
402 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

Optimizing Web Delivery Over Wireless Links:
Design, Implementation, and Experiences

Rajiv Chakravorty, Andrew Clark, and Ian Pratt

Abstract—World over wide-area wireless Global System for
Mobile Communication (GSM) networks have been upgraded to
support the general packet radio service (GPRS). GPRS brings
“always-on” wireless data connectivity at bandwidths comparable
to that of conventional fixed-line telephone modems. Unfortu-
nately many users have found the reality to be rather different,
experiencing very disappointing performance when, for example,
browsing the Web over GPRS.

In this paper, we show what causes the web and its underlying
transport protocol TCP to underperform in a GPRS wide-area
wireless environment. We examine why certain GPRS network
characteristics interact badly with TCP to yield problems such
as: link underutilization for short-lived flows, excess queueing for
long-lived flows, ACK compression, poor loss recovery, and gross
unfairness between competing flows. We also show that many Web
browsers tend to be overly aggressive, and by opening too many
simultaneous TCP connections can aggravate matters.

We present the design and implementation of a web optimizing
proxy system called GPRSWeb that mitigates many of the GPRS
link-related performance problems with a simple software update
to a mobile device. The update is a link-aware middleware (a local
“client proxy”) that sits in the mobile device, and communicates
with a “server proxy” located at the other end of the wireless link,
close to the wired-wireless border. The dual-proxy architecture col-
lectively implements a number of key enhancements—an aggres-
sive caching scheme that employs content-based hash keying to im-
prove hit rates for dynamic content, a preemptive push of Web page
support resources to mobile clients, resource adaptation to suit
client capabilities, delta encoded data transfer of modified pages,
DNS lookup migration, and a UDP-based reliable transport pro-
tocol that is specifically optimized for use over GPRS. We show
that these enhancements results in significant improvement in web
performance over GPRS links.

Index Terms—General packet radio service (GPRS), perfor-
mance, proxy, web, wireless.

I. INTRODUCTION

A
LL OVER the world Global System for Mobile Commu-
nication (GSM) cellular networks have been upgraded to

support the general packet radio service (GPRS). GPRS offers
“always on” connectivity to mobile users, with wide-area cov-
erage and data rates comparable to that of conventional fixed-
line telephone modems. This holds the promise of making ubiq-
uitous mobile access to IP-based applications and services a
reality.

However, despite the momentum behind GPRS, surprisingly
little has been done to evaluate WWW performance over GPRS.

Manuscript received November 1, 2003; revised May 15, 2004.
The authors are with the Computer Laboratory, University of Cambridge,

Cambridge CB3 0FD, U.K. (e-mail: rc277@cl.cam.ac.uk; Rajiv.Chakravorty@
cl.cam.ac.uk; Andrew.Clark@cl.cam.ac.uk; Ian.Pratt@cl.cam.ac.uk).

Digital Object Identifier 10.1109/JSAC.2004.839398

There are some interesting simulation studies [17], [26] on
transmission control protocol (TCP) performance, but we have
found actual deployed network performance to be somewhat
different.

Some of the Web performance issues observed in GPRS
are shared, to some extent, with wireless local area network
(WLANs) like 802.11 , satellite systems, and other
wide-area wireless schemes such as Metricom Ricochet and
cellular digital packet data (CDPD). However, we feel that
GPRS presents a particularly challenging environment for
achieving good application (Web) performance.

Past research has investigated TCP (and also HTTP) perfor-
mance over some other wide-area wireless links such as Ardis,
Metricom Richochet, CDPD, and GSM. However, the real in-
hibitors to a better Web browsing experience are typically re-
lated to the underlying network characteristics, which as we
shall see, are somewhat different for GPRS.

In this paper, we set out to explore questions like:

• What are the “typical” GPRS network characteristics?
• What are the practical performance issues using TCP and

HTTP over GPRS?
• What performance benefits can we achieve using various

transport and application-level optimizations?
In short this paper presents our practical experiences over

production GPRS networks, and our attempts to build a system
that optimizes WWW performance over GPRS. After a brief
overview, we summarize our work to characterize GPRS link
behavior in Section II. Section III identifies particular problems
experienced by TCP flows over GPRS, and Section IV examines
how these are exacerbated by application-layer protocols such
as HTTP.

In Section V, we present the design and implementation of
our GPRSWeb proxy system—a Web optimizing dual-proxy
system consisting of the client middleware (the client proxy)
and a ‘server proxy’. The client middleware is a local proxy
that resides in the mobile device, while the GPRSWeb server
proxy is located in the cellular network close to the wired-wire-
less border. The GPRSWeb system improves Web content de-
livery with an optimized transport protocol specifically tailored
for GPRS wireless environments, an extended caching scheme,
server controlled parse-and-push functionality, data (payload)
compression, and delta encoding to improve performance in
presence of dynamic Web content. GPRSWeb requires no addi-
tional instrumentation or modification to be made either to Web
browsers, mobile clients, or content servers.

Section VI discusses GPRSWeb system performance and
Section VII presents related work. We discuss issues related
to GPRSWeb deployment in Section VIII and conclude in
Section IX.

0733-8716/$20.00 © 2005 IEEE

CHAKRAVORTY et al.: OPTIMIZING WEB DELIVERY OVER WIRELESS LINKS: DESIGN, IMPLEMENTATION, AND EXPERIENCES 403

II. GPRS LINK CHARACTERIZATION

We have used a commercial GPRS testbed for link character-

ization. In this testbed, the mobile terminal (MT), e.g. a laptop,

connects to the GPRS network through a GPRS-enabled inter-

face—a PCMCIA GPRS card or a phone. In order to use the

GPRS network, the MT first attaches itself to the gateway GPRS

support node (GGSN) through a signaling procedure and estab-

lishes a point-to-point protocol (PPP) connection. The MT is

dynamically assigned an IP address and the GPRS network is

responsible for delivering data to and from this IP address as

the MT moves through the network.

GPRS like other wide-area wireless networks, exhibits many

of the following characteristics: low and fluctuating bandwidths,

high and variable latency, and occasional link “blackouts” [31].

To gain clear insight into the characteristics of the GPRS link,

we conducted a series of network link characterization experi-

ments. These have been repeated under a wide range of condi-

tions, using different models and manufacturer of handsets, and

different network operators located in several European coun-

tries. We found no major performance differences between the

network operators, and variation between different handsets of

similar GPRS device class is minimal. A more detailed descrip-

tion of how these tests were conducted (uplink/downlink latency

measurements, tools used, etc.) can be found in [31]. We also

provide a comprehensive description on GPRS link character-

ization in the form of a separate technical report in [15]. We

enunciate some of our key findings.

High and Variable Latency: GPRS link latency is high and

variable: 400–1300 ms in the uplink and 500–3000 ms in the

downlink, as shown in Fig. 1. Round-trip times of 800 ms

or more are typical. The variability seen in the link latency

is due to the retransmissions (ARQ) at the radio link control

(RLC) layer and depends on the wireless channel conditions.

Fig. 1 shows significantly higher number of link-layer retrans-

missions occurred over the downlink (shows greater spread in

the distribution). In contrast the uplink shows a much tighter

delay distribution indicating better radio conditions. These

measurements for delay distributions were obtained using a

version of ttcp program (ttcp+ [3]) modified to use precise

timestamps between time-synchronized hosts in stationary

conditions [31].

The link also shows a strong tendency to “bunch”

packets—the first packet in a burst is likely to be delayed

and experience much more jitter than the following packets.

This indicates that a substantial proportion of the latency is

incurred when the mobile terminal transitions from previously

being idle [31]. Packets that are already queued for transmis-

sion can then follow the first out over the radio link without

incurring additional jitter.

