
Measurement Approaches to Evaluate Performance

Optimizations for Wide-Area Wireless Networks

Rajiv Chakravorty1, Julian Chesterfield1, Pablo Rodriguez2

and Suman Banerjee3

1 University of Cambridge Computer Laboratory, Cambridge CB3 0FD, UK
{firstname.lastname}@cl.cam.ac.uk

2 Microsoft Research, Cambridge CB3 0FD, UK
pablo@microsoft.com

3 University of Wisconsin, Madison WI 53706, USA
suman@cs.wisc.edu

Abstract. We present measurement approaches to evaluate performance
optimizations, employed at different layers of the protocol stack, to en-
hance application performance over wide-area wireless networks (WWANs).
Applications running over WWAN cellular environments (e.g web brows-
ing) are significantly affected by the vagaries of the cellular wireless links.
Much of the prior research has focussed on variety of isolated perfor-
mance optimizations and their measurements over wired and wireless
environments. In this paper we introduce experiment-based measurement
approaches to benchmark application performance using optimizations
performed at individual layers of the protocol stack.

These measurement initiatives are aimed at: (1) performing an accu-
rate benchmark of application performance over commercially deployed
WWAN environments, (2) characterizing the impact of a wide selec-
tion of optimization techniques applied at different layers of the protocol
stack, and (3) quantifying the interdependencies between the different
optimization techniques and providing measurement initiatives for future
experimentation to obtain consistent and repeatable application bench-
marks in WWAN environments.

1 Introduction

All over the world wide-area wireless networks (WWANs) are being upgraded
to support 2.5G and 3G mobile data services. Unfortunately, application perfor-
mance over WWANs is severely impacted by problems of the cellular wireless
medium – high and variable round trip times, fluctuating bandwidths, frequent
link outages, burst losses, etc. [1]. As a consequence, the end-user experience
in such environments is significantly different from the relatively stable indoor
wireless environments, e.g. 802.11b based Wireless LANs (WLANs).
In this paper, we consider measurement approaches and performance bench-

marks over WWANs from an end-user perspective. Our performance study ex-
plores questions like:

• What measurement approaches can yield reproducible and repeatable (web-
browsing) experiments over WWANs?

• What factors contribute to the poor application performance (web) over WWANs?
• What different optimizations can be applied at individual layers of the pro-
tocol stack and what is the benefit available from each?

To answer these questions, we have conducted an empirical performance
study involving real WWAN networks and applications. Our approach differs
from other approaches and work conducted over WWANs. While previous re-
search has investigated large-scale performance study of end-to-end TCP flows
[5] and also its cross-layer interaction with the link-layer [3, 4], the approach
taken in this paper differs from them in several ways. First, we quantify the
causes of poor application performance and quantify real user experience over
WWANs. We accurately measure the different components that contribute to
the latencies during web downloads for a range of popular websites (ranked in
www.100hot.com). Second, we introduce virtual web hosting as an important con-
struct to perform repeatable web browsing experiments over WWANs. Third,
we benchmark all standard web browsers, protocols, and techniques with re-
spect to their performance. Finally, we implement and study a wide selection of
optimization techniques at different layers and their cross layer interactions on
application performance.
Our paper is laid out as follows. The next section describes our experimental

WWAN infrastructure and elaborates on our methodology to conduct repeatable
and reproducible experiments over WWANs. In section 3, we discuss some of our
empirical findings for optimizations applied at different layers of the protocol
stack. Section 4 discusses our results while the last section concludes the paper.

2 Testbed Infrastructure and Methodology

We focussed our experimental evaluation on web-browsing performance over a
WWAN testbed. We used a commercial GPRS-based WWAN network as shown
in figure 1. In this testbed, the mobile terminal (MT), e.g. a laptop, connects
to the GPRS network through a GPRS-enabled interface – a PCMCIA GPRS
card or a phone. In our experiments the MT (or mobile client) downloaded web
content over the WWAN link from different content locations: (1) directly from
the real web servers, e.g. CNN, Yahoo, and (2) virtually hosted web-servers
(explained later in this section) that were located in our laboratory.
To study the different optimization techniques at different layers of the pro-

tocol stack and their overall impact on application (web) performance, our ex-
periments also required us to implement optimization-specific proxies. Based on
the use of proxies, our experiments were classified into three modes:

• No Proxy Mode: In this case the client directly connected to the server and
the experiments did not require any intervening proxy. These optimizations
are the easiest to deploy.

