off between convenience and the risk
of unauthorised access between the time when the domain’s
access control policy changes and the current authorisation
certificate expires. If such a trade-off is not acceptable in
a domain, the domain can deploy active revocation methods
similar to the ones discussed above to revoke access rights.
The proper approach to certificate revocation is very much
application and environment dependent. In some cases very
short expiry dates will suffice. Other applications and envi-
ronments will require more complex real-time approaches.

D. Policy Evaluation at the Local Broker

Authorisation to advertise, publish or subscribe may also
depend on dynamic conditions such as event type or content,
date, time or frequency of publication. For example, a pub-
lisher may be restricted to publish events only between 9am
and 5pm.
In our current model the publisher’s authorisation certificate

would expire at 5pm each day. The publisher would have to
reacquire her certificate in the morning before 9am every day.
In order to allow longer lived certificates and to lower the
load on the access control service, we could implement the
evaluation of the dynamic access condition at the verifier, i.e.
at the publisher hosting broker in this case. A policy language
such that used in OASIS could achieve this, as illustrated in
section V-B.
Delegating the evaluation of the relatively simple dynamic
conditions to the broker would require for us to define a
minimal policy language which allows the access control
service to define these conditions in the authority field of
authorisation certificates. The broker could then evaluate the
condition in the authority field and grant access if the condition
evaluates to true. Defining such a policy language is part of our

planned future work with respect to access control in multi-
domain publish/subscribe systems.

VI. RELATED WORK
Wang et al. in [17] categorised the various security issues
that need to be addressed in publish/subscribe systems in the
future. The paper is a comprehensive overview of security
issues and as such tries to draw attention to the issues rather
than provide solutions.
Opyrchal and Prakash address the problem of event con-
fidentiality at the last link between the subscriber and the
subscriber hosting broker in [18]. They correctly state that
a secure group communication approach is infeasible in an
environment like publish/subscribe that has highly dynamic
group memberships and widely varying subscriptions. They
propose a scheme utilising key caching and subscriber group-
ing in order to minimise the number of required encryptions
when delivering a publication from a subscriber hosting broker
to a set of matching subscribers. We assume in our work that
the subscriber hosting broker is powerful enough to manage a
TLS [19] secured connection for each local subscriber.
Srivatsa and Liu present EventGuard in [20]. EventGuard
provides event confidentiality, integrity and authenticity in
decentralised publish/subscribe systems and as such is very
similar to our work. Srivatsa and Liu address the security
problems in publish/subscribe system in a bottom-up approach
where they provide confidentiality and integrity guarantees
with cryptographic primitives. In contrast to our work they
do not address managing access control. Our approach is a
top-down approach where we motivate the need for access
control in multi-domain environments and provide a solution
built on primitives like certificates and digital signatures.
Zhao and Sturman propose an approach to dynamic access

control in a content-based publish/subscribe system in [21]. In
contrast to our work they propose a centralised, access control
list based architecture, which, while perfectly acceptable for
single domain deployments, will not in our opinion scale to
multiple domains.
We base our work on that presented in previous papers

related to the topic: [12] introduces the multi-domain environ-
ment and proposes a high-level access control approach based
on role-based access control, [6] provides the basis for our
capability-based access control model, which was originally
introduced in [22].

VII. CONCLUSIONS AND FUTURE WORK
We have presented an SPKI-based access control architec-
ture for multi-domain publish/subscribe systems. By applying
decentralised trust management, we are able to administer
and enforce access control in publish/subscribe systems that
span multiple independent administrative domains both con-
veniently and in a scalable manner.
There are aspects of future work resulting from this paper.

So far we have focused on allowing clients to verify that
they are communicating using consistent event types/topics
through checking the certificate chains that authorise their use
of them. We are keen to move towards encrypting events, or

66 JOURNAL OF NETWORKS, VOL. 2, NO. 2, APRIL 2007

© 2007 ACADEMY PUBLISHER

attributes of them, so that we can enforce access control in
an untrusted broker network, and thus evolve away from a
boundary-oriented access control approach.

VIII. ACKNOWLEDGEMENTS

Lauri Pesonen is supported by EPSRC (GR/T28164). David
Eyers is supported by EPSRC (GR/S94919).

REFERENCES

[1] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermar-
rec, “The many faces of publish/subscribe,” ACM Computing
Surveys (CSUR), vol. 35, no. 2, pp. 114–131, 2003.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design
and evaluation of a wide-area event notification service,” ACM
Transactions on Computer Systems, vol. 19, no. 3, pp. 332–383,
Aug. 2001.