Fluctuating Bandwidth: We observe that signal quality leads

to significant (often sudden) variations in perceived bandwidth

by the receiver. Sudden signal quality fluctuations (good or bad)

commensurately impacts GPRS link performance. Using a “3

1” GPRS phone such as the Ericsson T39 (three downlink

channels, one uplink), we observed a maximum downlink pay-

load throughput of about 4.15 KB/s (33.2 Kb/s), and an uplink

throughput of 1.4 KB/s (11.2 Kb/s). Using a “4 1” phone,

Fig. 1. Single packet time-in-flight sample delay distribution over GPRS links
with plots showing (a) uplink delay and (b) downlink delay distribution for 1000
packet samples of size 1024 bytes each.

the Motorola T280, we measured an improved maximum band-

width of 5.5 KB/s (44 Kb/s) in the downlink direction. Factors

such as protocol overheads contribute to this discrepancy, see

[26] and [31] for more information.

Packet Loss: The RLC layer in GPRS uses an automatic re-

peat request (ARQ) scheme that works aggressively to recover

from link-layer losses. Thus, higher level protocols (such as

IP) rarely experience noncongestive losses. Packets can be lost

over the GPRS link during: 1) deep fading leading to bursty

losses and 2) cell reselections resulting in a link “blackout”

condition. In both cases, consecutive packets in a window are

usually lost.

Link Outages: Link outages are more frequent when moving

at speed or, for example, passing through tunnels or other radio

obstructions. Nevertheless, we have also noticed outages during

stationary conditions. The observed outage interval will typi-

cally vary between 5 and 40 s. Sudden signal quality degrada-

tion, prolonged fades and intrazone handovers can lead to such

link blackouts. When link outages are of short duration, packets

are simply delayed and are lost in few cases. In contrast, when

outages are of higher duration there tend to be burst losses. We

have also observed specific cases of link resets, where a mobile

404 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

Fig. 2. (a) Shows that slow-start takes over 7 s to expand the congestion
window sufficiently to enable the connection to utilize the full link bandwidth.
(b) Captures the characteristic exponential congestion window growth due to
slow-start. Maximum segment size (MSS) was set at 1400 bytes.

terminal would stall and stop listening to its temporary block

flow (TBF) [11]. In such cases, we had to terminate and restart

the PPP session.

III. TCP PERFORMANCE OVER GPRS

In this section, we concentrate on TCP performance issues

over GPRS. We focus on connections where the majority of

data is shipped in the downlink direction, as this corresponds

to the prevalent behavior of most mobile applications, such as

Web browsing, file download, reading e-mail, news, etc. A more

comprehensive description on TCP performance problems over

GPRS is available [31].

TCP Startup Performance: Fig. 2(a) shows a close up of

the first few seconds of a connection, displayed alongside an-

other connection under slightly worse radio conditions. An esti-

mate of the link bandwidth delay product (BDP) is also marked,

approximately 10 KB. This estimate is approximately correct

under both good and bad radio conditions, as even though the

link bandwidth drops under poor conditions the RTT tends to

rise. For a TCP connection to fully utilize the available link

bandwidth, its congestion window must be equal or exceed the

BDP of the link. We can observe that in the case of good radio

conditions, it takes over 7 s to ramp the congestion window up

to a value of link BDP from when the initial connection request

(TCP’s SYN) was made. Hence, for transfers shorter than about

18 KB, TCP fails to exploit the meagre bandwidth that GPRS

makes available to it. Since many HTTP objects are smaller than

this size, the effect on Web browsing performance can be very

significant.

ACK Compression: A further point to note in Fig. 2(b) is

that the sender releases packets in bursts in response to groups

of four ACKs arriving in quick succession. Receiver-side traces

show that the ACK’s are generated in a smooth fashion in

response to arriving packets. The “bunching” on the uplink is

due to the GPRS link layer. This effect is not uncommon, and

appears to be an unfortunate interaction that can occur when

the mobile terminal has data to send and receive concurrently.

ACK bunching or compression not only skews upwards the

TCP’s RTO measurement but also affects its self-clocking

strategy. Sender-side packet bursts can further impair RTT

measurements.

Excess Queueing: Due to its low bandwidth, the GPRS

link is almost always the bottleneck of any TCP connection,

hence, packets destined for the downlink get queued at the

gateway onto the wireless network (known as the GGSN node

in GPRS terminology, see Fig. 9). However, at the time these

measurements were taken, we found that the existing GPRS

infrastructure offered substantial buffering: UDP burst tests

indicate that over 120 KB of buffering is available in the

downlink direction. Most GPRS networks offer high buffering

between 50–200 KB [31]. Hence, for long-lived sessions,

TCP’s congestion control algorithm could fill the entire router

buffer before incurring packet loss and reducing its window.

Typically, however, the window is not allowed to become

quite so excessive due to the receiver’s flow control window,

which in most TCP implementations is limited to 64 KB unless

window scaling is explicitly enabled. Even so, this still amounts

to several times the BDP of unnecessary buffering, leading to

grossly inflated RTTs due to queueing delay. Fig. 3(b) shows

a TCP connection in such a state, where there is 40 KB of

outstanding data leading to a measured RTT of tens of seconds.

Excess queueing exacerbates other issues.

• Inflated Retransmit Timer Value. RTT in-

flation results in an inflated retransmit timer value that

impacts TCP performance, for instance, in cases of mul-

tiple loss of the same packet [36].

• SYN timeout. Excess queueing caused by long-lived

flows results in attempts to establish new connections

timing-out before completing the three-way handshake

[36].

• Problems of Leftover (Stale) Data. For

downlink channels, the queued data may become obsolete

when a user aborts a Web download and abnormally

terminates the connection. Draining leftover data from

such a link may take many seconds.

• Higher Recovery Time. Recovery from timeouts

due to dupacks (sacks) or coarse timeouts in TCP over a

saturated GPRS link takes many seconds. This is depicted

in Fig. 3(a), where drain time is about 30 s.

CHAKRAVORTY et al.: OPTIMIZING WEB DELIVERY OVER WIRELESS LINKS: DESIGN, IMPLEMENTATION, AND EXPERIENCES 405

Fig. 3. Case of time-out due to a dupack(sack). (a) Shows the sender sequence
trace. (b) Captures the corresponding outstanding data. MSS here was set at
1400 bytes.

TCP Loss Recovery Over GPRS: Fig. 3(a) and (b) depicts

TCP’s performance during recovery due to reception of a du-

pack (in this case, a SACK). The point to note here is the very

long time it takes TCP to recover from the loss, on account of the

excess quantity of outstanding data. Fortunately, use of SACKs

ensures that packets transferred during the recovery period are

not discarded, and the effect on throughput is minimal. This em-

phasizes the importance of SACKs in the GPRS environment.

In this particular instance, the link condition happened to im-

prove significantly just after the packet loss, resulting in higher

available bandwidth during the recovery phase.

Fairness Between Flows: Excess queueing can lead to gross

unfairness between competing flows. Fig. 4 shows a file transfer

initiated 10 s after transfer . When TCP transfer is initi-

ated, it struggles to get going. In fact it times out twice on initial

connection setup (SYN) before being able to send data. Even

after establishing the connection the few initial data packets

of are queued at the CGSN node behind a large number of

packets. As a result, packets of perceive very high RTTs

(16–20 s) and bear the full brunt of excess queueing delays

due to . Flow continues to badly underperform until ter-

minates. Flow fairness turns out to be an important issue for

Web browsing performance, since most browsers open multiple

concurrent HTTP connections [31]. The implicit favoring of

long-lived flows often has the effect of delaying the “important”

objects that the browser needs to be able to start displaying the

Fig. 4. Sequence plots of two concurrent file transfers over GPRS, where flow
(in close-up) was initiated 10 s after . MSS in this case was set at 1400

bytes.

Fig. 5. Web connection overhead.

partially downloaded page, leading to decreased user perception

of performance.

IV. WWW PERFORMANCE OVER GPRS

The results from the preceding section highlights many is-

sues related to TCP performance in a wide-area wireless GPRS

environment. In this section, we briefly review the key issues re-

lated to Web browsers, and specifically, Web performance over

GPRS. More information related to Web performance issues

over GPRS can be found in [31].