RLC

Router
Edge

Router

BS

BSC
SGSN GGSN

CGSN

backbone network
Service provider’s

Public

Serial/Bluetooth

Hosting Servers
Virtual Web

DNS
Server

Proxy

mail.com

cnn.com

yahoo.com

Well Provisioned
IPSec VPN

Firewall

BS

GPRS Edge

Internet
2

2
(Monitoring)

1

1

���
���
���
���

���
���

������

����������

�
�
�
�
�
�

�
�
�
�
�
�

	
	
	
	
	
	

2

Fig. 1.WWAN Architecture and Testbed. In these experiments, we placed the proxy in
our laboratory and then use a well provisioned IPSec VPN to ‘back haul’ GPRS traffic
to it directly from the cellular provider’s network. In the proxy-based experiments, the
mobile client connects to the web servers through this proxy (Label 2 in Figure 1).

• Transparent Proxy Mode: This mode is used for those experiments where
the client need not be aware of the existence of a proxy and the cellular
provider’s network transparently guides the client’s connections through a
proxy as necessary.

• Explicit Proxy Mode: This mode was used in experiments which require
the mobile client to be aware of the proxy in the network (in this case called
the ‘server-side’ proxy). This requires either, (a) explicit browser configu-
ration or (b) software update at the mobile client to make it appropriately
interact with the server-side proxy. The software update is like a client-side
proxy and hence we refer to this approach as a ‘dual-proxy’ solution.

Furthermore, in our experiments we have used virtual web hosting to emulate
real web downloads. Virtual web hosting is an important construct to perform
repeatable web browsing experiments over WWAN links involving typically fast-
changing websites.

Why Virtual Web Hosting? Contents of popular websites change very fre-
quently (e.g. in CNN content changes within minutes). If real web-download
experiments were to be conducted over low-bandwidth WWAN links involving
such web-sites, then different download attempts may notice significant differ-
ences in the downloaded content structure and volume. In other words, the total
time to perform each set of experiments for every individual website was much
higher than the time it takes for the web-page content to change. Hence, it would
not have been feasible for us to make meaningful comparisons performed directly

xx.deploy.akamai....com

xx.deploy.akamai....com

i2.cnn.net
ads.web.aol.com

i2.cnn.net
i2.cnn.net

ads.web.aol.com

216.39.69.70
www2.cnn.com

ping.nnselect.com

o

f
T

C
P

 C
o

n
n

ec
ti

o
n

s

CNN Timeline (using Mozilla HTTP/1.1)

Time (sec)

www2.cnn.com
1

3

5

7

9

11

13

0 30 60 90 120 150 180 210 240

Fig. 2. Timeline for an example web download over WWAN networks, using
Mozilla/HTTP/1.1. The web content is spread over 6 servers and multiple connec-
tions are opened by the browser to these servers. As the HTTP/1.1 default behavior
dictates, only two simultaneous TCP connections are opened to a specific server. Each
small rise in the lines indicates a separate GET request made using that specific con-
nection.

using real websites. To avoid this problem we implemented a virtual web host-
ing system in our laboratory, where we statically replicated the contents of the
popular websites into a set of web servers (hosted in our laboratory) that were
made publicly accessible for the mobile client. Thus, a mobile client can access
the virtually hosted webpages using WWAN networks just as they would from
the real servers in a repeatable and reproducible fashion.

Replicating Distributed Web Content for WWANs. Web downloads of
popular websites such as www.cnn.com access a number of distinct domains
spread across multiple CDN servers, e.g., Akamai, to download content (see fig-
ure 2). This access pattern significantly affects the download performance over
WWAN links for two reasons: (1) number of DNS look-ups, and, (2) number of
TCP connections opened by the client to these different servers, etc. To emulate
this aspect of web downloads in the virtual web hosting setup, it was necessary
to faithfully replicate the distributed web content and its overall structure. For
each server in the original website, we assigned a separate web server in our
laboratory to “virtually” host the corresponding content. The domain names of
these virtual-hosting servers were constructed from their original domain names
by pre-pending the corresponding CDN server domain names. These modified
domain names were made available to the DNS. Additionally, we updated the
URLs pointing to the embedded content to reflect the new domain names. Thus,
in a virtual web hosting experiment when a mobile client attempts to download
a webpage, it would have to appropriately resolve different domain names for
the different content servers similar to the case of a real web download.