[3] P. R. Pietzuch and S. Bhola, “Congestion Control in a Reliable
Scalable Message-Oriented Middleware,” in Proc. of the 4th
Int. Conf. on Middleware (Middleware ’03), M. Endler and
D. Schmidt, Eds. Rio de Janeiro, Brazil: Springer, June 2003,
pp. 202–221.

[4] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron,
“SCRIBE: A large-scale and decentralized application-level
multicast infrastructure,” IEEE Journal on Selected Areas in
communications (JSAC), vol. 20, no. 8, pp. 1489–1499, Oct.
2002.

[5] P. R. Pietzuch and J. M. Bacon, “Hermes: A Distributed
Event-Based Middleware Architecture,” in Proc. of the 1st
International Workshop on Distributed Event-Based Systems
(DEBS’02). Vienna, Austria: IEEE, July 2002, pp. 611–618.

[6] L. I. W. Pesonen and J. Bacon, “Secure event types in content-
based, multi-domain publish/subscribe systems,” in SEM ’05:
Proceedings of the 5th international workshop on Software
engineering and middleware. New York, NY, USA: ACM
Press, Sept. 2005, pp. 98–105.

[7] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust
management,” in Proc. of the IEEE Conference on Security and
Privacy. Oakland, CA, USA: IEEE, May 1996.

[8] M. Blaze, J. Feigenbaum, and A. D. Keromytis, “KeyNote: Trust
management for public-key infrastructures (position paper),” in
Proc. of the Cambridge 1998 Security Protocols International
Workshop, vol. 1550, 1998, pp. 59–63.

[9] R. L. Rivest and B. Lampson, “SDSI – A simple distributed
security infrastructure,” Presented at CRYPTO’96 Rumpsession,
Oct. 1996.

[10] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and
T. Ylönen, “SPKI certificate theory,” Internet Engineering Task
Force, RFC 2693, Sept. 1999.

[11] CIS, “SDSI (a simple distributed security infrastructure),”
Sept. 2001. [Online]. Available: http://theory.lcs.mit.edu/∼cis/
sdsi.html

[12] J. Bacon, D. M. Eyers, K. Moody, and L. I. W. Pesonen,
“Securing publish/subscribe for multi-domain systems,” in Mid-
dleware, ser. Lecture Notes in Computer Science, G. Alonso,
Ed., vol. 3790. Springer, 2005, pp. 1–20.

[13] S. Rafaeli and D. Hutchison, “A survey of key management
for secure group communication,” ACM Computing Surveys,
vol. 35, no. 3, pp. 309–329, 2003.

[14] D. A. McGrew and A. T. Sherman, “Key establishment in large
dynamic groups using one-way function trees,” TIS Labs at
Network Associates, Inc., Glenwood, MD, Tech. Rep. 0755,
May 1998.

[15] J. Bacon, K. Moody, and W. Yao, “Access control and trust
in the use of widely distributed services,” in Middleware 2001,
vol. LNCS 2218. Springer-Verlag, Nov. 2001, pp. 300–315.

[16] ——, “A Model of OASIS Role-Based Access Control and its
Support for Active Security,” ACM Transactions on Information
and System Security (TISSEC), vol. 5, no. 4, pp. 492–540, Nov.
2002.

[17] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf, “Secu-
rity issues and requirements in internet-scale publish-subscribe
systems,” in Proc. of the 35th Annual Hawaii International
Conference on System Sciences (HICSS’02). Big Island, HI,
USA: IEEE, 2002.

[18] L. Opyrchal and A. Prakash, “Secure distribution of events in
content-based publish subscribe systems,” in Proc. of the 10th
USENIX Security Symposium. USENIX, Aug. 2001.

[19] T. Dierks and C. Allen, “The TLS protocol, version 1.0,”
Internet Engineering Task Force, RFC 2246, Jan. 1999.

[20] M. Srivatsa and L. Liu, “Securing publish-subscribe overlay
services with eventguard,” in CCS ’05: Proceedings of the 12th
ACM conference on Computer and communications security.
New York, NY, USA: ACM Press, 2005, pp. 289–298.

[21] Y. Zhao and D. C. Sturman, “Dynamic access control in a
content-based publish/subscribe system with delivery guaran-
tees,” in Proc. of the 26th IEEE International Conference on
Distributed Computing Systems (ICDCS’06). Los Alamitos,
CA, USA: IEEE Computer Society, 2006, p. 60.

[22] L. I. W. Pesonen, D. M. Eyers, and J. Bacon, “A capabilities-
based access control architecture for multi-domain pub-
lish/subscribe systems,” in Proceedings of the Symposium on
Applications and the Internet (SAINT 2006). Phoenix, AZ:
IEEE, Jan. 2006, pp. 222–228.

JOURNAL OF NETWORKS, VOL. 2, NO. 2, APRIL 2007 67

© 2007 ACADEMY PUBLISHER