Typically, a Web connection could entail two round trips. As

shown in Fig. 5—in the first round-trip, the Web client resolves

the requested uniform resource identifier (URI) with a check

to a local domain name server (DNS) cache for an entry to the

requested URL. As RTTs over GPRS are high, frequent DNS

lookups are costly as they must be completed before other work

can continue. After resolving the DNS name, the Web client ini-

tiates a TCP connection with the remote server. As usual, every

TCP connection will have to proceed through a three-way TCP

handshake, which means that an extra RTT is incurred before

the connection can be used. The impact of such RTTs is that it

406 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

induces “idle” times during downloads, resulting in link under-

utilization.

Popular Web sites usually contain embedded objects hosted

under different domain names. In an attempt to improve end-

user experience, these Web sites offload some of their static

content to a set of servers located geographically closer to the

users [13]. For example, news Web sites such as www.cnn.com

contain embedded objects that point to many distinct domain

names, e.g., Akamai content servers. Thus, when a browser per-

forms DNS queries for such domain names, each query incurs

a delay of at least one GPRS RTT. The situation is further exac-

erbated by content distribution networks that employ a smaller

DNS time-to-live (TTL) value in their DNS responses for load

balancing purposes [12], [27]. This results in browsers more fre-

quently querying for DNS resolution.

Browser behavior is obviously crucial to better experience

over any given network. Unfortunately, most current Web

browsers are tuned for LAN environments and often perform

poorly in a resource restricted setting. Web browsers (e.g.,

mozilla) open multiple concurrent TCP connections over a link

simultaneously [31]. The inherent nature of TCP’s congestion

control algorithm implies that connections will be times

more aggressive when compared with a single TCP connection

sharing a bottleneck link. Typically, Web browsers that open a

number of concurrent TCP connections do so to grab a greater

share of the link bandwidth. Also, with more connections,

browsers implicitly avoid head-of-line (HOL) blocking prob-

lems [21]. An aggressive browser will obviously reap benefits

over conventional high bandwidth links shared by many users.

However, using multiple TCP connections over “long-thin”

GPRS links has its own drawbacks. First, protocol control

(SYN/ACK/FIN’s) overhead associated with greater numbers

of connections is high. This is further exacerbated by the

overhead of the protocol headers (55 bytes as in [6]) for data

packets that are exchanged over the link. Second, the three-way

handshake delay while establishing a TCP connection can be

significant due to the high latency of GPRS links. Further-

more, it can take only a few RTTs for multiple concurrent

connections to exceed the GPRS CGSN router downlink

bandwidth-delay product (BDP) value. The exponential nature

of the slow-start phase combined with packets from multiple

flows can quickly lead to excess queueing over the downlink.

As a result, any subsequent new TCP connection will have a

high chance of timing out during its initial connection request

phase. New connections will endure high RTTs, causing them

to severely underperform, with an additional probability of

spurious time-outs. Experiments in [31] over production GPRS

networks show that aggressive Web browsers at times saturate

the downlink GPRS GGSN buffers.

There exists a tradeoff in the number of simultaneous, persis-

tent, TCP connections to use over GPRS [32]. If Web browsers

open few persistent TCP connections then it may lead to link

underutilization. Opening many increases connection setup

overhead and consequently degrades performance. Experience

shows that support for persistent connections is not always

implemented in Web server software or can sometimes be

deliberately turned off [13]. In fact, many commercial Web

servers explicitly close (FIN) connections after certain number

of requests. This implicitly forces Web clients to open many

new TCP connections to download the entire content. Unfor-

tunately this behavior degrades end-user Web experience over

GPRS.

The full benefits of HTTP 1.1 cannot be realized without

making use of HTTP pipelining, where multiple outstanding re-

quests are permitted on the same connection [29], [34]. Without

pipelining, a RTT delay is normally incurred between objects on

the same connection, and worse, slow-start must be performed

at the start of every object (i.e., HTTP GETs) since the connec-

tion will have gone idle. Unfortunately, support for pipe lining

is currently rare. Our experiments also show that HTTP request

pipe lining improves Web performance over GPRS [31], [32].

V. THE GPRSWEB PROXY MODEL

The previous section identified the causes of poor Web per-

formance in a GPRS environment, and we now report on our

attempts to overcome them. Clearly, performance can be im-

proved by making modifications to the HTTP and TCP protocols

to better suit the GPRS environment. However, any approach

that relies on modifications to Web servers or Web browsers

would at best take years to achieve widespread deployment.

In earlier works, we improved Web delivery over GPRS by

focussing on transport TCP performance [33]. By installing a

transparent TCP enhancing proxy in a cellular network, we im-

prove its performance over wireless GPRS links. While this ap-

proach certainly benefits TCP flow performance in the down-

link, there are some issues it is not able to address.

• TCP connection setup overhead: Many Web browsers

continue to use HTTP 1.0 by default and open multiple

TCP connections to download Web content. Using a

TCP optimizing proxy is not able to eliminate the TCP

three-way connection setup overhead in HTTP 1.0 when

downloading the Web content.

• Distributed structure of Web content: Popular Web

content is often located in different content servers each

having a distinct public domain name. Downloading these

Web pages incurs additional DNS lookups for resolving

these domain names of different content servers [13].

Furthermore, Web browsers may also open multiple TCP

connections to each content server thereby sometimes

increasing the overall connection setup overhead.

To overcome such limitations of Web content distribution, our

approach in GPRSWeb has been to use the existing HTTP proxy

mechanism to enable us to insert a pair of translating proxy

servers in to the HTTP request/response stream that together

implements a number of techniques to enhance performance.

This enables GPRSWeb to be both browser, as well as server

independent.

GPRSWeb uses a pair of special proxy servers located on ei-

ther side of the GPRS link. Between the proxies, a custom pro-

tocol is employed to reduce traffic volume over the GPRS link

to mitigate the effects of high RTT in GPRS. A custom middle-

ware (“client-side” proxy) must be installed on the mobile client

device. As part of the installation, the Web browser is configured

to route all HTTP requests through this middlware-based proxy

CHAKRAVORTY et al.: OPTIMIZING WEB DELIVERY OVER WIRELESS LINKS: DESIGN, IMPLEMENTATION, AND EXPERIENCES 407

Fig. 6. GPRSWeb system architecture and components.

via a local TCP connection using the traditional loopback inter-

face. As shown in Fig. 6, the client proxy communicates with a

“server proxy,” located on the other end of the GPRS link. The

client proxy avoids costly DNS resolutions over the GPRS link

using DNS lookup migration. In this approach, the client di-

rectly sends the compressed URL to the server proxy to resolve.

The server proxy makes requests to the wired network on be-

half of the client, and sends back responses. The cache content

in the server proxy is shared, capable of servicing large numbers

of mobile clients simultaneously.

The GPRSWeb proxy model implements the following mech-

anisms to improve performance.

• GPRSWeb Protocol: Due to the problems identified ear-

lier, we do not use TCP as the transport protocol between

the proxies located on either side of the GPRS link. In-

stead, we use a custom transport protocol (which we call

the GPRSWeb protocol hereafter) that runs over UDP and

implements ordered, reliable, message transfer. The pro-

tocol is optimized for GPRS link characteristics, and min-

imizes link traversals and responds efficiently in the event

of the patterns of packet loss we commonly observe. It

achieves substantially better link utilization than TCP.

• Extended Caching: Client-side caching improves perfor-

mance by eliminating some network round trips and re-

ducing the amount of data exchanged over the GPRS link.

However, traditional browser caches do not yield the full

potential benefit due to the nature of the HTTP caching

mechanism and pessimistic cache control directives con-

tained in many Web pages.

The GPRSWeb client proxy implements a client-side

cache that replaces the browser’s persistent (disk) cache.