Download latency (sec) No. of Emb. Objects (Size in KB)
Website WWAN-Real WWAN-Virtual Dom. Count Sum Avg. Max. T’put(Kb/s)

mail 43.3 (5.5) 34.5 (3.4) 4 11 36.7 3.3 11.0 8.5

yahoo 38.8 (4.1) 35.0 (3.1) 6 16 60.3 3.8 36.0 13.8

amazon 102.3 (9.8) 76.4 (7.7) 3 42 91.9 2.2 46.8 9.6

cnn 204.0 (17.6) 196.3 (12.4) 6 67 186.8 2.8 22.3 7.6

Table 1.Web Download latencies (using Mozilla/HTTP/1.1) and other characteristics
for 4 popular websites and their content distribution. During experiments, mobile host
was stationary at a location with reasonably good link conditions (e.g. typical C/I >

15dB). HTTP 1.1 achieves abysmally low average throughputs over WWANs.

Our experiments performed using virtual web hosting replicate the key com-
ponents of the web browsing performance that any WWAN user would expe-
rience with actual web servers. However, there exists few differences between
overall performance observed using the real web servers and virtual web host-
ing scenario. We have observed that the the mean download latencies are lower
(by about 5-10%) for the virtual-hosting system. This is primarily due to the
(1) absence of dynamically generated content, (2) difference in server workload
and processing times in the virtual-hosting case. We emphasize that none of the
above performance differences change the qualitative nature of the results when
comparing the different optimization techniques.

3 Experiences with Performance Optimizations

Our experimental evaluation is focused on web-browsing performance over a
WWAN network. We have experimented with different standard web-browsers
available (e.g. Mozilla, Internet Explorer, Netscape). Though there are minor
variations in their implementations, we observed that their performance is roughly
similar. Our results show that the default configuration parameters of most
browsers (typically chosen to work well in wired networks or wireless LANs)
perform poorly in WWAN environments. This is surprising in the context of
prior work [4], which showed that TCP, the underlying transport protocol used
by HTTP, makes efficient use of the WWAN wireless link. Our results also show
that individual TCP connections are relatively efficient over these wireless links.
However, the HTTP protocol needs to be suitably adapted to improve its per-
formance over WWAN environments.

In order to precisely benchmark web performance, we have used the Mozilla
browser version 1.4. In its default setting Mozilla opens upto 8 simultaneous TCP
connections per web-server using HTTP 1.0 and upto 2 TCP connections using
HTTP/1.1, Mozilla also supports proposed experimental features in HTTP/1.1,
e.g. pipelining.

File Size (KB) FTP-throughput (Kbps)

1 13.2 (1.5)
5 18.1 (0.9)
10 18.8 (2.1)
50 29.7 (3.3)
100 30.5 (3.2)

Table 2. Data throughputs achieved for ftp-downloads over WWAN wireless links
using a single TCP connection. TCP achieves good throughputs for larger files.

3.1 Performance Benchmarks

We conducted experiments for a number of different websites and we briefly
summarize four of them in Table 1. These four websites were chosen based on
the diversity of their characteristics, content types, content volumes, and number
of servers used. The download latencies of the different websites have significant
variability due to the diversity in content and the multiplicity of servers. The
table also indicates the overall data throughput achieved in downloading these
websites. We can observe that the overall throughput is significantly low. It
varies between only 7.5 Kbps to 17 Kbps for different websites, even though the
ideal downlink data-rate is 39.6 Kbps. We can contrast the performance of this
web download to ftp-like data transfers presented in Table 2. In this table we
present the throughput achieved when we downloaded a single file (of different
sizes) over the same WWAN wireless link.
The throughput achieved in such file transfer experiments were significantly

higher than the web downloads. For example the web download throughput
for amazon.com with a total content size of 91.9 KB was 9.6 Kbps, while the
download of a single 50 or 100 KB file was around 30 Kbps! The high file transfer
data throughput confirms prior observations made by Ludwig et. al. [4] that TCP
performs quite well over GSM-based wireless links. This implies that there are
significant inefficiencies in the web download mechanisms and carefully applied
optimizations can significantly improve the performance.

3.2 Performance Optimizations

We have examined the performance of a wide-selection of optimization tech-
niques that have been proposed at the different layers of the protocol stack —
application, session, transport, and link. As discussed in Section 2 some of these
optimization techniques relied on a transparent or explicit proxy that was located
in our laboratory. In this section we will discuss the benefits observed by each
of these techniques, except for the explicit dual-proxy techniques in most cases.
The dual-proxy techniques works with very different assumptions of deployment
and hence it is not possible to make a fair comparison of these techniques with
the no-proxy or single-proxy techniques. Therefore, we will only comment on the
benefits of the schemes individually and their combined effects in the summary

of results (Section 4). We now discuss performance optimizations.

Application layer Optimizations. For application layer optimizations, we
quantified the benefits of schemes like HTTP pipelining, extended caching, delta
encoding, and dynamic content compression.