A custom caching protocol is used between the client and

server proxies that enables better hit rates by using SHA-1

fingerprints [5] of objects to determine whether they have

actually changed or not. The protocol, thus, eliminates un-

necessary object transfers over the GPRS link, and makes

better use of the limited size cache available in the mo-

bile device. The server-side proxy also implements a tra-

ditional shared HTTP cache to reduce bandwidth require-

ments on the wired network and, thus, can take the place

of existing proxy caches that are already commonly de-

ployed by ISPs.

• Data Compression and Delta Encoding: GPRSWeb

also compresses data before sending it over the wireless

link, reducing transfer size and thereby improving re-

sponse time. Data is compressed using gzip compression,

unless it is already in a compressed format (e.g., JPEG

images, zip archives). A separate string table is used for

HTTP headers, resulting in better compression. When the

server-side proxy detects that a previously cached object

has been updated, it tries using the VCDiff [7] algorithm

to encode the differences between the old and new ob-

jects. The compressed deltas [22] are sent in place of the

new version if they would result in a smaller transfer.

• Parse-and-Push Operation: Most Web pages contain a

number of images and other objects that make up the

page structure, e.g., button graphics, spacers, style sheets,

frames, etc. These objects are requested by a browser after

parsing the HTML documents. A round-trip delay is nor-

mally incurred before transfer of these objects can com-

mence. The parse-and-push mechanism in the GPRSWeb

server proxy parses HTML objects, and proactively starts

pushing objects toward the GPRSWeb client cache if the

link would otherwise be idle.

Our design of GPRSWeb is somewhat similar to the Mowgli

Communication Architecture that also makes use of a pair

of proxies and employs its own custom protocol over GSM

wireless link [25]. Mowgli focuses on GSM networks and is

primarily designed to handle lengthy link stalls. Other works in

this direction is the IBM’s WebExpress [14] that was designed

to improve Web browsing performance over such wireless

links. WebExpress improves performance through caching,

408 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

Fig. 7. Client-side middleware and server proxy structure.

differencing, protocol, and header reduction mechanisms.

It was designed specifically for Web forms—applications

characterized by repetitive and predictable responses where

only some certain information would change in a given Web

page. Similarly, Fleming et al. in [38] implement prefetching

schemes in their wireless world wide Web proxy server and a

new multiple hypertext stream protocol (MHSP).

However, none of these above solutions support schemes

implemented in GPRSWeb such as CHK-based caching, server

based parse-and-push, delta-encoding, fast start, and DNS

lookups migration. As we shall demonstrate in Section VI, use

of such schemes leads to significant performance benefits in

Web browsing experience over high-latency wireless links.

A. GPRSWeb Proxy Design

We have designed and implemented the GPRSWeb proxy ar-

chitecture by splitting the client and server functionality across

a number of components, some of which are shared. Fig. 7 show

the components used in the client and the server.

The connection manager accepts TCP connections from

the Web browser and passes them to a connection object. This

queries the client cache manager (Fig. 8), and in case of a

miss, invokes a server stub to issue a request to the server

proxy. Unique identifiers are assigned to each request made to

the server proxy, and are used to invoke a response handler to

process the reply. The response handler also interacts with the

cache manager to update cache state as necessary. The object is

then returned to the pending browser connection.

In the server proxy, client stubs examine messages received

by the protocol stack from a client and takes action depending

upon the message type. Object request messages are processed

by the server manager, which functions very similar to the

client manager, but seeks responses from the server cache man-

ager and the HTTP stubs if necessary. The HTTP stubs con-

tact Web servers to download or check the freshness of objects.

Thus, any DNS lookups required are performed on the server

proxy and not over the GPRS link. The client stubs coordinate

data compression and other optimizations before the response

is finally sent back to the client proxy.

Fig. 8. Cache operation overview.

B. GPRSWeb Protocol

The GPRSWeb transport protocol avoids TCP’s connection

setup and slow-start costs, and exploits knowledge of GPRS’s

particular link characteristics to optimize performance.

The basic unit of transfer is the segment, each of which is car-

ried in a separate packet. UDP is used to take advantage of the

port multiplexing facilities and the UDP checksum. Segments

are sequentially numbered, and are of two types: normal-pri-

ority and low-priority. Low-priority is typically used for back-

ground transfers, e.g., pushing cache updates to a client; normal-

priority is used for everything else. The queues are serviced with

strict priority. Segments in the low priority queue may be pro-

moted if, for example, the server proxy explicitly receives a re-

quest for an object that is currently preemptively being pushed

to the client.

Since we expect missing segments to be rare over GPRS

(due to the relatively reliable RLC layer) an error recovery

strategy based on selective repeat with negative acknowledg-

ments (NACKs) scheme is used. In a NACK based scheme, the

CHAKRAVORTY et al.: OPTIMIZING WEB DELIVERY OVER WIRELESS LINKS: DESIGN, IMPLEMENTATION, AND EXPERIENCES 409

receiver explicitly indicates to the sender which segments went

missing. The NACK based scheme eliminates the retransmis-

sion ambiguity problem, and also results in minimal control

traffic overhead in the normal case.

Where possible, NACKs are piggybacked on to the outgoing

segments. If there is no outgoing traffic, an empty “dummy” seg-

ment is created to carry the NACK. As a result of piggybacking,

should a NACK be lost, the loss of the carrier segment will be

noted, and the NACK retransmitted with its carrier segment.

The link condition is verified periodically by setting the

ACK-able header flag in an outgoing segment (creating a

dummy segment if none already exists). The receiving host

generates an explicit ACK response, in the same manner it

would a NACK. ACK-able messages are generated every few

seconds, thus, the hosts can detect whether a serious link

stall is being experienced. If the client receives no replies for

30 seconds, it attempts to disconnect and reattach to the GPRS

network; experience shows that this action often brings the

link straight back to life. Note that this same technique helps to

recover from link outage conditions caused by cell-reselections

that may last up to few seconds.

GPRSWeb uses a connection start-up method very similar to

the TCP accelerated open (TAO) scheme developed for T/TCP

[30], avoiding SYNs/ACK control packets. Each host remem-

bers the segment number last received, and expects to receive the

segment following. No handshake is needed, since numbering is

assumed to continue from where it left off. Wherever it is nec-

essary to start a new sequence (e.g. a host reboots), initial seg-

ments of the new sequence are tagged with the deltas between

their sequence number, and the base of the new sequence. A

host can, therefore, determine the new sequence base, and issue

NACKs for missing segments, even if those missing started a

new sequence.

Whereas TCP has to operate over links with widely varying

qualities, GPRSWeb can make many more assumptions about

the underlying network. Since the GPRS network already imple-

ments a mechanism for sharing bandwidth between users, there

is no need for the GPRSWeb protocol to implement its own con-

gestion avoidance mechanism. Instead, a simple credit-based

flow control scheme suffices.

GPRSWeb initially gives each host credit equivalent to an

estimated value of the bandwidth-delay product (BDP) of the

link: no slow-start phase is employed. For “3 1” class GPRS

devices this initial estimate is 10 KB. This level of outstanding

credit is refined over time based on the measured RTT and

throughput, typically from timing ACK-able segments. The

credit value used is set to be 10% higher than the measured

RTT throughput product, to allow the link to remain fully

utilized in the presence of typical levels of jitter. Since the

outstanding credit is capped in this manner, we avoid the excess

queueing long-lived TCP flows cause, and ensure that the buffer

residency in the GGSN remains low.

The protocol implementation provides a message queue

based interface to higher layers: messages are placed in a

queue for transmission and retrieved from a queue after receipt.

Within the protocol stack, messages are serialized and split into

segments before transmission, and segments reassembled into

messages on receipt.

C. Caching

GPRSWeb implements an extended caching scheme intended

to optimize the hit rate of the client cache and, thus, minimize

page download time and reduce bandwidth requirements. In

terms of the freshness of pages actually returned for the user, the

cache is no more aggressive than allowed by the normal HTTP

algorithm, unless the GPRS link is currently down in which case

the client proxy can be configured to return potentially stale data

to allow something to be displayed.

The GPRSWeb extended caching protocol indexes objects

by their SHA-1 fingerprint (content hash). A separate table is

maintained that maps URLs to the respective content hash key

(CHK). This enables multiple URL’s pointing to identical doc-

uments to be stored just once in the cache. In many dynami-

cally generated Web sites such identical mappings (known as

response aliasing [40]) are commonplace, resulting in signifi-

cantly improved hit rates. CHK-based caching offers alias pro-

tection. Thus, CHK-based caching offer gains not only in terms

of storage at the server proxy, but also in the amount of data

being transferred over GPRS.

The client cache is intended to replace the browser’s per-

sistent disk cache. During the course of proxy installation,

the browser’s persistent cache is disabled and flushed. The

browser’s in-memory cache is left enabled for performance

reasons.

Each cache entry contains a document body and the time

it was last used, stored in a file named by the document CHK.

The cache index maintains an in-memory list of cache entry

metadata. It is initialized with data read from the cache entries

on disk, and is updated alongside the on-disk cache. The URL

mapper maintains mappings between URLs and the CHKs

representing their bodies. Associated with each entry are the

original HTTP Response headers, used to construct a Response

when servicing a request from the cache. This allows multiple

responses to share the same body, but with different headers.

When a URL mapping expires (as indicated by the conven-

tional HTTP caching mechanism), it must be refreshed before

being used again. The client proxy asks the server proxy to do

this on its behalf.

The server proxy will check its own cache to see whether

a more recent mapping exists. This can occur if another of its

clients has accessed the same object. If not, it will have to con-

tact the server to either check the modification time or fetch the

object. Often, as a result of the pessimistic caching directives

returned by sites with dynamic content, the object turns out to

be identical to the previous version. The server proxy indicates

this to the client by simply retransmitting the URL to CHK map-

ping, along with any caching directive returned by the server. In

fact, thanks to the “parse-and-push” mechanism described later

the client often does not even need to request that a mapping be

refreshed because the server proxy will have proactively sent a

message containing the refreshed mappings.

The server proxy tracks the state of each client proxy’s cache

by modeling the replacement policy of the client, which is “east

recently used” eviction. The contents of its own cache is a su-

perset of its clients’. If synchronization is lost, for example, if

the client proxy is directed to connect to a new server, the client

410 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

could potentially use low priority messages to update the server

on its cache status, but this is yet to be implemented.

D. Delta-Encoding and Compression

The GPRSWeb proxies attempt to ensure that all data trav-

elling over the GPRS link is in a compressed form, to reduce

transfer size and improve response time. Unless the data is al-

ready in a compressed form (for example, JPEG images or zip

archives), the gzip compression algorithm is employed.

Where the data being sent is an updated version of a previous

object (same URL, different CHKs) a “delta encoding” [22] al-

gorithm is tried. Delta encoding sends differences between new

and old versions of a document. The strategy is often very suc-

cessful as many updated documents are very similar to their

predecessor, particularly for dynamically generated content. A

classic example is news site front pages that contain a string in-

dicating the current time of day.

Since the server proxy tracks the contents of the client cache

is able to use the VCDiff [7] algorithm to produce the deltas

from a document it knows the client has. The deltas are gzip

compressed and sent to the client if the resulting data is smaller

than sending a compressed version of the new object.

Similar compression mechanisms are used for HTTP headers,

both requests and responses. A separate string table is used for

HTTP headers to avoid useful strings being evicted during the

transfer of object data. This approach is very successful, since

HTTP headers produced by modern browsers are rather verbose,

and the variation between requests of the same type is small.

E. Parse-and-Push Operation

As discussed earlier, most Web pages contain a number of

images and other support objects (frames, style sheets, etc.) that

make up the page structure. These are eventually requested by

the browser after parsing the HTML document.

The parse-and-push mechanism in the server proxy attempts

to speculatively push toward the client objects and URL to CHK

mappings that it knows are going to miss in the client cache.

These are sent with lower priority than responses to requests

explicitly made by the client. Responses are promoted if an ex-

plicit request is received for them. The main benefit from the

parse-and-push mechanism is to keep the link utilized during de-

lays due to the data dependencies between object references. For

pages with complex layouts these can be quite significant—as

well as the network RTT delay, it can take the browser some

time to process the returned HTML.

The parsing performed by the server proxy is currently crude,

but fast. Documents of type text/html are parsed using a regular

expression to extract references to support objects. Duplicates

are removed, and relative URLs combined with the document

base to produce a list of candidate URLs. The server proxy may

miss some object references (these will be simply be requested

later by the client), and may in fact construct some invalid URLs.

These will typically result in “URL not found” error codes when

the proxy attempts to fetch them from the server, and will not

be pushed to the client.

F. Image Transcoding

All the optimization techniques described up until now are

“loss-less”: they do not change the appearance of the page re-

turned to the user. We have also experimented with a simple

image transcoding scheme to shrink the size and quality of JPEG

images sent over the wireless link.

Other groups have investigated the utility of transcoding, and

mechanisms for its implementation far more thoroughly than

us (e.g., [10]). We included this functionality in the proxy as a

placeholder for future work. In the experiments described here,

the client proxy returns the image to its original width and height

before passing it to the browser (though it is obviously some-

what degraded). A more complete implementation would de-

grade the image at the server proxy under the control of the

browser, using hints contained in the content.

VI. GPRSWEB SYSTEM PERFORMANCE

A. Implementation

We designed and implemented the GPRSWeb proxy system

over Windows XP/2000. The GPRSWeb server and client

middleware was written in C# (Csharp) over Microsoft’s.NET

framework. The complete source code for the implementation

is publicly available [1]. C# is a new type-safe and garbage

collected language with a powerful function library (espe-

cially, for networking) to speed up project development. C#

is also supported on WinCE based devices such as PDAs and

smart-phones. We intend to port the client proxy code to such

devices in the future. The client and server proxies share much

of the source code for the GPRSWeb protocol stack and cache

interface functionality.

B. Experimental Test Setup

Our experimental test setup for evaluating the GPRSWeb

proxy system is shown in Fig. 9. The mobile terminal (laptop)

running GPRSWeb client was connected to the Vodafone

UK’s commercial GPRS network via a Motorola T260 GPRS

phone (supporting three downlink and one uplink GSM slot).

Additionally, since we were unable to install the GPRSWeb

proxy server equipment to run next to the Vodafone CGSN,

we made use of a well provisioned IPSec VPN to “back haul”

GPRS traffic to our lab. The proxy server ran on a Windows

2000 server located near to the tunnel endpoint.

Most current GPRS networks (including Vodafone UK’s

GPRS network that we use) make use of the static

coding scheme for Forward Error Correction (FEC) [33]. CS-2

is a “good compromise” coding scheme [35]. With this scheme

a “3 1” GPRS phone can support a maximum ideal downlink

data rate of 39.6 Kb/s. Note that the actual payload throughput

seen by the RLC layer will be somewhat less than the “ideal”

downlink data-rate. In these experiments, the RLC link-layer

reliability (ARQ retransmissions) is kept enabled.

C. Experimental Results

We present an evaluation of how well the GPRSWeb proxy

system improves WWW performance over GPRS. Specifically,

we attempt to quantify the overall performance benefits relative

CHAKRAVORTY et al.: OPTIMIZING WEB DELIVERY OVER WIRELESS LINKS: DESIGN, IMPLEMENTATION, AND EXPERIENCES 411

Fig. 9. Experimental testbed setup.

to an unassisted browser. These experiments were performed

using a single, stationary, mobile client to minimize variation in

GPRS link performance.

We used the Mozilla 1.0 browser in these experiments.