Dynamic Data Compression. We implemented dynamic content compression
using an application-level proxy operating in the transparent as well as the ex-
plicit dual-proxy mode. From our experiments, we have observed that the content
in the different websites are very compressible. However, the benefits of compres-
sion on application performance may not be as substantial (except for the case
of Yahoo). This apparent anomalous behavior is due to the typical object size
distribution of some webpages. Here we observe that most of the objects in the
webpages can be small, e.g. nearly 60% of the objects in a CNN snapshot were
less than 1 KB (typically 1 TCP segment, assuming 1460 byte payloads of IP
packets). Any amount of compression would clearly not change the number of
segments below one. Therefore the overheads of issuing individual GET requests
for these objects sequentially over the two TCP connections dominates the trans-
fer time of these objects and hence the improvement in data transfer latency due
to compression will be minimal in these cases. In contrast, for web sites where
the distribution of object sizes is skewed towards larger values (e.g. Yahoo) the
impact on download latencies is higher.

HTTP Pipelining. We evaluated performance of the HTTP 1.1 protocol. The
default persistent HTTP/1.1 protocol gets each of these small objects sequen-
tially over its two TCP connections, and waits numerous times between the
completion of each GET request and the beginning of the next. In contrast,
HTTP pipelining allows many GET requests to be issued simultaneously by the
mobile client and hence the objects are fetched without any intervening gaps.
From our experiments, we see that HTTP pipelining provides between 35% to
56% benefits for the different websites. HTTP pipelining is an an experimental
technique in the HTTP/1.1 standard and we found that, unfortunately, most
browsers do not enable this feature by default.

CHK-based Caching/Delta Compression. We also investigated performance of
extended CHK-based caching and delta coding for different web-sites. Our ex-
periments show that such techniques on average improves real web-browsing
experience by about 3-6% for fast-changing web-sites.

Session level Optimizations. We performed a detailed study of performance
enhancement schemes like (1) the impact of multiple simultaneous transport
connections as typical in standard web browsers, (2) impact of DNS look-ups on
web downloads [2], and, (3) parse-and-push technique.

Varying TCP Connections. We investigated an alternative session layer tech-
nique to optimally choose the number of simultaneous TCP connections opened
by the client to the server. We found that for a base capacity of the GPRS hand-
set (39.6 Kbps in our case) increasing the number of TCP connections (from 2

to 6) leads to significant improvement in the user experience (i.e. for CNN the
download latency reduces from 196.3 seconds to 123.0 seconds).

DNS Boosting. DNS-boosting achieves the same effect as URL re-writing (as
in Content Distribution Networks) by intelligently manipulating DNS queries
from the client. Specific details of this scheme is available in [2]. Note that this
can significantly benefit performance in two ways: (1) by avoiding extra DNS
Lookups and (2) by reducing the number of TCP connections opened by a web
browser. We implemented this technique as a proxy and performed download
experiments for the different websites. By eliminating the DNS lookups for the
transparent proxy, we achieve another 5-9% improvement in the download la-
tency. The net improvements due to the session and application techniques are
between 53-65%.

Parse-n-Push. Parse-and-push is a session-level, explicit, dual-proxy scheme
that emulates deterministic content pushing towards the mobile client, when the
wireless downlink would have been otherwise left idle. While supporting parse-
and-push mechanism requires explicit client-side software update, the scheme
helps to improve overall utilization of the link. Our experiments have shown
that Parse-and-push provides an additional 5%-12% improvement in the web
download latency for the popular websites.

Transport layer Optimizations. We evaluated the performance of standard
TCP, a recently proposed link-adapted variant suited for WWAN environments
(TCP-WWAN), and a customized UDP based transport (UDP-GPRS) solution.

Using two different proxies, we quantified the additional benefits of using
link-adapted TCP and custom UDP based solution. In these experiments, we
apply the application-level optimizations (full compression) and session-level
optimizations. We have observed that using TCP-WWAN (transparently de-
ployed) achieves between 5-13% additional benefits for the different websites.
UDP-GPRS custom protocol (dual-proxy approach) leverages its specific knowl-
edge of the wireless link characteristics to improve the download performance
further (between 7-14% for the different websites).

Link layer Optimizations. Using trace-based simulations, we have studied the
interaction between link-layer retransmissions (ARQ) and forward error correc-
tion (FEC) schemes in WWAN environments. We have investigated mechanisms
that allow the RLC to dynamically choose the encoding schemes in conjunction
with the ability to enable or disable ARQ, and the impact of such mechanisms
on applications. Performing actual experimentation for this study was difficult
since we had no control on the encoding schemes used by the Base Station to
transmit data the mobile client. At the mobile client we only had the flexibil-
ity to enable or disable ARQ, and the ability to disable FECs. Therefore, we
performed trace-based simulations to study the data performance for various
applications over a wide range of channel conditions and encoding choices.