Mozilla was used because its source code is freely available,

enabling us to instrument the browser to log download times of

the Web page. In HTTP 1.0 nonpersistent connections mode,

Mozilla employs up to eight parallel simultaneous connec-

tions to each Web server. In HTTP 1.1 persistent connection

mode, it can open up to four simultaneous TCP connections

when configured to use a proxy. In our experience, GPRS

performance with other Web browsers (Internet Explorer 6,

Netscape 6) was also roughly similar to that of Mozilla. During

these experiments, we also measured the signal quality at the

location of the mobile client. Our measurements indicated

receiver signal strength indication (RSSI) values between 95

dBm and 68 dBm and bit-error rate (BER) between 0%–4%,

respectively. These values indicate moderate to good radio

channel conditions.

To evaluate the performance benefits of our scheme, we per-

formed experimental downloads of two synthetically arranged

Web pages offering static content, and also snapshot of the front

page of two popular news Web sites and an e-commerce Web

site.

We arranged for these test pages to be hosted on a local server,

eliminating the performance vagaries of public networks and

servers. Furthermore, we were able to control when content on

these local pages was updated.

To create the synthetic pages, we adhered to an approach used

in [20], composing a number of objects from other Web sites

into a single page according to object type and file size distri-

butions observed in HTTP proxy log traces. We consider two

types of Web site STATIC-I and STATIC-II (see Tables I

and II). The first is a relatively simple page consisting of a base

HTML document with a few jpeg/gif images. The second one

represents a more complex page comprising 46 objects.

For test Web pages, we created mock-up of two popular

news Web sites, www.cnn.com and www.bbc.co.uk, and a third

e-commerce Web site www.amazon.com based on a snapshot

TABLE I
STATIC-I WEB PAGE COMPOSITION

TABLE II
STATIC-II WEB PAGE COMPOSITION

of their front page. We term them here as LCNN, LBBC, and

LAMAZON, respectively.

These Web pages consisted of over 50 embedded objects in-

cluding cascading style sheets (.css), active server pages (.asp),

and java scripts (.jss).

D. Performance Evaluation

We present results comparing the performance downloading

the test pages using the unassisted browser vs. using the GPR-

SWeb proxy. We used the default setting of the GPRSWeb

proxy, that employs the full set of loss-less optimization tech-

niques: the enhanced transport protocol, data compression,

delta encoding, extended caching, and parse-and-push.

Additionally, a separate experiment was performed with

image transcoding also enabled. The transcoder module de-

graded only JPEG images, and only by a small amount,

resulting in a typical image transfer size reduction of about

10%.

Except where stated, we flushed all client caches before each

download test. We report results with both the server-side cache

“hot” and “cold.”

We evaluated the following scenarios.

• http-10: We measured download times using Mozilla

over GPRS in nonpersistent (HTTP 1.0) mode operating

directly with the server.

• http-11:These measurements were taken with Mozilla

operating directly with the server in persistent connection

(HTTP 1.1) mode.

• gprsweb-1: These measurements are taken with the

browser using the GPRSWeb proxy, but with cold client

and server-side caches. Image transcoding was disabled.

• gprsweb-2: Similar to gprsweb-1, but with a hot

server-side proxy cache from which all objects are able

to be served.

• gprsweb-21: The scenario is similar to the gpr-

sweb-2, but with image transcoding enabled.

• gprsweb-3: Represents the best case scenario—a hit at

the local client cache.

For each of the scenario discussed above, we recorded down-

load times from 30 successful runs and plot the mean value of

the download times and corresponding standard deviation. For

412 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

Fig. 10. Mean full Web page download times with (a) STATIC-I and
(b) STATIC-II measured from 30 successful runs.

additional clarity, we also plot the median along with minimum

and maximum value of the download time from each data set.

Fig. 10(a) shows the mean download times for STATIC-1.

Here, we observe that use of HTTP 1.1 offers only meagre ben-

efit (3%–5%) over HTTP 1.0. However, we see a major improve-

ment in download times using GPRSWeb protocol. Even with

a cold server-side cache (gprsweb-1) the use of GPRSWeb

protocol leads to 40%–45% reduction in mean page download

times over GPRS. In the gprsweb-2 case where the server-

side cache is warm, we record a performance improvement of

55%–60%.

Finally, the test where all objects hit in the local client proxy

cache obviously gives the best performance. Page rendering

time is broadly similar to that of a browser accessing content

from its own local persistent cache.

For the cold server-side cache case, the results from

STATIC-1 are reflected for other test pages—LAMAZON

shows a mean reduction of about 45%–50%, while LBCC

gives a benefit of over 50%–55% [see Fig. 11(a) and (b)]. On

the other hand, the benefits provided by GPRSWeb were not

quite so substantial for STATIC-II and LCNN. In the cold

server-side cache case, GPRSWeb offers an improvement of

26% and 29% in page download times for STATIC-II and

Fig. 11. Mean Web page download times of some commercially available
Web- sites with (a) LAMAZON (e-commerce), (b) LBBC (news), and (c) LCNN
(news) measured from over 30 successful runs.

LCNN Web pages, respectively. With a warm cache, however,

we see an encouraging reduction of 35%–40% in mean page

download time.

In these tests, our simple image transcoding optimization

shows little benefit, and in fact, it seems that the image pro-

cessing delay actually makes matters worse in the LCNN case.

CHAKRAVORTY et al.: OPTIMIZING WEB DELIVERY OVER WIRELESS LINKS: DESIGN, IMPLEMENTATION, AND EXPERIENCES 413

TABLE III
WIRELESS WEB SOLUTIONS

In the STATIC-II page where there are several JPEG im-

ages some small advantage is shown. This is similar even for

LAMAZON and LBBC. An aggressive quality reduction settings

for images may provide additional benefits [27], [41].

Our next set of experiments evaluate benefits from parse-and-

push. To evaluate the extent of benefits available from using

parse-and-push, we downloaded our sample test Web pages by

disabling this feature in GPRSWeb. Our observations indicates

that use of parse-and-push leads to an additional 4%–10% ben-

efit in downloads of our example Web sites.

We now examine results for GPRSWeb’s CHK-based caching

and delta-encoding of the different object versions. This is pos-

sible using Web sites offering dynamically generated Web con-

tent. Hence, in this case, we directly make use of the actual

(real) Web sites offering dynamic Web content. In these experi-

ments, we repeatedly download the front pages of our Web sites

every hour for three consecutive days. To explicitly quantify

the benefits resulting from CHK-based caching and delta-en-

coding, we disable use of GPRSWeb proxy’s data compres-

sion and parse-and-push feature in these tests. We then compute

mean Web page download times from over ten successive down-

load runs.

For the case of delta-encoding, we compare the mean Web

page download times from the previous download runs (down-

load conducted every hour), while for CHK-based caching, we

compared mean download times for tests conducted simulta-

neously, with and without using this feature. For typically fast

changing Web sites such as CNN and BBC, we find on average

an additional between 3%–8% improvement in Web download

times from CHK-based caching and delta encoding. The time

downloading these Web pages are fast since images are already

available in the server proxy cache, and html document size is

small compared with the inlined images that remain typically

unchanged. Between CHK-based caching and delta encoding,

the benefit is mainly due to delta-encoding, except for the case

of BBC where the benefit is somewhat higher using CHK-based

caching. Results from live download tests also confirmed evi-

dence of greater response aliasing in case of BBC at the time of

these tests.

In general these results will vary for different Web sites. A

real-world analysis of the practical benefits of delta-encoding

and CHK-based caching would need a more thorough (empir-

ical) evaluation. We are in the process of building a setup that

enables recorded traces of user browsing activity to be accu-

rately replayed, with the server reflecting the different versions

of the content to be delivered on different occasions. This should

enable an accurate evaluation of the real-world practical bene-

fits of the extended caching and delta-encoding schemes. Using

the proxy for real-life Web browsing over GPRS, confirms that

these optimizations come into play quite frequently, and can re-

sult in significant bandwidth savings when they do so.

Our tests were conducted in a stationary environment to min-

imize link variations and avoid vagaries of the harsh mobile ex-

teriors. However, our evaluations are also similarly applicable

even for mobile environments.

VII. RELATED WORK

Commercial products that improve Web browsing perfor-

mance over wireless links are available. A GPRS Accelerator

by Firsthop [2] claims faster data transfers over GPRS. Their

approach is to reduce the amount of data exchanged and opti-

mize protocols over the wireless link. Other products include

NETGAIN from FlashNetworks [8]. The client-based solution

from NETGAIN is similar to GPRSWeb, but uses a modified

HTTP protocol (with HTML reformatting), aggressive image

compression and prefetching for improved Web performance.

A feature-based comparison is given in Table III.

Past research has extensively explored improving transport

performance over wireless. Examples of this include Snoop

[19], I-TCP [9], etc. However, these schemes are meant for

wireless LANs rather than cellular wireless links. Balakrishnan

et al. [18] make use of explicit loss notification (ELN) to im-

prove Web performance. Using ELN senders can be informed

about the cause of loss event—network congestion or radio

error. Thus, ELN decouples sender retransmissions from TCP’s

congestion control. For cellular environments WTCP [28] and

Ack Regular [24] schemes have been proposed that benefits

TCP performance over CDPD and CDMA 2000 3G-1X links,

respectively. Some other schemes for improving TCP perfor-

mance, for example, Freeze-TCP [39] uses a proactive scheme

in which a mobile host can detect signal degradation and send

zero window probes (ZWP). However, the warning period—the

time before which actual degradation occurs should be suffi-

cient for the ZWP to be able to reach the sender so that it can

freeze its window.

Custom transport protocols optimize connection set-up/tear-

down and control overhead associated with TCP connections.

One such example is the wireless application protocol (WAP)

[4], in which a WAP gateway splits the transport with a new pro-

tocol for use over the wireless link. Note that the latest WAP 2.0

specification also includes “wireless profiled” TCP and HTTP

protocols. While use of a gateway is optional in WAP 2.0, our

experience with GPRSWeb demonstrates the potential benefits

using a performance proxy in cellular environments. Hence,

many optimizations discussed in this paper, e.g., CHK-based

414 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2005

caching, delta-encoding, parse-and-push, fast-start, etc., are ap-

plicable even for WAP 2.0.

Proxy and caching techniques have been extensively studied

in the context of wired (e.g., dial-up) environments. Some

caching approaches are detailed in [16]. Cache digests in

[23] are a quick way of sending details about cache contents

between caches—useful for synchronizing caches over high

latency links.

Web prefetching over networks, deterministic or predictive,

is generally accepted to be useful. However, it is questionable

if client-side predictive prefetching schemes over GPRS would

be advantageous. The assumption made in earlier studies (e.g.

Fleming et al. [38]) was that since the link is idle anyway, why

not use it for downloads, even if the prefetched page is often-

times not useful. However, the links where this has been evalu-

ated have employed time-based charging rather than the volume

based charging typically used by GPRS operators. Since GPRS

bandwidth is at least an order of magnitude more expensive than

fixed-Internet bandwidth, the tradeoffs may be rather different.

The parse-and-push mechanism employed by GPRSWeb has

some similarities to Web prefetching, except the set of object

pushed to the client are deterministic (and known to be of use

to the client) and confined to support resources for the current

Web page.

VIII. ISSUES AND DISCUSSION

In this section, we discuss issues relevant to GPRSWeb proxy

deployment in cellular data networks.

Server Proxy Location: The location of server proxy in a

cellular data network can impact a number of service-specific

issues—user mobility, transport protocol agility, server scala-

bility, as well as service reliability. There are different locations

where a GPRSWeb proxy server could be deployed (shown in

Fig. 12): 1) close to the gateway router of the cellular provider

where traffic density is likely high (in figure Proxy1); 2)

near to the wired-wireless boundary (i.e., GPRS CGSN node

or close) where traffic from a number of mobile hosts is ag-

gregated (labeled as Proxy2); 3) close to GPRS SGSN node

where traffic from a number of base stations can be handled

(shown as Proxy3); or 4) in the vicinity of the base station

that handles traffic from a single cell (marked as Proxy4).

In general, by placing proxies further inside a cellular net-

work, one can get much better access to information about cur-

rent radio link conditions than proxies located outside the net-

work. Proxies located close to the base station can be informed

of the dynamically varying channel conditions, and could take

action accordingly. If fine-grained channel monitoring is not re-

quired, it can be safely placed at (or close to) the GPRS CGSN

node able to serve a large number of mobile clients from a single

location. By taking advantage of the server proxy location, a cel-

lular operator can manage uninterrupted proxy service avail-

ability for mobile users in their networks.

Proxy Server Scalability: GPRSWeb proxy server is ex-

pected to serve traffic from several mobile clients. However,

if load on the proxy server increases drastically, it can impact

the overall system performance. Therefore, appropriate load

Fig. 12. Possible server proxy locations.

balancing schemes should be employed by cellular providers to

address scalability issues related to proxy servers.

A client and server proxy in GPRSWeb maintains “persistent”

association during a Web browsing session. This requires that

any load balancing scheme employed by the cellular operators

should appropriately configure traffic from a mobile client to be

guided to the same proxy server within the proxy cluster—as

long as the server remains available and the client active. A mo-

bile client is switched to a different proxy server only when the

original server is no longer available (e.g., shut down, crashed,

etc.) or if there is no traffic anymore. Furthermore, a backup

load balance switch may be employed for greater reliability. In

this way an operator can overcome scalability issues related to

GPRSWeb server proxy, uninterrupted service availability and

reliability. Each proxy in the cluster pool will now handle traffic

from a select set of mobile clients to limit the load from the mo-

bile users.

Security Issues: The way proxy servers are deployed may

have security-related implications. Web proxy-system such as

GPRSWeb can be deployed either explicitly or transparently.

Explicit deployment introduces some vulnerability by exposing

proxy server IP address to Web clients (or the “client-side”

proxy) to allow it to interact with the server proxy.

The use of custom protocol in GPRSWeb also requires addi-

tional mechanisms for security. Protocols such as WAP-based

wireless transport layer security (WTLS) protocol can be used

to provide privacy, data integrity, and authentication over the

wireless link [4]. WTLS closely resembles secure socket layer

(SSL)/transport layer security (TLS) protocol, yet is optimized

for use over low bandwidth wireless links and suits resource

constrained mobile devices.

A proxy server like GPRSWeb is quite vulnerable to denial

of service attacks, since it provides resource intensive services.

This potential security hazard can be limited to some extent by

ensuring that only clients from the wireless network can con-

nect to the proxy, thus limiting the load an individual client can

generate in an attempt to starve others. Other architectural and

CHAKRAVORTY et al.: OPTIMIZING WEB DELIVERY OVER WIRELESS LINKS: DESIGN, IMPLEMENTATION, AND EXPERIENCES 415

related policy issues also needs careful consideration when de-

ploying proxies as it impacts the overall reliability of a solution.

Internet RFC 3238 [37] deals with many such architectural and

policy issues for proxy deployment in the Internet.

IX. CONCLUSION

Our work has explored the causes of TCP and HTTP under

performance in a GPRS environment. Due to high latency in

GPRS links, the need for latency mitigation was highlighted,

leading to the design of the GPRSWeb proxy system, a pair of

cooperating proxies positioned either side of the wireless link.

We have described our implementation and results of a per-

formance evaluation of the prototype system. We have shown

that the collective suite of optimization techniques implemented

by GPRSWeb can lead to substantial reductions in mean page

download times.

We are recording full tcpdump traces of all GPRS traffic

generated by our user community, which will assist in evaluating

system scalability and resulting user experience from using the

proxy system. In the future, we also intend to use our traces of

user browsing activity and the corresponding server responses to

accurately replay user activity, enabling us to precisely evaluate

the performance gains these techniques can offer in the presence

of real dynamically changing Web content.