Our study confirms that for each different channel condition there is an op-
timal value of FEC that leads to the least download latency. For example a

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

mail yahoo amazon cnn

R
el

at
iv

e
C

on
tr

ib
ut

io
n

Websites

Relative contribution of optimization techniques

App
Session

Transport
Link

Fig. 3. Relative contribution of optimizations for 4 popular web-sites.

moderately poor channel, with an error rate of 0.9% on the GPRS channel,
5-6% FEC is the optimal choice to minimize download times. The amount of
required FEC for such optimal performance increases with increase in channel
error rates. This suggests that the RLC should continuously monitor the channel
conditions and dynamically choose the amount of FEC to be applied on reliable
data transfers across the wireless links.

4 Summary of Results

From the experiments conducted, we classified the performance optimizations
into two classes — those that require re-configuration or software update in
the mobile client, i.e. uses an explicit proxy and those that have no such re-
quirements. Here we assumed a reasonably good wireless link (error less than
0.2%) where dynamic (adaptive) FECs provide a latency improvement of about
5%. This value is derived from our link-layer trace-based simulations to improve
performance.
In Figure 3, we only plot the relative contribution of the schemes that require

no client-side reconfiguration when all optimizations are applied simultaneously.
For example, in Amazon application, session, transport, and link layer opti-
mization techniques contribute 17.9%, 37.8%, 5.1%, and 2.2% respectively. The
improvement provided by all the techniques applied simultaneously were the sum
of these values, 63.0%, which brought the download latency for Amazon from
76.4 seconds to 29.3 seconds. In general, we can observe that application
and session layer techniques have a dominating effect in improving

the web performance. They lead to 48-61% web performance improvements
for our example websites. Thus our work demonstrates that the application and
session-level mechanisms currently deployed for web browsing applications make
poor use of the relatively efficient lower layers. Employing appropriate optimiza-
tions at these layers (as described in this paper) can help bridging this perfor-
mance gap observed between the upper and lower layers. Our results show the

benefits to be somewhat higher when client-side reconfiguration/software update
is applied.
Note that transport, and link layers optimizations typically provide an addi-

tional 5-10% performance improvement (considering reasonably good link con-
ditions), which is still significant for web downloads over WWAN links.

5 Conclusions and Ongoing Work

Preliminary results from our comparative performance study of different opti-
mization techniques reveals the following: (1) There is a significant mismatch in
the performance of default HTTP protocols and its underlying transport mech-
anism, TCP. Unlike wireline networks, standard web browsers are unable to ex-
ploit even the meagre resources of the WWAN links. (2) Significant performance
benefits can be realized by suitable optimizations implemented at the application
and session layers. Commercial web servers and browsers should implement the
HTTP-pipelining scheme, which provides noticeable benefits to end-user perfor-
mance. (3) Inspite of significant compressibility of web content, dynamic data
compression techniques do not provide commensurate performance benefits. (4)
Custom protocols, explicitly designed for WWAN environments, present signif-
icant performance benefits at the transport layer. However, in many cases the
deployment of such schemes can be expensive for the service providers.
In our ongoing work, we are conducting more thorough experiments including

range of other popular web-sites to obtain even more accurate web browsing
benchmarks. We are also investigating other novel approaches for benchmarking
application performance across realistic web server workloads and in presence
of dynamically changing web content. We plan to extend this study for other
WWANs e.g. UMTS, CDMA 2000.

References

1. R. Chakravorty and I. Pratt.: “Performance Issues with General Packet Radio Ser-
vice”, Journal of Communications and Networks (JCN), Vol. 4, No. 2, December
2002.

2. P. Rodriguez and S. Mukherjee and S. Rangarajan.: “Session-level techniques to
Improve Web Browsing Performance over Wide-Area Wireless Links”, Proc. of the
World Wide Web (WWW) Conference, 2004 (to appear).

3. M. Meyer.: “TCP Performance over GPRS”, Proc. of IEEE WCNC 1999.
4. R. Ludwig, et al.: “Multi-Layer Tracing of TCP over a Reliable Wireless Link”,

Proc. of ACM SIGMETRICS 1999.
5. P. Benko, et al.: “A Large-scale, Passive Analysis of End-to-End TCP Performance
over GPRS”, Proc. of the IEEE INFOCOM 2004 (to appear).