ACKNOWLEDGMENT

The authors would like to thank Vodafone Group R&D,

Sun Microsystems, Inc., and BenchMark Capital for sup-

porting this work. Thanks also to T. Harris and J. Crowcroft

for providing insightful comments on this paper. The com-

plete GPRSWeb source code and test Web sites used in

this paper are available from the COMS Project Web site:

http://www.cl.cam.ac.uk/coms/.

REFERENCES

[1] Cambridge open mobile systems (COMS) Project. [Online]. Available:
http://www.cl.cam.ac.uk/coms/

[2] First-hop GPRS accelerator. [Online]. Available: http://www.firsthop.
com/

[3] tcpdump. [Online]. Available: http://www.tcpdump.org; (tcptrace) [On-
line]. Available: http://www.tcptrace.org; (ttcp+) [Online]. Available:
http://www.cl.cam.ac.uk/netos/netx/

[4] The WAP Forum Web-Page. [Online]. Available: http://www.wapforum.
org

[5] NIST FIPS PUBS 180-1: Secure Hash Standard (1995, Apr.). [Online].
Available: http://www.itl.nist.gov/fipspubs/fip180-1.html

[6] “An introduction to the Vodafone GPRS environment and supported ser-
vices,” Vodafone Ltd., Dec. 2000.

[7] “The VCDiff generic differencing and compression data format,” IETF,
draft-korn-vcdiff-06.txt , Nov. 2001.

[8] Y. Shapira, “NetGain—mobile data access platform,” in Proc. Workshop

Internet Usage Over 2.5G and 3G, IST-2001-92 125, Barcelona, Spain,
Mar. 2003, [Online]. Available: http://www.flashnetworks.com.

[9] A. Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for mobile hosts,”
in Proc. IEEE ICDCS, May 1995, pp. 136–143.

[10] A. Fox, S. Gribble, Y. Chawathe, and E. Brewer, “Adapting to network
and client variation using active proxies: Lessons and perspective,” IEEE

Pers. Commun., vol. 5, no. 4, pp. 10–19, Aug. 1999.
[11] A. Gurtov, M. Passoja, O. Aalto, and M. Raitola, “Multi-layer protocol

tracing in a GPRS network,” in Proc. IEEE Fall VTC, Sep. 2002, pp.
1612–1616.

[12] A. Shaikh, R. Tewari, and M. Agrawal, “On the effectiveness of
DNS-based server selection,” in Proc. IEEE INFOCOM, 2001, pp.
1801–1810.

[13] B. Krishnamurthy, C. Wills, and Y. Zhang, “On the use and performance
of content distribution networks,” in Proc. ACM Sigcomm Internet Mea-

surement Workshop (IMW), 2001, pp. 169–182.
[14] B. C. Housel and D. B. Lindquist, “WebExpress: a system for optimizing

web browsing in a wireless environment,” in Proc. ACM Mobicom, 1996,
pp. 108–116.

[15] GPRS link characterization. [Online]. Available: http://www.cl.cam.ac.
uk/users/rc277/linkchar.html

[16] G. Barish and K. Obraczka, “World wide web caching: Trends and tech-
niques,” IEEE Commun. Mag., vol. 38, no. 5, pp. 178–184, May 2000.

[17] G. Brasche and B. Walke, “Concepts, services and protocols of the new
GSM phase 2+ general packet radio service,” IEEE Commun. Mag., pp.
94–104, Aug. 1997.

[18] H. Balakrishnan and R. H. Katz, “Explicit loss notification and wireless
web performance,” in Proc. IEEE GLOBECOM, 1998.

[19] H. Balakrishnan, R. H. Katz, and S. Seshan, “Improving TCP/IP per-
formance over wireless networks,” in Proc. ACM Mobicom, 1995, pp.
2–11.

[20] H. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux, H. W. Lie,
and C. Lilly, “Network performance effects of HTTP/1.1 CSS1, and
PNG,” in Proc. ACM Sigcomm, 1997, pp. 155–166.

[21] J. C. Mogul, “Support for out-of-order responses in HTTP,” Internet
Draft, Network Working Group, Apr. 2001.

[22] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy, “Potential
benefits of delta encoding and data compression for HTTP,” in Proc.

ACM Sigcomm, 1997, pp. 181–194.
[23] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache: A scalable

wide-area web cache sharing protocol,” IEEE/ACM Trans. Netw., vol. 8,
no. 3, pp. 281–293, Mar. 2000.

[24] M. C. Chan and R. Ramjee, “TCP/IP performance over 3G wireless links
with rate and delay variation,” in Proc. ACM Mobicom, 2002, pp. 71–82.

[25] M. Liljeberg, T. Alanko, M. Kojo, H. Laamanen, and K. Raatikainen,
“Optimizing world-wide web for weakly-connected mobile work-
stations: An indirect approach,” in Proc. Workshop Serv. Distrib.

Networked Environments (SDNE), 1995, pp. 132–139.
[26] M. Meyer, “TCP performance over GPRS,” in Proc. IEEE WCNC, 2000,

pp. 1248–1252.
[27] P. Rodriguez and V. Fridman, “Performance of PEP in cellular wireless

networks,” in Proc. 8th Int. Workshop Web Content Caching Distrib.,
Sep. 2003.

[28] P. Sinha, N. Venkitaraman, R. Sivakumar, and V. Bharghavan, “WTCP:
A reliable transport protocol for wireless wide-area networks,” in Proc.

ACM Mobicom, 1999, pp. 231–241.
[29] V. N. Padmanabhan and J. C. Mogul, “Improving http latency,” Comput.

Netw. ISDN Syst., vol. 28, no. 1, pp. 25–35, Dec. 1995.
[30] R. Braden, “T/TCP—TCP extensions for transactions,” IETF, Request

for Comments, RFC 1644, 1994.
[31] R. Chakravorty and I. Pratt, “Performance issues with general packet

radio service (GPRS),” J. Commun. Netw. (JCN)—Special Issue on

Evolving From 3G Deployment to 4G Definition, vol. 4, no. 3, pp. 4–19,
Dec. 2002.

[32] R. Chakravorty, S. Banerjee, P. Rodriguez, J. Chesterfield, and I. Pratt,
“Performance optimizations for wireless wide-area networks: Compara-
tive study and experimental evaluation,” in Proc. ACM Mobicom, 2004,
pp. 159–173.

[33] R. Chakravorty, S. Katti, I. Pratt, and J. Crowcroft, “Flow aggregation
for enhanced TCP over wide-area wireless,” in Proc. IEEE INFOCOM,
2003, pp. 1754–1764.

[34] R. Fielding et al., “Hypertext transfer protocol—HTTP/1.1,” IETF, Re-
quest For Comments, RFC 2616, 1999.

[35] R. Kalden, I. Meirick, and M. Meyer, “Wireless Internet access based
on GPRS,” IEEE Pers. Commun., pp. 8–18, Apr. 2000.

[36] R. Ludwig, B. Rathonyi, A. Konrad, K. Oden, and A. Joseph, “Multi-
layer tracing of TCP over a reliable wireless link,” in Proc. ACM Sig-

metrics, 1999, pp. 144–154.
[37] S. Floyd and L. Diagle, “IAB architectural and policy considerations

for open pluggable edge services,” IETF, Request for Comments, RFC
3238, Jan. 2002.

[38] T. B. Fleming, S. F. Midkiff, and N. J. Davis, “Improving the per-
formance of the world wide web over wireless networks,” in Proc.

GLOBECOM, 1997, pp. 1937–1942.
[39] T. Go, J. Moronski, D. S. Phatak, and V. Gupta, “Freeze-TCP: A true

end-to-end enhancement mechanism for mobile environments,” in Proc.

IEEE INFOCOM, 2000, pp. 1537–1545.
[40] T. Kelly and J. Mogul, “Aliasing on the world wide web: Prevalence

and performance implications,” in Proc. World Wide Web (WWW) Conf.,
2002, pp. 281–292.

